Supporting information
 Intramolecular Cyclization of \boldsymbol{m}-Homoprenylphenols through Oxidative Nucleophilic Aromatic Substitution
 Hiroki Deguchi, Kengo Hanaya, Takeshi Sugai, Shuhei Higashibayashi*
 Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan

Table of contents

1. General Information S2
2. Supporting Scheme S2
3. Synthesis and Characterization Data of Compounds
3.1 Synthesis of phenols 7a-m, 23, and 24 S3
3.2 Synthesis of phenols $\mathbf{1 1}$ and $\mathbf{1 2}$ S27
3.3 Synthesis of phenols $\mathbf{1 5 - 1 8}$ S31
3.4 Cyclization of phenols S36
4. NMR Spectra S49
5. Theoretical Calculation S148
6. References S150

1. General Information

Reagents and solvents for synthesis were commercially purchased and air and/or moisture sensitive reaction were carried out under Ar atmosphere. 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was distilled from $3 \AA$ molecular sieves and stored over $4 \AA$ molecular sieves. Ethylenediamine and diisopropylamine were distilled from KOH under Ar atmosphere and stored over $5 \AA$ or $4 \AA$ molecular sieves, respectively. Silica gel chromatography was performed using Wakosil ${ }^{\circledR} \mathrm{C}-300$ (spherical and neutral; 38-63 $\mu \mathrm{m}$, 233-01677, FUJIFILM Co.). TLC analysis was performed using Merck Silica gel $60 \mathrm{~F}_{254}$. Preparative TLC was performed using Merck PLC Silica gel $60 \mathrm{~F}_{254}$. Melting points were measured on a Mitamura Riken Kogyo MELTEMP and uncorrected. IR spectra were recorded on a Jasco FT/IR-4700 spectrometer with ATR PRO ONE in ATR mode using diamond prism. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker spectrometer at 500 MHz and 125 MHz or VARIAN $400-\mathrm{MR}$ spectrometer at 500 MHz or 400 $\mathrm{MHz} . \mathrm{CDCl}_{3}$ was used as a solvent and the residual solvent peaks were used as an internal standard $\left({ }^{1} \mathrm{H}\right.$ NMR: $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: 77.0 ppm). High resolution (HR) mass spectra (MS) were measured on JEOL JMS-T100LP AccuTOF spectrometer using electrospray method (ESI).

2. Supporting Scheme

Scheme S1 Reaction of a dimethoxy derivative

Kita et al. proposed the reaction mechanism through phenoxyiodine intermediates for phenol coupling in ref. 2 f , g . They also reported that the coupling of phenol ethers goes through cation radical intermediates in ref. 2 a . In our cyclization, the reaction of a dimethoxy derivative did not afford a cyclized product but diaryliodonium salts (ref. 2c) were formed, which also support our proposed mechanism through phenoxyidodine intermediate 27.

3. Synthesis and Characterization Data of Compounds

3.1 Synthesis of phenols 7a-m, 23, and 24

Alcohol 31b-m were prepared by following references (1) and (2). Alkene 34 were prepared from corresponding alkene $\mathbf{3 3}$ by following reference (3). Phenol $\mathbf{7 a}, \mathbf{f}, \mathbf{g}, \mathbf{j}, \mathbf{m}$ were prepared by following reference (4).

General procedure for synthesis of alcohol 31b-m

Method A

To a suspension of lithium aluminum hydride $(2.13 \mathrm{~g}, 56 \mathrm{mmol})$ in dry THF $(70 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added carboxylic acid 30b-m (28 mmol) in dry THF (120 mL) using a dropping funnel over 2 h under Ar atmosphere. The reaction mixture was warmed up to room temperature and stirred for 5 h . The reaction was quenched by addition of saturated aq. potassium sodium tartrate $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford alcohol $\mathbf{3 1 b} \mathbf{- m}$, which was used for the subsequent reaction without further purification.

Method B

To a solution of carboxylic acid 30b-m (5.0 mmol) in dry THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride ($473 \mathrm{mg}, 12.5 \mathrm{mmol}$) in one portion under Ar atmosphere. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(940 \mu \mathrm{~L}, 7.5 \mathrm{mmol})$ was added. The reaction mixture was warmed up to room temperature and stirred for 3 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by addition of 2 M aq. $\mathrm{HCl}(7 \mathrm{~mL})$ to $\mathrm{pH} 1-2$ and stirred at $0^{\circ} \mathrm{C}$. To the reaction mixture was added 2 M aq. $\mathrm{NaOH}(12 \mathrm{~mL})$ to pH 10 and the reaction mixture was concentrated under reduced pressure. The residue was diluted with brine and the organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford alcohol 31, which was used for the subsequent reaction without further purification.

General procedure for synthesis of benzyl bromide 32

Method C

To a solution of crude alcohol $\mathbf{3 1}(3.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PBr}_{3}(340 \mu \mathrm{~L}, 3.6$ mmol) dropwise under Ar atmosphere. The reaction was warmed up to room temperature and stirred for 15 h . The reaction was quenched by addition of saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ to pH 7 at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 1 h . The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-9/1) to afford benzyl bromide 32 .

Method D

To a solution of crude alcohol $31(5.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{CBr}_{4}(1.66 \mathrm{~g}$, $5.0 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.31 \mathrm{~g}, 5.0 \mathrm{mmol})$ portionwise under Ar atmosphere. The reaction was warmed up to room temperature and stirred for 12 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (1/0-9/1) to afford benzyl bromide 32 .

General procedure for synthesis of alkene 33

To a solution of benzyl bromide $32(4.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere was added allylmagnesium bromide solution in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{M}, 6.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$. The reaction was warmed up to $35{ }^{\circ} \mathrm{C}$ and stirred at $35{ }^{\circ} \mathrm{C}$ for 10 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-9/1)to afford alkene 33.

General procedure for synthesis of alkene 34

To a solution of alkene $33(3.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at room temperature under Ar atmosphere were added 2-methyl-2-butene ($6.4 \mathrm{~mL}, 60 \mathrm{mmol}$) and $2^{\text {nd }}$ Grubbs catalyst ($127 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was warmed up to $40{ }^{\circ} \mathrm{C}$ and stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with hexane/EtOAc $(1 / 0-19 / 1)$ to afford alkene 34.

General procedure for synthesis of phenol 7 Method E

To a solution of alkene $34(3.5 \mathrm{mmol})$ in dry THF $(8.6 \mathrm{~mL})$ was added dry ethylenediamine $(1.6 \mathrm{~mL}, 24.3$ mmol) at room temperature under Ar atmosphere. The mixture was cooled to $-10{ }^{\circ} \mathrm{C}$. To the reaction mixture was added lithium shot ($120 \mathrm{mg}, 17.3 \mathrm{mmol}$). The mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and
the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford phenol 7.

Method F

To a solution of alkene $34(2.0 \mathrm{mmol})$ in dry DMF $(15 \mathrm{~mL})$ were added 1-dodecanethiol ($580 \mu \mathrm{~L}, 2.4$ mmol) and sodium methoxide ($130 \mathrm{mg}, 2.4 \mathrm{mmol}$) at room temperature under Ar atmosphere. The mixture was warmed up to $100^{\circ} \mathrm{C}$ and stirred at $100^{\circ} \mathrm{C}$ for 9 h . The reaction was quenched by addition of aqueous 2 M aq. $\mathrm{HCl}(2 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred $0^{\circ} \mathrm{C}$. The organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford phenol 7.

(3-Bromo-5-methoxyphenyl)methanol (31b)

31b was obtained as a colorless oil in 95% yield $(1.22 \mathrm{~g})$ by Method B.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}, J=2.0,1.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=$ $1.8 \mathrm{~Hz}), 4.65(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{5}$

(3-Chloro-5-methoxyphenyl)methanol (31c)

31c was obtained as a colorless oil in 90% yield $(1.1 \mathrm{~g})$ by Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.8,1.4 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{m}), 4.65(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s})$ ppm.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{6}$

(3-Fluoro-5-methoxyphenyl)methanol (31d)

31d was obtained as a colorless oil in 92% yield (965 mg) by Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.66-6.71(2 \mathrm{H}, \mathrm{m}), 6.53(1 \mathrm{H}, \mathrm{ddd}, J=10.6,2.3,2.3 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{s})$, $3.80(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{7}$

(3-Methoxy-5-(trifluoromethyl)phenyl)methanol (31e)

31e was obtained as a yellow oil in 92% yield $(1.81 \mathrm{~g})$ by Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21(1 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{s}), 4.74(2 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{6}$

(3-Methoxy-5-methylphenyl)methanol (31f)

$31 \mathbf{f}$ was obtained as a yellow oil in 95% yield (1.94 g) by Method B.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.77(1 \mathrm{H}, \mathrm{s}), 6.73(1 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{s}), 4.63(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.33$ $(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{8}$

(3,5-Dimethoxyphenyl)methanol (31g)

31 g was obtained as a colorless oil in 90% yield $(1.54 \mathrm{~g})$ by Method A.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.53(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 4.64(2 \mathrm{H}, \mathrm{s}), 3.80(6 \mathrm{H}$, s) ppm.

Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{1}$

(4-Iodo-3-methoxyphenyl)methanol (31h)

31h was obtained as a yellow oil in 93% yield (940 mg) by Method B.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=7.9$, $1.7 \mathrm{~Hz}), 4.70(2 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{9}$

(4-Bromo-3-methoxyphenyl)methanol (31i)

31i was obtained as a yellow oil in 93% yield $(1.76 \mathrm{~g})$ by Method B .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{ddd}, J=8.0$, $2.0,0.8 \mathrm{~Hz}), 4.67(2 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{10}$
(4-Chloro-3-methoxyphenyl)methanol (31j)

31j was obtained as a yellow oil in 97% yield (992 mg) by Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=8.0$, $1.8 \mathrm{~Hz}), 4.68(2 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{11}$

(4-Fluoro-3-methoxyphenyl)methanol (31k)

31k was obtained as a yellow oil in 95% yield (940 mg) by Method B .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05(1 \mathrm{H}, \mathrm{dd}, J=11.2,8.2 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dd} J=8.2,2.0 \mathrm{~Hz}), 6.86(1 \mathrm{H}$, ddd, $J=8.2,4.3,2.0 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{d}, J=0.4 \mathrm{~Hz}), 3.90(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{12}$
(3-Methoxy-4-(trifluoromethyl)phenyl)methanol (311)

311 was obtained as a white solid in 90% yield $(1.62 \mathrm{~g})$ by Method B.
Mp. : $46.2^{\circ} \mathrm{C}$. IR (ATR) : v 3263, 2921, 2849, 1620, 1417, 1308, 1266, 1121, 1040, 1025, 919, 810, 737 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{s}, J=7.9 \mathrm{~Hz}), 4.75$ $(2 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9,146.8,127.4,127.3,123.2(\mathrm{q}, J=272.1$ Hz), 117.9, 110.1, 64.8, 56.1 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}: 229.0452$, found: 229.0458.

(3-Methoxy-4-methylphenyl)methanol (31m)

31m was obtained as a yellow oil in 93% yield (980 mg) by Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d} J=1.2 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{dd}, J=7.6$, $1.2 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{13}$

1-(Bromomethyl)-3-methoxybenzene (32a)

32a was obtained as a colorless oil in 93% yield $(1.86 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(1 \mathrm{H}, \mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dd}$, $J=2.2,1.8 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{ddd}, J=8.2,2.2,0.6 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{14}$

1-Bromo-3-(bromomethyl)-5-methoxybenzene (32b)

32b was obtained as a white solid in 93% yield $(1.75 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(1 \mathrm{H}, \mathrm{dd}, J=1.8,1.7 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, J=2.0,1.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{dd}$, $J=2.0,1.7 \mathrm{~Hz}), 4.38(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{15}$

1-(Bromomethyl)-3-chloro-5-methoxybenzene (32c)

32c was obtained as a white solid in 97% yield (1.36 g) by Method D.
Mp. : $78.5^{\circ} \mathrm{C}$. IR (ATR) : v 3006, 2966, 2940, 2837, 1576, 1462, 1276, 1054, 842, 764, 750, $688 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98(1 \mathrm{H}, \mathrm{dd}, J=1.9,1.6 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=2.2,1.9 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}$, $J=2.2,1.6 \mathrm{~Hz}), 4.39(2 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.5,140.4,135.2$, $121.5,114.5,113.4,55.7,32.3 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrClONa}: 256.9344$, found: 256.9330 .

1-(Bromomethyl)-3-fluoro-5-methoxybenzene (32d)

32d was obtained as a white solid in 93% yield $(1.86 \mathrm{~g})$ by Method D .
Mp. : $32.1^{\circ} \mathrm{C}$. IR (ATR) : v 3081, 2967, 2840, 1611, 1454, 1133, 1055, 987, 842, $689 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.69-6.72(2 \mathrm{H}, \mathrm{m}), 6.55(1 \mathrm{H}, \mathrm{ddd}, J=10.5,2.3,2.3 \mathrm{~Hz}), 4.40(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 161.1(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 140.5(\mathrm{~d}, J=10.0$ $\mathrm{Hz}), 110.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 108.4(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 101.8(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 55.8,32.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}) \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrFONa}: 240.9640$, found: 240.9644 .

1-(Bromomethyl)-3-methoxy-5-(trifluoromethyl)benzene (32e)

32e was obtained as a colorless oil in 94% yield $(1.28 \mathrm{~g})$ by Method D.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(1 \mathrm{H}, \mathrm{s}), 7.09(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{s}), 4.46(2 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{6}$

1-(Bromomethyl)-3-methoxy-5-methylbenzene (32f)

32f was obtained as a colorless oil in 90% yield $(1.27 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.80(1 \mathrm{H}, \mathrm{s}), 6.73(1 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.32$ ($3 \mathrm{H}, \mathrm{s}$) ppm.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{16}$

1-(Bromomethyl)-3,5-dimethoxybenzene (32g)

$\mathbf{3 2 g}$ was obtained as a white solid in 92% yield (1.52 g) by Method C.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.54(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{s}), 3.80(6 \mathrm{H}$, s) ppm .

Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{17}$

4-(Bromomethyl)-1-iodo-2-methoxybenzene (32h)

32h was obtained as a brown oil in 92% yield (1.19 g) by Method D.
IR (ATR) : v 3002, 2963, 2922, 2853, 1585, 1463, 1404, 1278, 1038, 850, 810, 765, 750, $651 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.9$ $\mathrm{Hz}), 4.44(2 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.5,139.9,139.7,123.1,111.6$, 86.3, 56.5, 33.0 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrIONa}$: 348.8700, found: 348.8717.

1-Bromo-4-(bromomethyl)-2-methoxybenzene (32i)

32i was obtained as a colorless oil in 89% yield $(1.18 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=8.1$, $1.9 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{18}$

4-(Bromomethyl)-1-chloro-2-methoxybenzene (32j)

32 \mathbf{j} was obtained as a colorless oil in 93% yield $(1.26 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=8.0$, $2.0 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{19}$

4-(Bromomethyl)-1-fluoro-2-methoxybenzene (32k)

32k was obtained as a white solid in 96% yield $(1.06 \mathrm{~g})$ by Method D .
Mp. : $50.3^{\circ} \mathrm{C}$. IR (ATR) : v 3006, 2986, 1609, 1518, 1276, 1154, 1023, 823, 765, 750, $653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.02(1 \mathrm{H}, \mathrm{dd}, J=11.0,8.2 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 6.91(1 \mathrm{H}$, ddd, $J=8.2,4.2,2.2 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.4(\mathrm{~d}$, $J=247.8 \mathrm{~Hz}), 147.8(\mathrm{q}, ~ J=11.0 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.6(\mathrm{q}, J=7.1 \mathrm{~Hz}) 116.3(\mathrm{~d}, J=18.6 \mathrm{~Hz})$, $114.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 56.4,33.3 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrFONa}: 240.9640$, found: 240.9626 .

4-(Bromomethyl)-2-methoxy-1-(trifluoromethyl)benzene (321)

321 was obtained as a white solid in 95% yield $(1.13 \mathrm{~g})$ by Method D.
Mp. : $57.1^{\circ} \mathrm{C}$. IR (ATR) : v 3008, 2986, 2948, 1613, 1419, 1326, 1260, 1109, 764, 750, $670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.01-7.02(2 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.8,143.4,127.7 .127 .6,123.5(\mathrm{q}, J=272.2 \mathrm{~Hz}), 120.5,112.6,56.1$, 32.3 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrF}_{3} \mathrm{ONa}: 290.9608$, found: 290.9621.

4-(Bromomethyl)-2-methoxy-1-methylbenzene (32m)

32m was obtained as a white solid in 96% yield $(1.30 \mathrm{~g})$ by Method D .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09(1 \mathrm{H}, \mathrm{dd}, J=7.4,0.6 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 4.50(2 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{20}$

1-(But-3-en-1-yl)-3-methoxybenzene (33a)

33a was obtained as a colorless oil in 90% yield (1.22 g).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(1 \mathrm{H}$, ddd, $J=7.4,1.4,1.4 \mathrm{~Hz}), 6.76(3 \mathrm{H}, \mathrm{m}), 5.82-5.90(1 \mathrm{H}, \mathrm{m})$, 5.03-5.07 ($1 \mathrm{H}, \mathrm{m}$), 4.97-5.00 ($1 \mathrm{H}, \mathrm{m}$), $3.80(3 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.35-2.40(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{21}$

1-Bromo-3-(but-3-en-1-yl)-5-methoxybenzene (33b)

33b was obtained as a yellow oil in 93% yield (760 mg).
IR (ATR) : v 3076, 3001, 2935, 2834, 1568, 1457, 1270, 1151, 1054, 914, 822, $687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.94(1 \mathrm{H}, \mathrm{dd}, J=2.0,1.6 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=2.1,2.0 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=2.1,1.6$ $\mathrm{Hz}), 5.78-5.87(1 \mathrm{H}, \mathrm{m}), 5.02-5.07(1 \mathrm{H}, \mathrm{m}), 4.98-5.01(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, 2.32-2.37 (2H, m) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4,145.2,137.6,124.1,122.7,115.5,114.5$, 113.7, 55.6, 35.3, 35.2 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}$: 263.0047, found: 263.0056 .

1-(But-3-en-1-yl)-3-chloro-5-methoxybenzene (33c)

33c was obtained as a colorless oil in 91% yield (936 mg).
IR (ATR) : v 2989, 2938, 1576, 1458, 1276, 1260, 1151, 1056, 914, 847, 764, 750, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.78(1 \mathrm{H}, \mathrm{dd}, J=2.2,1.6 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=2.2,2.0 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $1.6 \mathrm{~Hz}), 5.79-5.87(1 \mathrm{H}, \mathrm{m}), 5.02-5.07(1 \mathrm{H}, \mathrm{m}), 4.98-5.00(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, 2.33-2.38 (2H, m) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4,144.8,137.7,134.7,121.1,115.4,113.1$, 111.7, 55.6, 35.3, 35.2 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClONa}: 219.0552$, found: 219.0531 .

1-(But-3-en-1-yl)-3-fluoro-5-methoxybenzene (33d)

33d was obtained as a colorless oil in 90% yield (738 mg).
IR (ATR) : v 3005, 2928, 2840, 1613, 1590, 1276, 1147, 1129, 1057, 840, 764, 750, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.49-6.52(2 \mathrm{H}, \mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{ddd}, J=10.7,2.3,2.3 \mathrm{~Hz}), 5.79-5.87(1 \mathrm{H}, \mathrm{m})$, 5.02-5.06 (1H, m), 4.97-5.00 (1H, m), 3.78 (3H, s), 2.66 (2H, t, $J=7.8 \mathrm{~Hz}), 2.33-2.38(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 160.9(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 145.1(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 137.7$, $115.4,110.2(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 107.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 99.1(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 55.6,35.5(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 35.2$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FONa}$ 203.0848, found: 203.0833.

1-(But-3-en-1-yl)-3-methoxy-5-(trifluoromethyl)benzene (33e)

33e was obtained as a colorless oil in 96% yield (837 mg).
IR (ATR) : v 2931, 2846, 1604, 1466, 1356, 1245, 1167, 1119, 1054, 914, 853, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.04(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{m}), 6.89(1 \mathrm{H}, \mathrm{m}), 5.79-5.87(1 \mathrm{H}, \mathrm{m}), 5.03-5.07(1 \mathrm{H}, \mathrm{m})$, 4.99-5.02 ($1 \mathrm{H}, \mathrm{m}$), $3.83(3 \mathrm{H}, \mathrm{s}), 2.73(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.36-2.41(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.8,144.5,137.5,131.7(\mathrm{q}, J=34.0, \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.4, \mathrm{~Hz}), 117.9,117.7(\mathrm{~d}, J=3.7$, Hz), 115.6, $108.6(\mathrm{~d}, ~ J=4.1, \mathrm{~Hz}), 55.6,35.4,35.2 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F} 3 \mathrm{ONa}$: 253.0816 , found: 253.0810.

1-(But-3-en-1-yl)-3-methoxy-5-methylbenzene (33f)

33 f was obtained as a colorless oil in 90% yield $(1.12 \mathrm{~g})$.
IR (ATR) : v 3004, 2920, 2836, 1595, 1461, 1276, 1151, 1067, 913, 835, 765, 750, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.62(1 \mathrm{H}, \mathrm{s}), 6.56(2 \mathrm{H}, \mathrm{s}), 5.82-5.90(1 \mathrm{H}, \mathrm{m}), 5.04-5.08(1 \mathrm{H}, \mathrm{m}), 4.97-4.99(1 \mathrm{H}, \mathrm{m})$, $3.78(3 \mathrm{H}, \mathrm{s}), 2.64(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.34-2.39(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 159.8,143.5,139.3,138.3,121.9,114.9,112.1,111.3,55.2,35.6,21.7 \mathrm{ppm} . \operatorname{HRMS}$ (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}$: 199.1098, found: 199.1105.

1-(But-3-en-1-yl)-3,5-dimethoxybenzene (33g)

$\mathbf{3 3 g}$ was obtained as a colorless oil in 93% yield (1.51 g).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.36(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 5.82-5.90(1 \mathrm{H}, \mathrm{m})$, 5.03-5.07 ($1 \mathrm{H}, \mathrm{m}$), 4.97-5.00 ($1 \mathrm{H}, \mathrm{m}$), $3.78(3 \mathrm{H}, \mathrm{s}), 2.64-2.67(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.34-2.39(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{22}$

4-(But-3-en-1-yl)-1-iodo-2-methoxybenzene (33h)

33h was obtained as a yellow oil in 82% yield (705 mg).
IR (ATR) : v 2923, 2852, 142, 1405, 1276, 1261, 1043, 913, 764, 749, $704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.65(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}), 5.80-5.88(1 \mathrm{H}$,
m), $5.02-5.07(1 \mathrm{H}, \mathrm{m}), 4.98-5.01(1 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.68(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.34-2.39(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}^{2}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,144.1,139.2,137.8,122.9,115.4,111.6,82.6,56.4,35.4,35.3$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{IONa}: 310.9908$, found: 310.9925 .

1-Bromo-4-(but-3-en-1-yl)-2-methoxybenzene (33i)

33i was obtained as a colorless oil in 91% yield (901 mg).
IR (ATR) : v 3004, 2936, 2858, 1590, 1483, 1407, 1276, 1171, 1046, 911, 764, 750, $634 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.8 \mathrm{~Hz})$, $5.80-5.88(1 \mathrm{H}, \mathrm{m}), 5.02-5.07(1 \mathrm{H}, \mathrm{m}), 4.98-5.01(1 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.68(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.34-2.39$ $(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.8,143.0,137.8,133.1,122.0,115.4,112.5,118.9,56.3$, 35.5, 35.4 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}$: 263.0047, found: 263.0034 .

4-(But-3-en-1-yl)-1-chloro-2-methoxybenzene (33j)

33j was obtained as a colorless oil in 91% yield (779 mg).
IR (ATR) : v 2922, 2848, 1723, 1696, 1581, 1465, 1413, 1281, 1257, 1173, 1064, 1030, 853, 764, 747, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}$, $J=8.0,1.8 \mathrm{~Hz}), 5.81-5.90(1 \mathrm{H}, \mathrm{m}), 5.04-5.08(1 \mathrm{H}, \mathrm{m}), 5.00-5.02(1 \mathrm{H}, \mathrm{m}), 3.91(3 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz}), 2.36-2.41(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,142.1,137.8,130.0,121.4,119.9$, $115.4,112.6,56.2,35.5,35.4 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClONa}: 219.0552$, found: 219.0573 .

4-(But-3-en-1-yl)-1-fluoro-2-methoxybenzene (33k)

33k was obtained as a colorless oil in 87% yield (810 mg).
IR (ATR) : v 2954, 2918, 2849, 1609, 1518, 1464, 1280, 1217, 1152, 1037, 912, 811, 765, $747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.97(1 \mathrm{H}, \mathrm{dd}, J=11.3,8.2 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}), 6.69(1 \mathrm{H}$, ddd, $J=8.2,4.3,2.1 \mathrm{~Hz}), 5.80-5.88(1 \mathrm{H}, \mathrm{m}), 5.00-5.06(1 \mathrm{H}, \mathrm{m}), 4.98-5.00(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.67(2 \mathrm{H}, \mathrm{t}, J$ $=7.8 \mathrm{~Hz}), 2.33-2.38(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.0(\mathrm{~d}, J=242.5, \mathrm{~Hz}), 147.4(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=4.0, \mathrm{~Hz}), 137.9,120.5(\mathrm{~d}, J=6.5, \mathrm{~Hz}), 115.8(\mathrm{~d}, J=18.1, \mathrm{~Hz}), 115.3,113.8,111.3$, 56.3, 35.7, 35.2 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FONa}$ 203.0848, found: 203.0832.

4-(But-3-en-1-yl)-2-methoxy-1-(trifluoromethyl)benzene (331)

331 was obtained as a colorless oil in 93% yield (865 mg).
IR (ATR) : v 2932, 2850, 1616, 1584, 1510, 1465, 1419, 1313, 1276, 1173, 1122, 1048, 915, 823, 764, $748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{m}), 5.80-5.88(1 \mathrm{H}, \mathrm{m})$, 5.04-5.08 ($1 \mathrm{H}, \mathrm{m}$), 4.99-5.02 ($1 \mathrm{H}, \mathrm{m}$), $3.90(3 \mathrm{H}, \mathrm{s}), 2.75(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.37-2.42(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,148.0,137.5,127.1$ ($\mathrm{q}, J=5.3, \mathrm{~Hz}$), $124.0(\mathrm{q}, J=271.5, \mathrm{~Hz}), 120.1$, $116.5(\mathrm{q}, ~ J=30.8, \mathrm{~Hz}), 115.6,112.3,56.0,35.7,35.2 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{ONa}: 253.0816$, found: 253.0836 .

4-(But-3-en-1-yl)-2-methoxy-1-methylbenzene (33m)

33m was obtained as a colorless oil in 98% yield $(1.00 \mathrm{~g})$.
IR (ATR) : v 2956, 2921, 2851, 1463, 1276, 1260, 1040, 897, 764, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.04(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 5.83-5.91(1 \mathrm{H}$, m), 5.04-5.08 ($1 \mathrm{H}, \mathrm{m}$), 4.97-5.00 ($1 \mathrm{H}, \mathrm{m}$), $3.82(3 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.35-2.40(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.7,140.9,138.4,130.5,124.1,120.2,114.9,110.4,55.3,35.8,35.5$, 16.0 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}$: 199.1098, found: 199.1112.

1-Methoxy-3-(4-methylpent-3-en-1-yl)benzene (34a)

34a was obtained as a colorless oil in 90% yield (1.13 g).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}), 6.72-6.80(3 \mathrm{H}, \mathrm{m}), 5.16-5.19(1 \mathrm{H}, \mathrm{m}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 2.61(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.29(2 \mathrm{H}, \mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}), 1.69(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{s})$ ppm.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{23}$

1-Bromo-3-methoxy-5-(4-methylpent-3-en-1-yl)benzene (34b)

IR (ATR) : v 2962, 2928, 2856, 1597, 1568, 1457, 1270, 1151, 1053, 991, 828, 807, 732, $688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.9,1.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=2.1,1.9 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}, J$
$=2.1,1.5 \mathrm{~Hz}), 5.11-5.15(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.29(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J$ $=1.0 \mathrm{~Hz}$), $1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3,145.7,132.7,124.1,123.3,122.6$, 114.4, 113.6, 55.6, 36.0, 29.8, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{79} \mathrm{BrONa}$: 291.0360, found: 291.0348 .

1-Chloro-3-methoxy-5-(4-methylpent-3-en-1-yl)benzene (34c)

34c was obtained as a colorless oil in 88% yield (483 mg).
IR (ATR) : v 2964, 2935, 2836, 1706, 1598, 1576, 1459, 1431, 1315, 1273, 1151, 1054, 849, 788, 691 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.62(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.56(2 \mathrm{H}, \mathrm{m}), 5.16-5.19(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}$, s), 2.55-2.58 ($2 \mathrm{H}, \mathrm{m}$), 2.25-2.29 ($5 \mathrm{H}, \mathrm{m}$), $1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 159.7,144.0,139.3,132.2,124.0,121.9,112.0,111.3,55.2,36.3,30.1,25.8,21.7,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClONa}$ 247.0865, found: 247.0849 .

1-Fluoro-3-methoxy-5-(4-methylpent-3-en-1-yl)benzene (34d)

34d was obtained as a colorless oil in 88% yield (390 mg).
IR (ATR) : v 2960, 2917, 2848, 1614, 1591, 1457, 1276, 1260, 1147, 1130, 1059, 841, 765, 750, $691 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.49-6.52(2 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{ddd}, J=10.7,4.6,2.3 \mathrm{~Hz}), 5.12-5.16(1 \mathrm{H}$, m), $3.78(3 \mathrm{H}, \mathrm{s}), 2.58(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.25-2.30(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7(\mathrm{~d}, J=244.2, \mathrm{~Hz}), 160.8(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 145.6(\mathrm{~d}, J=9.1, \mathrm{~Hz})$, 132.6, 123.4, $110.2(\mathrm{~d}, J=2.7, \mathrm{~Hz}), 107.7(\mathrm{~d}, J=21.0, \mathrm{~Hz}), 98.9(\mathrm{~d}, J=25.0, \mathrm{~Hz}), 55.6,36.2(\mathrm{~d}, J=1.7$, Hz), 29.7, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FONa}$: 231.1161, found: 231.1136.

1-Methoxy-3-(4-methylpent-3-en-1-yl)-5-(trifluoromethyl)benzene (34e)

34e was obtained as a colorless oil in 93% yield (361 mg).
IR (ATR) : v 2966, 2931, 2858, 1604, 1465, 1353, 1316, 1245, 1167, 1119, 1055, 853, 748, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{s}), 5.12-5.16(1 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 2.65$ $(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.27-2.32(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.53(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.8,145.0,132.9,131.6(\mathrm{q}, J=32.1 \mathrm{~Hz}), 123.2(\mathrm{q}, J=272.6 \mathrm{~Hz}), 123.2,117.9,117.8(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 107.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 55.6,36.1,29.7,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{ONa}$: 281.1129 , found: 281.1115 .

1-Methoxy-3-methyl-5-(4-methylpent-3-en-1-yl)benzene (34f)

$34 f$ was obtained as a colorless oil in 91% yield (517 mg).
IR (ATR) : v 2960, 2923, 2855, 1613, 1584, 1509, 1412, 1259, 1153, 1132, 1043, 909, 849, $733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.62(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.56(2 \mathrm{H}, \mathrm{m}), 5.16-5.19(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s})$, 2.55-2.58 ($2 \mathrm{H}, \mathrm{m}$), 2.25-2.29 ($5 \mathrm{H}, \mathrm{m}$), $1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.7,144.0,139.3,132.2,124.0,121.9,112.0,111.3,55.2,36.3,30.1,25.8,21.7,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}$ 247.1411, found: 247.1389 .

1,3-Dimethoxy-5-(4-methylpent-3-en-1-yl)benzene (34g)

$\mathbf{3 4 g}$ was obtained as a colorless oil in 93% yield (679 mg).
IR (ATR) : v 2925, 2853, 2837, 1596, 1462, 1428, 1346, 1314, 1293, 1205, 1153, 1069, 926, 829, 692 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.36(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 5.15-5.19(1 \mathrm{H}, \mathrm{m})$, $3.78(6 \mathrm{H}, \mathrm{s}), 2.56-2.59(2 \mathrm{H}, \mathrm{m}), 2.26-2.31(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.8,145.0,132.3,123.8,106.6,97.8,55.4,36.6,29.9,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}: 243.2971$, found: 243.2969.

1-Iodo-2-methoxy-4-(4-methylpent-3-en-1-yl)benzene (34h)

34h was obtained as a yellow oil in 88% yield (310 mg).
IR (ATR) : v 2963, 2932, 2855, 1703, 1462, 1404, 1277, 1170, 1041, $764 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.64(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}), 5.12-5.15(1 \mathrm{H}$, m), $3.87(3 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 2.26-2.30(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.0,139.1,132.6,123.5,122.9,111.7,82.4,56.4,36.1,29.9,25.8$, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IONa}: 339.0221$, found: 339.0205.

1-Bromo-2-methoxy-4-(4-methylpent-3-en-1-yl)benzene (34i)

34i was obtained as a yellow oil in 83% yield (390 mg).

IR (ATR) : v 2924, 2852, 1704, 1577, 1481, 1420, 1257, 1198, 1160, 1031, 804, 764, 748, $645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.9$ $\mathrm{Hz}), 5.12-5.16(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 2.26-2.31(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, $1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.7,143.5,133.0,132.6,123.4,122.0,112.5,108.7$, 56.2, 36.1, 29.9, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{79} \mathrm{BrONa}$ 291.0360, found: 291.0377.

1-Chloro-2-methoxy-4-(4-methylpent-3-en-1-yl)benzene (34j)

34j was obtained as a colorless oil in 87% yield (352 mg).
IR (ATR) : v 2965, 2925, 2856, 1595, 1580, 1490, 1410, 1276, 1260, 1064, 1032, 810, 765, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.71-6.75(2 \mathrm{H}, \mathrm{m}), 5.12-5.16(1 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s})$, $2.61(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.26-2.30(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.8,142.7,132.6,129.9,123.4,121.5,119.7,112.6,56.2,36.1,30.0,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClONa}$ 247.0865, found: 247.0852 .

1-Fluoro-2-methoxy-4-(4-methylpent-3-en-1-yl)benzene (34k)

34k was obtained as a colorless oil in 91% yield (287 mg).
IR (ATR) : v 2987, 2921, 2850, 1609, 1517, 1276, 1261, 1033, 812, 764, $749 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.96(1 \mathrm{H}, \mathrm{dd}, J=11.4,8.2 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{ddd}, J=8.2,4.3,2.0$ $\mathrm{Hz}), 5.13-5.16(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.25-2.29(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, $1.55(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.9(\mathrm{~d}, J=242.6 \mathrm{~Hz}), 147.3,138.8(\mathrm{~d}, J=3.9 \mathrm{~Hz})$, $132.5,123.5,120.6(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 113.8(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 56.3,35.9,30.2,25.8$, 17.8 ppm . HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FONa}$ 231.1161, found: 231.1155.

2-Methoxy-4-(4-methylpent-3-en-1-yl)-1-(trifluoromethyl)benzene (341)

341 was obtained as a colorless oil in 90% yield (345 mg).
IR (ATR) : v 2970, 2936, 2858, 1615, 1419, 1312, 1117, 1045, 823, $748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.45(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.80-6.83(2 \mathrm{H}, \mathrm{m}), 5.13-5.16(1 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.66(2 \mathrm{H}, \mathrm{t}, J=$ $7.7 \mathrm{~Hz}), 2.29-2.33(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 157.6,148.6,133.9(\mathrm{q}, J=19.6 \mathrm{~Hz}), 132.9,129.0,128.7(\mathrm{q}, J=6.9 \mathrm{~Hz}), 127.1(\mathrm{q}, J=5.3 \mathrm{~Hz})$,
$123.2(\mathrm{q}, J=32.0 \mathrm{~Hz}), 121.9(\mathrm{q}, J=271.4 \mathrm{~Hz}), 120.2,112.3,56.0,36.4,29.7,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{ONa}$: 281.1129, found: 281.1113.

2-Methoxy-1-methyl-4-(4-methylpent-3-en-1-yl)benzene (34m)

34m was obtained as a yellow oil in 88% yield (478 mg).
IR (ATR) : v 2961, 2922, 2855, 1509, 1464, 1412, 1259, 1132, 1042, 813, $749 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.03(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.67-6.71(2 \mathrm{H}, \mathrm{m}), 5.17-5.20(1 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 2.61(2 \mathrm{H}, \mathrm{t}, J=$ $7.9 \mathrm{~Hz}), 2.27-2.32(2 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.7,141.4$ $132.2,130.5,124.0,123.9,120.2,110.5,55.3,36.3,30.3,25.8,17.8,16.0 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}$: 247.1411 , found: 247.1420 .

3-(4-Methylpent-3-en-1-yl)phenol (7a)

7 a was obtained as a colorless oil in 94% yield (1.02 g) by Method E.
IR (ATR) : v 3354, 2965, 2918, 2855, 1588, 1455, 1272, 1246, 1155, 938, 782, $694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.66(2 \mathrm{H}, \mathrm{m}), 5.15-5.18(1 \mathrm{H}, \mathrm{m})$, $4.68(1 \mathrm{~h}, \mathrm{brs}), 2.59(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.26-2.31(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,144.6,132.3,129.5,123.7,121.1,115.5,112.7,36.1,30.0,25.8,17.8$ ppm. HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}$ 199.1098, found 199.1091.

3-Bromo-5-(4-methylpent-3-en-1-yl)phenol (7b)

7b was obtained as a colorless oil in 93% yield (180 mg) by Method F.
IR (ATR) : v 3338, 2926, 2856, 1592, 1573, 1442, 1275, 1154, 994, 840, 748, $688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.91-6.92(1 \mathrm{H}, \mathrm{m}), 6.83-6.84(1 \mathrm{H}, \mathrm{m}), 6.59-6.60(1 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}$, brs $), 5.11-5.14(1 \mathrm{H}$, m), $4.73(1 \mathrm{H}, \mathrm{brs}), 2.54(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.23-2.28(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2,146.1,132.8,124.3,123.2,122.6,116.2,114.5,35.8,29.7,25.8$, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15}{ }^{79} \mathrm{BrONa}$: 277.0204, found 277.0227.

3-Chloro-5-(4-methylpent-3-en-1-yl)phenol (7c)

7c was obtained as a yellow oil in 89% yield (202 mg) by Method F.
IR (ATR) : v 3345, 2967, 2926, 2855, 1595, 1579, 1446, 1276, 1153, 996, 871, 846, 748, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.78(1 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=2.1,1.9 \mathrm{~Hz}), 6.59-6.60(1 \mathrm{H}, \mathrm{s}), 5.11-5.14(1 \mathrm{H}$, m), $4.74(1 \mathrm{H}, \mathrm{brs}), 2.54(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.28(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2,145.8,134.7,132.8,123.3,121.4,114.1,113.4,35.9,29.7,25.8$, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClONa}$ 233.0709, found 233.0715.

3-Fluoro-5-(4-methylpent-3-en-1-yl)phenol (7d)

7d was obtained as a colorless oil in 66% yield (175 mg) by Method F.
IR (ATR) : v 3358, 2965, 2927, 2857, 1618, 1593, 1462, 1445, 1276, 1148, 1125, 984, 842, 750, $690 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.48-6.50(1 \mathrm{H}, \mathrm{m}), 6.43-6.44(1 \mathrm{H}, \mathrm{m}), 6.37-6.40(1 \mathrm{H}, \mathrm{m}), 5.11-5.15(1 \mathrm{H}$, $\mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{brs}), 2.58(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.29(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 156.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 146.1(\mathrm{~d}, J=9.1 \mathrm{~Hz})$, $132.7,123.3,111.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 108.0(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 100.7(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 36.0(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, 29.6, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FONa}$ 217.1004, found 217.0993.

3-(4-Methylpent-3-en-1-yl)-5-(trifluoromethyl)phenol (7e)

7e was obtained as a yellow oil in 80% yield (157 mg) by Method F.
IR (ATR) : v 3353, 2977, 2933, 1606, 1457, 1354, 1251, 1170, 1122, 866, 747, $703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.48-6.50(1 \mathrm{H}, \mathrm{m}), 6.43-6.44(1 \mathrm{H}, \mathrm{m}), 6.37-6.40(1 \mathrm{H}, \mathrm{m}), 5.11-5.15(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}$, brs), $2.58(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.29(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 156.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 146.1(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.7,123.3$, $111.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 108.0(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 100.7(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 36.0(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 29.6,25.8,17.8$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{ONa}: 267.0972$, found 267.0988.

3-Methyl-5-(4-methylpent-3-en-1-yl)phenol (7f)

7 fas obtained as a yellow oil in 91% yield (380 mg) by Method E.
IR (ATR) : v 3365, 2964, 2920, 2855, 1595, 1455, 1299, 1277, 1152, 956, 841, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.60(1 \mathrm{H}, \mathrm{s}), 6.48(2 \mathrm{H}, \mathrm{m}), 5.15-5.18(1 \mathrm{H}, \mathrm{m}), 2.52-2.55(2 \mathrm{H}, \mathrm{m}), 2.24-2.28(5 \mathrm{H}, \mathrm{m})$, $1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,144.3,139.6,32.5$,
123.9, 122.0, 1113.5, 112.5, 36.1, 30.0, 25.8, 21.4, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}: 213.1255$, found 213.1239.

3-Methoxy-5-(4-methylpent-3-en-1-yl)phenol (7g)

7 g was obtained as a colorless oil in 91% yield (603 mg) by Method E .
IR (ATR): v 3389, 2920, 2852, 1596, 1461, 1455, 1438, 1342, 1299, 1195, 1148, 1063, 985, 835, $695 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.35(1 \mathrm{H}, \mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}), 6.25(1 \mathrm{H}$, dd, $J=2.1,2.1 \mathrm{~Hz}), 5.14-5.17(1 \mathrm{H}, \mathrm{m}), 4.86(1 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.53-2.56(2 \mathrm{H}, \mathrm{m}), 2.25-2.29(2 \mathrm{H}, \mathrm{m})$, $1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.8,156.4,145.2,132.2$, 123.6, 107.9, 106.8, 98.8, 55.2, 36.2, 29.7, 25.6, 17.7 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}: 229.2705$, found: 229.2706.

2-Iodo-5-(4-methylpent-3-en-1-yl)phenol (7h)

7h was obtained as a yellow oil in 91% yield (280 mg) by Method F.
IR (ATR): v 3480, 2923, 2852, 1702, 1586, 1415, 1292, 1197, 1016, 802, $731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.52(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=8.1,2.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{brs})$, 5.11-5.15 ($1 \mathrm{H}, \mathrm{m}$), $2.56(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.28(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.7,145.5,137.9,132.7,123.4,115.4,82.2,35.7,29.8,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IONa}$: 325.0065, found 325.0091.

2-Bromo-5-(4-methylpent-3-en-1-yl)phenol (7i)

$7 \mathbf{i}$ was obtained as a colorless oil in 89% yield (201 mg) by Method F.
IR (ATR) : v 3503, 2925, 2855, 1577, 1481, 1419, 1276, 1159, 1030, 866, 806, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}), 5.40$ $(1 \mathrm{H}, \mathrm{brs}), 5.11-5.15(1 \mathrm{H}, \mathrm{m}), 2.56(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.29(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.56$ $(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,144.3,132.6,131.6,123.4,122.3,116.2,107.3,35.7$, 29.8, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15}{ }^{79} \mathrm{BrONa}$ 277.0204, found 277.0188.

2-Chloro-5-(4-methylpent-3-en-1-yl)phenol (7j)

$7 \mathbf{j}$ was obtained as a yellow oil in 79% yield (167 mg) by Method E.
IR (ATR) : v 3346, 2927, 2856, 1605, 1458, 1361, 1124, 1053, 866, 808, $703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.19(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{brs})$, $5.11-5.15(1 \mathrm{H}, \mathrm{m}), 2.56(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.24-2.28(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.1,143.5,132.6,128.6,123.4,121.7,117.1,116.3,35.7,29.8,25.8$, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClONa}$ 233.0709, found 233.0695.

2-Fluoro-5-(4-methylpent-3-en-1-yl)phenol (7k)

$7 \mathbf{k}$ was obtained as a yellow oil in 57% yield $(177 \mathrm{mg})$ by Method F.
IR (ATR) : v 3361, 2925, 2855, 1702, 1607, 1508, 1434, 1274, 1191, 1112, 904, 876, 810, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96(1 \mathrm{H}, \mathrm{dd}, J=10.5,8.5 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 6.65(1 \mathrm{H}$, ddd, $J=7.6,4.6,2.2 \mathrm{~Hz}), 5.11-5.15(1 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{brs}), 2.55(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.23-2.27(2 \mathrm{H}, \mathrm{m}), 1.68$ $(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5(\mathrm{~d}, J=234.6, \mathrm{~Hz}), 143.2(\mathrm{~d}$, $J=14.2, \mathrm{~Hz}), 139.5(\mathrm{~d}, J=3.7, \mathrm{~Hz}), 132.5,123.5,120.7(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 115.1(\mathrm{~d}, J$ $=17.9 \mathrm{~Hz}$), 35.6, 30.1, 25.8, 17.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FONa}$ 217.1004, found 217.1022.

5-(4-Methylpent-3-en-1-yl)-2-(trifluoromethyl)phenol (7l)

71 was obtained as a yellow oil in 60% yield (197 mg) by Method F.
IR (ATR) : v 3465, 2930, 1657, 1528, 1400, 1305, 1118, 965, 830, $748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.40(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.82-6.84(1 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{s}), 5.38(1 \mathrm{H}, \mathrm{brs}), 5.11-5.15(1 \mathrm{H}, \mathrm{m})$, $2.62(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.26-2.31(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{113} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.6,148.6,133.9(\mathrm{q}, J=19.6 \mathrm{~Hz}), 133.5,129.0,128.8(\mathrm{q}, J=7.1 \mathrm{~Hz}), 127.6(\mathrm{q}, J=$ $5.0 \mathrm{~Hz}), 126.1(\mathrm{q}, J=32.0 \mathrm{~Hz}), 122.7(\mathrm{q}, J=271.4 \mathrm{~Hz}), 120.8,112.3,36.9,29.8,25.9,17.9 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{ONa}$: 267.0972, found 267.0994 .

2-Methyl-5-(4-methylpent-3-en-1-yl)phenol (7m)

7 m was obtained as a yellow oil in 90% yield (229 mg) by Method E.
IR (ATR) : v 3402, 2965, 2923, 2855, 1621, 1587, 1454, 1420, 1230, 1114, 998, 859, 811, $634 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.02(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}), 5.15-5.18(1 \mathrm{H}, \mathrm{m}), 4.57(1 \mathrm{~h}, \mathrm{brs}), 2.55(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.24-2.29(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}$, $\mathrm{d}, J=0.9 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.7,141.9,132.2,130.9,123.9,120.9$, $120.8,115.1,35.8,30.1,25.8,17.815 .4 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}$: 213.1255 , found 213.1240 .

3-(3,5-Dimethoxyphenyl)propanal (35a)

To a solution of $\mathbf{3 3 g}(330 \mathrm{mg}, 1.7 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} /$ THF $(10 \mathrm{~mL} / 9 \mathrm{~mL})$ were added 2,6-lutidine ($410 \mu \mathrm{~L}$, $3.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13 \mathrm{mg}, 0.035 \mathrm{mmol})$, and sodium periodate $(1.82 \mathrm{~g}, 8.5 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature for 3 h . The reaction was diluted by addition of $\mathrm{H}_{2} \mathrm{O}(28 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (6/1-0/1) to afford 35a in 80% yield $(265 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.82(1 \mathrm{H}, \mathrm{t}, J=1.4 \mathrm{~Hz}), 6.35(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz})$, $3.78(6 \mathrm{H}, \mathrm{s}), 2.89-2.92(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.75-2.79(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{24}$

1-(Hex-4-en-1-yl)-3,5-dimethoxybenzene (35b)

To a solution of ethyltriphenylphosphonium bromide ($2.3 \mathrm{~g}, 6.36 \mathrm{mmol}$) in dry THF (20 mL) was added n-BuLi solution in hexene $(1.5 \mathrm{M}, 3.9 \mathrm{~mL}, 5.9 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was warmed up to room temperature and stirred at room temperature for 30 min . The reaction was cooled to $-78^{\circ} \mathrm{C}$ and $\mathbf{3 5 a}(820 \mathrm{mg}, 4.2 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at
room temperature for 6 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (10/1-1/1) to afford 35b in 96% yield ($840 \mathrm{mg}, E / Z=3 / 1$) as a colorless oil.
IR (ATR): v 3000, 2929, 2852, 2837, 1596, 1462, 1428, 1348, 1293, 1205, 1153, 1067, 966, 926, 830, $693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.37(3 / 2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.35(1 / 2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.31(1 \mathrm{H}$, $\mathrm{t}, J=2.2 \mathrm{~Hz}), 5.40-5.51(2 \mathrm{H}, \mathrm{m}), 3.79(6 \mathrm{H}, \mathrm{s}), 2.61(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.34-2.38(3 / 2 \mathrm{H}, \mathrm{m}), 2.27-2.30$ $(1 / 2 \mathrm{H}, \mathrm{m}), 1.65(3 / 4 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 1.58(9 / 4 \mathrm{H}, \mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (E)-35b: $\delta 160.8,144.6,129.7,124.7,106.6,97.9,55.4,36.2,28.7,12.9 \mathrm{ppm} .(Z)-\mathbf{3 5 b}: \delta 160.8,144.6$, 130.7, 125.6, 106.6, $97.9,55.4,36.6,34.4,18.1 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$: 229.2705 , found: 229.2706 .

3-(Hex-4-en-1-yl)-5-methoxyphenol (23)

To a solution of $\mathbf{3 5 b}(420 \mathrm{mg}, 2.1 \mathrm{mmol})$ in dry THF (5.1 mL) was added dry ethylenediamine ($960 \mu \mathrm{~L}$, 14.4 mmol) at room temperature under Ar atmosphere. The mixture was cooled to $-10^{\circ} \mathrm{C}$. To the reaction mixture was added lithium shot ($71 \mathrm{mg}, 10.3 \mathrm{mmol}$). The mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford 23 in 81% yield ($320 \mathrm{mg}, E / Z=3 / 1$) as a colorless oil.
IR (ATR): v 3404, 3077, 2918, 2851, 2839, 1597, 1462, 1453, 1435, 1344, 1297, 1196, 1148, 1061, 913, 837, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.35(1 \mathrm{H}, \mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{dd}, J=2.0,1.2$ $\mathrm{Hz}), 6.24(1 \mathrm{H}, \mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}), 5.41-5.49(2 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.57(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $2.31-2.36(3 / 2 \mathrm{H}, \mathrm{m}), 2.24-2.28(1 / 2 \mathrm{H}, \mathrm{m}), 1.64(3 / 4 \mathrm{H}, \mathrm{m}), 1.58(9 / 4 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E)-\mathbf{2 3}: \delta 160.9,156.6,145.1,129.6,124.7,108.1,107.0,99.0,55.4,36.0,28.6,12.9 \mathrm{ppm}$. (Z)-23: $\delta 160.9,156.6,145.1,130.5,125.5,108.1,107.0,99.0,55.4,36.3,34.0,18.0 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$: 215.2240, found: 215.2238.

4-(3-Methoxyphenyl)butan-2-one (36b)

To a solution of aldehyde $\mathbf{3 6 a}(5.48 \mathrm{~g}, 40.3 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added aq. $2 \mathrm{M} \mathrm{NaOH}(40.3$ $\mathrm{mL}, 80.6 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature and stirred at room temperature for 3 h . The reaction was quenched by addition of saturated aq. $6 \mathrm{M} \mathrm{HCl}(14 \mathrm{~mL})$ to $\mathrm{pH} 1-2$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford corresponding enone (8.05 g) as a colorless oil. To a solution of the crude material in EtOH (66 mL) were added $10 \% \mathrm{Pd} / \mathrm{C}(705 \mathrm{mg})$ and $\mathrm{AcOH}(70 \mu \mathrm{~L}, 1.2$ mmol) at room temperature under Ar atmosphere. The atmosphere was replaced by H_{2} and the mixture was stirred at room temperature for 14 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and washed with EtOH . The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-3/1) to afford 36b in 68% yield (4.88 g) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18-7.22(1 \mathrm{H}, \mathrm{m}), 6.73-6.78(3 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.87(2 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 2.76(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.14(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{25}$

1-Methoxy-3-(4-methylpent-3-en-1-yl)benzene (36c)

To a solution of diisopropylamine $(1.6 \mathrm{~mL}, 11.1 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ solution in hexene $(1.5 \mathrm{M}, 7.3 \mathrm{~mL}, 11.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was warmed up to $0^{\circ} \mathrm{C}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was cooled to $-78^{\circ} \mathrm{C}$ and phenyl isobutylate $(1.65 \mathrm{~mL}$, 10.2 mmol) in THF (3 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for additional 30 min. Ketone 36b ($1.82 \mathrm{~g}, 10.2 \mathrm{mmol}$) in THF (3 mL) was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$ and
stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was warmed up to room temperature and stirred at room temperature for 18 h . The reaction mixture was concentrated under reduced pressure and the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford oxetanone as a colorless oil. The crude material was dissolved in dry hexane $(8 \mathrm{~mL})$ and silica gel ($40-64$ mesh, 1.8 g) was added at room temperature. The mixture was warmed up to $85^{\circ} \mathrm{C}$ and stirred at $85^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-9/1) to afford 36c in 50% yield (1.05 g) as a colorless oil.
IR (ATR) : v 2991, 2916, 2859, 2834, 1601, 1489, 1260, 1152, 1051, 765, $694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.18-7.21(1 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.72-6.74(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.60-2.63(2 \mathrm{H}, \mathrm{m})$, 2.29-2.33 ($2 \mathrm{H}, \mathrm{m}$), $1.69(3 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7$, $144.5,129.3,127.1,125.0,121.0,114.3,111.0,55.3,36.9,34.8 .20 .7,20.1,18.6 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}$: 227.1411, found: 227.1428.

3-(4-Methylpent-3-en-1-yl)phenol (24)

To a solution of methoxybenzene $\mathbf{3 6 c}(605 \mathrm{mg}, 3.0 \mathrm{mmol})$ in dry THF (7.5 mL) was added dry ethylenediamine ($1.4 \mathrm{~mL}, 21.0 \mathrm{mmol}$) at room temperature under Ar atmosphere. The mixture was cooled to $-10{ }^{\circ} \mathrm{C}$. To the reaction mixture was added lithium shot ($103 \mathrm{mg}, 14.8 \mathrm{mmol}$) and the mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-3/1) to afford 24 in 89% yield (502 mg) as a colorless oil.
IR (ATR) : v 3327, 2984, 2918, 2859, 1588, 1455, 1275, 1154, 939, 782, 764, 750, $693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.64-6.67(2 \mathrm{H}, \mathrm{m}), 4.59$ $(1 \mathrm{H}, \mathrm{s}), 2.58-2.61(2 \mathrm{H}, \mathrm{m}), 2.28-2.31(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{dd}, J=1.3,1.0 \mathrm{~Hz}), 1.65(3 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}, \mathrm{d}, J$ $=1.0 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,144.9,129.5,127.0,125.0,121.1,115.4,112.6$, 36.8, 34.6, 20.7, 20.1, 18.6 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}: 213,1255$, found: 213.1237.

3.2 Synthesis of phenols 11 and 12

1-Methoxy-3-(pent-4-en-1-yl)benzene (37b)

To a solution of bromide $37 \mathrm{a}(4.89 \mathrm{~g}, 22.8 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(93 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere was added allylmagnesium chloride solution in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{M}, 17 \mathrm{~mL}, 34.0 \mathrm{mmol})$. The reaction was warmed up to $35^{\circ} \mathrm{C}$ and stirred for 1 h at $35^{\circ} \mathrm{C}$. The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford alkene $\mathbf{3 7 b}$ in 93% yield (3.73 g) as a colorless oil.
IR (ATR) : v 3075, 2998, 2933, 2834, 1639, 1584, 1488, 1455, 1259, 1152, 1045, 911, 765, 749, $695 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18-7.22(1 \mathrm{H}, \mathrm{m}), 6.73-6.79(3 \mathrm{H}, \mathrm{m}), 5.80-5.88(1 \mathrm{H}, \mathrm{m}), 5.01-5.05(1 \mathrm{H}$, m), 4.97-4.99 (1H, m), $3.80(3 \mathrm{H}, \mathrm{s}), 2.61(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.08-2.12(2 \mathrm{H}, \mathrm{m}), 1.70-1.76(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,144.2,138.7,129.3,121.0,114.8,114.3,110.1,55.2,35.5,33.4$, 30.6 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}$: 199.1098, found: 199.1080.

1-Methoxy-3-(5-methylhex-4-en-1-yl)benzene (37c)

To a solution of alkene $\mathbf{3 7 b}(420 \mathrm{mg}, 2.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at room temperature under Ar atmosphere were added 2-methyl-2-butene ($5.0 \mathrm{~mL}, 47.2 \mathrm{mmol}$) and $2^{\text {nd }}$ Grubbs catalyst ($74.6 \mathrm{mg}, 0.12$ mmol). The reaction was warmed up to $40^{\circ} \mathrm{C}$ and stirred at $40^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with hexane/EtOAc (1/0-19/1) to afford alkene 37 c in 82% yield (400 mg) as a colorless oil.
IR (ATR) : v 3318, 2984, 2927, 1580, 1502, 1284, 1249, 1012, 778, 748, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.17-7.21(1 \mathrm{H}, \mathrm{m}), 6.71-6.78(3 \mathrm{H}, \mathrm{m}), 5.12-5.16(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, 2.00-2.04 ($2 \mathrm{H}, \mathrm{m}$), $1.70(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.62-1.69(2 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 159.7,144.5,131.9,129.3,124.5,121.0,114.3,111.0,55.3,35.7,31.6,27.8,25.9,17.9 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}$: 227.1411, found: 227.1432.

3-(5-Methylhex-4-en-1-yl)phenol (11)

To a solution of alkene $\mathbf{3 7 c}(254 \mathrm{mg}, 1.24 \mathrm{mmol})$ in dry THF (3.1 mL) was added dry ethylenediamine $(580 \mu \mathrm{~L}, 8.71 \mathrm{mmol})$ at room temperature under Ar atmosphere. The mixture was cooled to $-10^{\circ} \mathrm{C}$. To the reaction mixture was added lithium shot $(43.2 \mathrm{mg}, 6.22 \mathrm{mmol})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-10^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford phenol 11 in 88% yield (208 mg) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(1 \mathrm{H}, \mathrm{d}, J=7.7,7.7 \mathrm{~Hz}), 6.63-6.76(4 \mathrm{H}, \mathrm{m}), 5.12-5.16(1 \mathrm{H}, \mathrm{m}), 2.56$ $(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.99-2.03(2 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.61-1.67(2 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,144.9,132.0,129.5,124.4,121.2,115.4,112.6,35.5,31.5,27.7,25.9$, 17.9 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}$: 213.1255, found: 213.1278.

3-(3-Methoxyphenyl)propan-1-ol (38b)

To a solution of carboxylic acid 38a ($2.11 \mathrm{~g}, 11.7 \mathrm{mmol}$) in dry THF (60 mL) at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride $(1.11 \mathrm{~g}, 29.3 \mathrm{mmol})$ in one portion under Ar atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.2 \mathrm{~mL}, 16.5 \mathrm{mmol})$ was added. The reaction mixture was warmed up to room temperature and stirred for 14 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of 2 M aq. $\mathrm{HCl}(6 \mathrm{~mL})$ to $\mathrm{pH} 1-2$ and stirred at $0^{\circ} \mathrm{C}$. To the reaction mixture was 2 M aq . $\mathrm{NaOH}(8 \mathrm{~mL})$ to pH 10 and the reaction mixture was concentrated under reduced pressure. The solution was diluted with brine and the organic materials were extracted with EtOAc three times. The combined organic layers were
washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure to afford alcohol $\mathbf{3 8 b}$ as a colorless oil $(1.91 \mathrm{~g})$, which was used for the subsequent reaction without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21(1 \mathrm{H}, \mathrm{ddd}, J=7.7,7.4,1.0 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{~Hz}), 6.73-6.76$ $(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{s}), 3.68(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.69(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.90(2 \mathrm{H}, \mathrm{tt}, J=7.8,6.4 \mathrm{~Hz}) \mathrm{ppm}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{26}$

1-(3-Bromopropyl)-3-methoxybenzene (38c)

To a solution of crude material $\mathbf{3 8 b}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{CBr}_{4}(3.88 \mathrm{~g}, 11.7 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(3.07 \mathrm{~g}, 11.7 \mathrm{mmol})$ portionwise under Ar atmosphere. The reaction was warmed up to room temperature and stirred for 13 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (1/0-9/1) to afford bromide 38c in 80% yield over 2 steps from $\mathbf{3 8 a}(2.14 \mathrm{~g})$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.4,2.0 \mathrm{~Hz}), 6.75-6.83(3 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{s}), 3.34$ $(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.76(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.17(2 \mathrm{H}, \mathrm{tt}, J=7.4,6.6 \mathrm{~Hz}) \mathrm{ppm}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{27}$

1-(Hex-5-en-1-yl)-3-methoxybenzene (38d)

To a solution of bromide $\mathbf{3 8 c}(921 \mathrm{mg}, 4.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere was added allylmagnesium choloride solution in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{M}, 6.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$. The reaction was warmed up to $35{ }^{\circ} \mathrm{C}$ and stirred at $35^{\circ} \mathrm{C}$ for 17 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (1/0-19/1) to afford alkene 38d in 76% yield (581 mg) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18-7.21(1 \mathrm{H}, \mathrm{m}), 6.72-6.78(3 \mathrm{H}, \mathrm{m}), 5.77-5.85(1 \mathrm{H}, \mathrm{m}), 4.98-5.02(1 \mathrm{H}$, $\mathrm{m}), 4.93-4.95(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.06-2.10(2 \mathrm{H}, \mathrm{m}) 1.61-1.67(2 \mathrm{H}, \mathrm{m})$, 1.41-1.47 ($2 \mathrm{H}, \mathrm{m}$) ppm.

Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{28}$

1-Methoxy-3-(6-methylhept-5-en-1-yl)benzene (38e)

To a solution of alkene $\mathbf{3 8 d}(523 \mathrm{mg}, 2.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ at room temperature under Ar atmosphere were added 2-methyl-2-butene ($5.8 \mathrm{~mL}, 55 \mathrm{mmol}$) and $2^{\text {nd }}$ Grubbs catalyst ($117 \mathrm{mg}, 0.14$ mmol). The reaction was warmed up to $40^{\circ} \mathrm{C}$ and stirred at $40^{\circ} \mathrm{C}$ for 13 h . The reaction was cooled to room temperature and the reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (1/0-19/1) to afford tri-substituted alkene 38e in 94% yield (561 mg) as a colorless oil.
IR (ATR) : v 2942, 2866, 1462, 1246, 1080, 1048, 996, 883, 779, 677. $653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.18-7.21(1 \mathrm{H}, \mathrm{m}), 6.72-6.79(3 \mathrm{H}, \mathrm{m}), 5.09-5.13(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, 1.98-2.02 ($2 \mathrm{H}, \mathrm{m}$), 1.59-1.69 (8H, m), 1.61-1.67 (2H, m), 1.35-1.41 ($2 \mathrm{H}, \mathrm{m}$) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.7,144.7,131.5,129.3,124.8,121.0,114.4,111.0,55.3,36.1,31.2,29.7,28.0,25.9,17.8$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ONa}$ 241.1569, found: 241.1550 .

3-(6-Methylhept-5-en-1-yl)phenol (12)

To a solution of alkene $\mathbf{3 8 e}(420 \mathrm{mg}, 1.92 \mathrm{mmol})$ in dry THF $(4.8 \mathrm{~mL})$ was added dry ethylenediamine $(900 \mu \mathrm{~L}, 13.4 \mathrm{mmol})$ at room temperature under Ar atmosphere. The mixture was cooled to $-10^{\circ} \mathrm{C}$. To the reaction mixture was added lithium shot $(66.6 \mathrm{mg}, 9.6 \mathrm{mmol})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 22 h . The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford phenol 12 in 77% yield (304 mg) as a colorless oil.
IR (ATR) : v 3310, 2950, 2849, 1488, 1407, 1230, 1139, 1040, 1008, 946, 880, 792, $653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12-7.15(1 \mathrm{H}, \mathrm{m}), 6.75-6.76(1 \mathrm{H}, \mathrm{m}), 6.63-6.66(2 \mathrm{H}, \mathrm{m}), 5.06-5.13(1 \mathrm{H}, \mathrm{m}), 4.58$ $(1 \mathrm{H}, \mathrm{brs}), 2.56(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.95-2.04(2 \mathrm{H}, \mathrm{m}), 1.57-1.70(8 \mathrm{H}, \mathrm{m}), 1.33-1.40(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.5,143.6,132.8,131.1,126.5,118.7,111.2,107.9,33.8,28.7,27.0,25.7$, 23.2, 15.3 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}:$: 227.1411, found: 227.1401.

3.3 Synthesis of phenols $\mathbf{1 5 - 1 8}$

tert-Butyl (3-methoxyphenyl)(4-methylpent-3-en-1-yl)carbamate (39b)

To a solution of amine $\mathbf{3 9 a}(2.44 \mathrm{~g}, 19.8 \mathrm{mmol})$ in dry THF $(45 \mathrm{~mL})$ were added triethylamine $(2.8 \mathrm{~mL}$, $19.8 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(4.55 \mathrm{~mL}, 19.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was warmed up to room temperature and stirred at room temperature for 17 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (5/1-2/1) to afford carbamate in 97% yield $(4.30 \mathrm{~g})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.2,8.2 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.59$ $(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{m}), 2.21-2.27(2 \mathrm{H}, \mathrm{m}), 1.52(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{29}$
To a solution of carbamate $(1.36 \mathrm{~g}, 6.11 \mathrm{mmol})$ in dry DMF (30 mL) was added sodium hydride (366 mg , 9.16 mmol) at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and stirred for 1.5 h . To reaction mixture was added 5-bromo-2-methyl-2-pentene $(1.23 \mathrm{~mL}, 9.17 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature and stirred for 5 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-20/1) to afford alkene 39b in 87% yield $(1.56 \mathrm{~g})$ as a colorless oil.
IR (ATR) : v 3002, 2974, 2929, 2836, 1697, 1602, 1490, 1277, 1159, 1046, 883, 765, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(1 \mathrm{H}, \mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}), 6.74-6.79(3 \mathrm{H}, \mathrm{m}), 5.04-5.09(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{m})$, 3.56-3.60 $(2 \mathrm{H}, \mathrm{m}), 2.21-2.27(2 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,154.8,144.0,133.9,129.3,121.0,119.7,113.2,115.6,80.1,55.4,50.1,28.5$, 27.6, 25.9, 17.9 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}: 328.1888$, found: 328.1864.
tert-Butyl (3-hydroxyphenyl)(4-methylpent-3-en-1-yl)carbamate (15a)

To a solution of alkene $\mathbf{3 9 b}(384 \mathrm{mg}, 1.32 \mathrm{mmol})$ in dry DMF (9 mL) were added 1-dodecanethiol (380 $\mu \mathrm{L}, 1.58 \mathrm{mmol}$) and sodium methoxide ($71 \mathrm{mg}, 1.58 \mathrm{mmol}$) at room temperature under Ar atmosphere. The mixture was warmed up to $100^{\circ} \mathrm{C}$ and stirred at $100{ }^{\circ} \mathrm{C}$ for 22 h . The reaction was quenched by addition of 2 M aq. $\mathrm{HCl}(3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$. The organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-1/1) to afford phenol 15a in 87% yield (334 mg) as a colorless oil.
IR (ATR) : v 3320, 3006, 2978, 2929, 1661, 1590, 1401, 1276, 1260, 1162, 906, 869, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.3,7.8 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.65-6.68(2 \mathrm{H}, \mathrm{m}), 5.23$ $(1 \mathrm{H}, \mathrm{brs}), 5.04-5.07(1 \mathrm{H}, \mathrm{m}), 3.54-3.58(2 \mathrm{H}, \mathrm{m}), 2.20-2.26(2 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}$, s) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8,143.8,134.0,129.6,120.8,119.3,115.0,114.7,113.4$, 80.4, 50.1, 28.5, 27.6, 25.9, 17.9 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}: 314.1732$, found: 314.1754 .

N-(3-Methoxyphenyl)-4-methyl- N-(4-methylpent-3-en-1-yl)benzenesulfonamide (39c)

To a solution of amine $\mathbf{3 9 a}(2.42 \mathrm{~g}, 19.6 \mathrm{mmol})$ in dry pyridine $(100 \mathrm{~mL})$ was added $\mathrm{TsCl}(4.11 \mathrm{~g}, 19.6$ mmol) at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was warmed up to room temperature and stirred at room temperature for 9 h . The reaction mixture was concentrated under reduced pressure. The solution was poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (5/1-1/1) to afford amide in quantitative yield (5.30 g) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $8.1 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=2.2,2.1 \mathrm{~Hz}), 6.58-6.65(3 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{30}$
To a solution of amide ($1.51 \mathrm{~g}, 5.46 \mathrm{mmol}$) in dry DMF (30 mL) was added sodium hydride (328 mg , 8.19 mmol) at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and stirred for 1.5 h . To reaction mixture was added 5-bromo-2-methyl-2-pentene ($1.1 \mathrm{~mL}, 8.19 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature and stirred for 5 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ five times. The combined organic layers were washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-10/1) to afford alkene 39c in 74% yield $(1.44 \mathrm{~g})$ as a colorless oil.
IR (ATR) : v 3005, 2968, 2919, 2870, 2836, 1600, 1486, 1347, 1277, 1160, 1092, 1041, 941, 815, 692 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{dd}, J=$ $8.2,8.0 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{ddd}, J=8.2,2.2,1.0 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{ddd}, J=8.0$, $2.2,1.0 \mathrm{~Hz}), 5.01-5.05(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.45-3.49(2 \mathrm{H}, \mathrm{m}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.08-2.14(2 \mathrm{H}, \mathrm{m}), 1.65$ $(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 1.47(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,143.4,140.5,135.6,134.4$, 129.5 (2C), 127.9, 120.8, 120.2, 115.0, 113.9, 55.5, 50.6, 27.5, 25.8, 21.7, 17.9 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}$ 382.1452, found: 382.1461.

N-(3-hydroxyphenyl)-4-methyl- N-(4-methylpent-3-en-1-yl)benzenesulfonamide (15b)

To a solution of alkene $\mathbf{3 9 c}(472 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry DMF $(9 \mathrm{~mL})$ were added 1-dodecanethiol ($380 \mu \mathrm{~L}$, 1.6 mmol) and sodium methoxide ($85 \mathrm{mg}, 1.6 \mathrm{mmol}$) at room temperature under Ar atmosphere. The mixture was warmed up to $100^{\circ} \mathrm{C}$ and stirred at $100^{\circ} \mathrm{C}$ for 14 h . The reaction was quenched by addition of $2 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred $0^{\circ} \mathrm{C}$. The organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-3/1) to afford $\mathbf{1 5 b}$ in 50% yield (225 mg) as a yellow oil.
IR (ATR) : v 3423, 2973, 2922, 2870, 1594, 1483, 1454, 1335, 1151, 1090, 954, 813, 692, 657, 578, 550 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{ddd}, J=7.4,2.4,1.6 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=2.4,2.2 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{ddd}, J=7.4$, $2.2,1.6 \mathrm{~Hz}), 5.01-5.04(1 \mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{s}), 3.45-3.48(2 \mathrm{H}, \mathrm{m}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.08-2.14(2 \mathrm{H}, \mathrm{m}), 1.65$ $(3 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 1.47(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,143.5,140.5,135.5,129.8$, $129.5,127.9,120.8,120.7,120.1,116.6,115.1,50.5,27.5,25.8,21.7,17.9 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}$: 368.1296, found: 368.1280.

tert-Butyl (3-methoxybenzyl)(3-methylbut-2-en-1-yl)carbamate (40b)

To a solution of amine $\mathbf{4 0 a}(1.38 \mathrm{~g}, 10.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added triethylamine (3.5 mL , $25.2 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(4.65 \mathrm{~mL}, 20.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was warmed up to room temperature and stirred at room temperature for 15 h . The reaction was quenched by addition of saturated aq. NaHCO_{3} solution $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-2/1) to afford carbamate in quantitative yield $(2.76 \mathrm{~g})$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(1 \mathrm{H}, \mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.79-6.83(2 \mathrm{H}, \mathrm{m})$, $4.82(1 \mathrm{H}, \mathrm{brs}), 4.29(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{31}$
To a solution of carbamate ($1.21 \mathrm{~g}, 5.1 \mathrm{mmol}$) in dry DMF (25 mL) was added sodium hydride (306 mg , 7.7 mmol) at $0^{\circ} \mathrm{C}$ under Ar atmosphere and stirred for 30 min . To reaction mixture was added prenyl bromide ($900 \mu \mathrm{~L}, 7.7 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred at $60^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-3/1) to afford alkene 40b in 57% yield (891 mg) as a yellow oil.
IR (ATR) : v 3004, 2972, 2925, 2856, 1691, 1601, 1454, 1410, 1364, 1260, 1160, 1112, 1047, 877, 694 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(1 \mathrm{H}, \mathrm{dd}, J=8.4,7.6 \mathrm{~Hz}), 6.78-6.80(3 \mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{brs})$, $4.35(2 \mathrm{H}, \mathrm{brs}), 3.77-3.82(5 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,155.8,140.4,135.8,129.5,120.6,119.8,113.0,112.7,79.7,55.3,49.4,43.9,28.6$, 25.9, 18.0 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{Na}: 328.1888$, found: 328.1904.

Tert-butyl (3-hydroxybenzyl)(3-methylbut-2-en-1-yl)carbamate (16)

To a solution of alkene $\mathbf{4 0 b}(660 \mathrm{mg}, 2.16 \mathrm{mmol})$ in dry DMF $(14 \mathrm{~mL})$ were added 1-dodecanethiol (630 $\mu \mathrm{L}, 2.59 \mathrm{mmol}$) and sodium methoxide ($140 \mathrm{mg}, 2.59 \mathrm{mmol}$) at room temperature under Ar atmosphere. The mixture was warmed up to $100{ }^{\circ} \mathrm{C}$ and stirred at $100{ }^{\circ} \mathrm{C}$ for 37 h . The reaction was quenched by addition of 2 M aq. $\mathrm{HCl}(4 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and EtOAc $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with EtOAc three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (98/2-3/1) to afford phenol 16 in 83% yield (523 mg) as a yellow oil.

IR (ATR) : v 3325, 2975, 2929, 1656, 1590, 1455, 1417, 1365, 1260, 1158, 1117, 877, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}), 6.71-6.78(3 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, \mathrm{brs}), 4.33(2 \mathrm{H}, \mathrm{s})$, $3.76(2 \mathrm{H}, \mathrm{brs}), 1.71(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 153.5,149.0,132.9,126.8,125.6,123.5,123.1,121.1,117.7,77.7,35.9,29.5,25.8,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}: 317.1732$, found: 317.1715

3-((4-Methylpent-3-en-1-yl)oxy)phenol (17)

To a solution of resorcinol (41) ($640 \mathrm{mg}, 5.81 \mathrm{mmol}$) in dry DMF (29 mL) was added potassium carbonate $(2.41 \mathrm{~g}, 17.4 \mathrm{mmol})$ at room temperature under Ar atmosphere. The mixture was warmed up to $60{ }^{\circ} \mathrm{C}$ and stirred at $60{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was cooled to room temperature and 5-bromo-2-methyl-2-pentene ($780 \mu \mathrm{~L}, 6.97 \mathrm{mmol}$) was added. The mixture was re-warmed up to $60{ }^{\circ} \mathrm{C}$ and stirred at $60{ }^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and poured into $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ directly and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-2/1) to afford 17 in 28% yield (312 mg) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.14(1 \mathrm{H}, \mathrm{m}), 6.49(1 \mathrm{H}, \mathrm{ddd}, J=8.2,2.3,1.0 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.2,2.3,1.0 \mathrm{~Hz}), 6.39-6.42(2 \mathrm{H}, \mathrm{m}), 5.18-5.22(1 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.44-2.49$ $(2 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}) 1.66(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{32}$

3-((3-Methylbut-2-en-1-yl)oxy)phenol (18)

To a solution of resorcinol (41) ($613 \mathrm{mg}, 5.57 \mathrm{mmol}$) in dry DMF (28 mL) was added potassium carbonate $(2.31 \mathrm{~g}, 16.7 \mathrm{mmol})$ at room temperature under Ar atmosphere. The mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred at $60^{\circ} \mathrm{C}$ for 30 min . The reaction was cooled to room temperature and prenyl bromide $(770 \mu \mathrm{~L}, 6.68 \mathrm{mmol})$ was added. The mixture was re-warmed up to $60^{\circ} \mathrm{C}$ and stirred at $60^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ directly and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (20/1-2/1) to afford $\mathbf{1 8}$ in 34% yield (338 mg) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(1 \mathrm{H}, \operatorname{ddd}, J=8.4,8.4,2.1 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \operatorname{ddd}, J=8.4,2.1,1.5 \mathrm{~Hz})$, 6.40-6.43 ($2 \mathrm{H}, \mathrm{m}$), $5.47-5.51(1 \mathrm{H}, \mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{brs}), 4.83(1 \mathrm{H}, \mathrm{brs}), 4.48(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.79(3 \mathrm{H}, \mathrm{d}$, $J=1.0 \mathrm{~Hz}), 1.74(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that reported previously. ${ }^{33}$

3.4 Cyclization of phenols

General procedure of cyclization of 7

7
PIDA (1.2 eq.)
$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq.) $\xrightarrow{\text { MS 4Å (10 wt\%) }}$ HFIP $0^{\circ} \mathrm{C}$ to reflux
3 h

$8 x$

$8 y$

To a solution of $7(0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ were added potassium carbonate $(124 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ and molecular sieve $4 \AA(10 \mathrm{wt} \%)$ at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$ and phenyliodine diacetate (PIDA) $(116 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford a mixture of $\mathbf{8 x}$ and $\mathbf{8 y}$. Regioisomers $\mathbf{8 x}$ and $\mathbf{8 y}$ were separated by preparative TLC with hexane/EtOAc (1/1). Regioisomers \mathbf{x} and \mathbf{y} of $\mathbf{8}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{1 9 - 2 2}, \mathbf{2 5}, 26$ were assigned by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants of aromatic protons in ${ }^{1} \mathrm{H}$ NMR spectra. $\mathbf{8 b}-\mathbf{8 g}$ were determined by nOe between a vinyl proton and MeO or Me groups of $\mathbf{8 f}, \mathbf{8 g}$, and methyl ether derivatives of $\mathbf{8 b} \mathbf{e}$.

1-(Prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8ax)

3-(Prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8ay)

$\mathrm{K}_{2} \mathrm{CO}_{3}(415 \mathrm{mg}, 3.0 \mathrm{mmol})$ was used as a base. $\mathbf{8 a x}$ and $\mathbf{8 a y}(1: 1)$ were obtained as a colorless oil in 84% yield (43.2 mg).
8ax: IR (ATR): v 3378, 2960, 2843, 1598, 1445, 1182, 1036, 980, 802, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.99(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}), 4.79-4.81(2 \mathrm{H}$, $\mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{ddd}, J=16.0,8.7,4.0 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{ddd}, J=16.6$, $8.3,4.7 \mathrm{~Hz}), 2.27(1 \mathrm{H}$, dddd, $J=16.6,8.3,7.6,4.7 \mathrm{~Hz}), 1.95(1 \mathrm{H}$, dddd, $J=16.3,8.7,7.6,4.0 \mathrm{~Hz}), 1.63$ $(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 156.0,147.3,146.5,137.7,121.6,120.4,115.2,110.5,52.6$, 32.6, 31.5, 21.3 ppm. HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ONa}$: 197.0943, found:197.0966.

8ay: IR (ATR): v 3465, 2944, 2833, 1606, 1590, 1468, 1177, 1028, 946, 794, $691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.38$ $(1 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 2.99(1 \mathrm{H}$, ddd, $J=15.7,8.9,4.3 \mathrm{~Hz}), 2.90(1 \mathrm{H}$, ddd, $J=15.7,8.6,3.8 \mathrm{~Hz}), 2.30(1 \mathrm{H}$, dddd, $J=16.7,8.6,7.8,4.3$ $\mathrm{Hz}), 1.97(1 \mathrm{H}$, dddd, $J=16.7,8.9,7.8,3.8 \mathrm{~Hz}), 1.73(3 \mathrm{H}, \mathrm{dd}, J=1.3,0.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}): $\delta 153.7,148.6,146.4,129.0,116.9,113.5,112.9,51.4,32.3,31.0,19.0 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ONa}$: 197.0943, found: 197.0956.

7-Bromo-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8bx)
6-Bromo-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8by)

8bx and 8by (9:2) were obtained as a yellow oil in 65% yield (50.9 mg).
8bx: IR (ATR): v 3384, 2930, 2361, 1606, 1574, 1444, 1267, 1090, 1043, 824, $770 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.83(1 \mathrm{H}, \mathrm{m}), 6.65(1 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{brs}), 4.74-4.75(1 \mathrm{H}, \mathrm{m}), 4.40-4.41(1 \mathrm{H}, \mathrm{m})$, 3.74-3.76 (1H, m), 2.97-3.04 (1H, m), 2.79-2.85 ($1 \mathrm{H}, \mathrm{m}$), 2.26-2.34 ($1 \mathrm{H}, \mathrm{m}$), 1.93-1.99 ($1 \mathrm{H}, \mathrm{m}$), $1.74(3 \mathrm{H}$, m) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,147.9,146.4,137.5,120.8,117.1,110.8,110.7,52.9$, 32.6, 31.5, 21.3 ppm . HRMS (ESI) [M+Na] calculated for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}$: 275.0049, found: 275.0022. 8by: IR (ATR): v 3460, 2967, 2850, 1613, 1478, 1280, 1152, 1009, 965, 790, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.95(1 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{s}), 5.05-5.06(1 \mathrm{H}, \mathrm{m}), 4.97-4.99(1 \mathrm{H}, \mathrm{m}), 3.93(1 \mathrm{H}, \mathrm{t}$, $J=7.9 \mathrm{~Hz}), 2.94-3.00(1 \mathrm{H}, \mathrm{m}), 2.84-2.92(1 \mathrm{H}, \mathrm{m}), 2.27-2.35(1 \mathrm{H}, \mathrm{m}), 1.92-1.98(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{dd}, J$ $=1.4,0.8 \mathrm{~Hz}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,147.3,137.2,131.5,120.8,116.8,110.9$, $110.5,50.8,31.4,28.7,21.3 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}$: 275.0049, found: 275.0026 .

7-Chloro-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8cx)
6-Chloro-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8cy)

8cx and 8cy (3:1) were obtained as a colorless oil in 62% yield (39.0 mg).
8cx: IR (ATR): v 3358, 2917, 2376, 1640, 1583, 1259, 1048, 997, 859, $794 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.77(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{s}), 4.70-4.77(2 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.85-2.92$ $(1 \mathrm{H}, \mathrm{m}), 2.72-2.80(1 \mathrm{H}, \mathrm{m}), 2.17-2.23(1 \mathrm{H}, \mathrm{m}), 1.94-2.00(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.6,148.1,146.5,135.4,131.9,114.2,110.5,110.2,51.4,32.8,31.6,21.0 \mathrm{ppm}$. HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClONa}$: 231.0554, found: 231.0535.

8cy: IR (ATR): v 3449, 2955, 2919, 2856, 1708, 1649, 1455, 1248, 1166, 990, 812, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.81(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{s}), 4.66-4.69(1 \mathrm{H}, \mathrm{m})$, 4.32-4.34 (1H, m), 3.71 ($1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$), 2.93-2.99 ($1 \mathrm{H}, \mathrm{m}$), 2.75-2.80 ($1 \mathrm{H}, \mathrm{m}$), 2.19-2.27 ($1 \mathrm{H}, \mathrm{m}$), $1.87-1.92(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,147.3$, $144.8,135.2,131.6,114.2,110.7,109.4,51.2,31.6,30.8,20.9 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FONa}$: 231.0554 , found: 231.0529 .

6-Fluoro-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8dy)

8dy was obtained as a yellow oil in 32% yield (18.3 mg).
IR (ATR): v 3269, 2921, 2851, 2356, 1977, 1939, 1291, 1059, 990, 805, $758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.51(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.1 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J=8.6,1.4 \mathrm{~Hz})$, $5.07(1 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{ddd}, J=$ $15.7,8.8,4.0 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{ddd}, J=15.7,7.9,3.7 \mathrm{~Hz}), 2.33(1 \mathrm{H}$, dddd, $J=16.7,8.0,7.9,4.0 \mathrm{~Hz}), 1.98$ $(1 \mathrm{H}$, dddd, $J=16.7,8.8,7.6,3.7 \mathrm{~Hz}), 1.72(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 163.7(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 154.2,148.4,147.5(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 124.3,113.2,104.0(\mathrm{~d}, J=22.6$ $\mathrm{Hz}), 101.3(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 50.8,32.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 31.2,18.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FONa}$ 215.0848, found: 215.0866.

3-(Prop-1-en-2-yl)-6-(trifluoromethyl)-2,3-dihydro-1 \boldsymbol{H}-inden-4-ol (8ey)

8ey was obtained as a yellow oil in 79% yield (57.3 mg).
IR (ATR) : v 3412, 2970, 2925, 1708, 1644, 1428, 1354, 1220, 1166, 1043, 998, 890, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.02(1 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz})$,
2.92-3.03 (1H, m), 2.74-2.82 (1H, m), 2.18-2.27 (1H, m), 1.83-1.91 (1H, m), $1.68(3 H, d d, J=1.4,0.6$ $\mathrm{Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3 .(\mathrm{d}, J=234.8, \mathrm{~Hz}), 142.7(\mathrm{~d}, J=11.6, \mathrm{~Hz}), 139.5,133.3$, $124.0,119.6,116.8,114.7(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 53.7,36.0,29.2,17.7 \mathrm{ppm}$. HRMS $(\mathrm{ESI})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{ONa}$: 265.0817 , found: 265.0840 .

7-Methyl-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8fx) 6-Methyl-3-(prop-1-en-2-yl)-2,3-dihydro-1 \boldsymbol{H}-inden-4-ol (8fy)

8fx and $\mathbf{8 f y}$ (2:1) were obtained as a yellow oil in 64% yield (36.2 mg).
8fx: IR (ATR) : v 3437, 2925, 2908, 1716, 1667, 1410, 1218, 1190, 1031, 986, 895, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.53(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{brs}), 4.67-4.69(1 \mathrm{H}, \mathrm{m})$, 4.47-4.48 (1H, m), $3.73(1 \mathrm{H}, \mathrm{m}), 2.89-2.96(1 \mathrm{H}, \mathrm{m}), 2.73-2.83(1 \mathrm{H}, \mathrm{m}), 2.24-2.32(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s})$, $1.90-1.96(1 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,147.6$, $146.1,136.1,135.9,114.5,110.1,108.5,51.0,31.7,29.7,20.4,18.7$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}: 211.1099$, found: 211.1127.
8fy: IR (ATR) : v 3490, 2967, 2905, 2217, 1740, 1687, 1436, 1220, 1203, 1018, 970, 896, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.63(1 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{s}), 5.29(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 4.95$ $(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.91-2.97(1 \mathrm{H}, \mathrm{m}), 2.81-2.89(1 \mathrm{H}, \mathrm{m}), 2.26-2.33(5 \mathrm{H}$, m), 1.92-1.99 ($1 \mathrm{H}, \mathrm{m}$), $1.72(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2,148.9$, $146.3,139.0,125.8,117.8,114.1,112.6,51.0,32.1,31.1,21.2,18.8$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}: 211.1099$, found: 211.1115 .

7-Methoxy-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8gx)
 6-Methoxy-3-(prop-1-en-2-yl)-2,3-dihydro-1 H -inden-4-ol (8gy)

8gx and $\mathbf{8 g y}$ (1:1) were obtained as a colorless oil in 49% yield (30.1 mg).
8gx: IR (ATR): v 3410, 2978, 2860, 1707, 1594, 1501, 1470, 1250, 1026, 935, 800, 742, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.30(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.22(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.56-4.77(2 \mathrm{H}, \mathrm{m})$, 4.49-4.50 ($1 \mathrm{H}, \mathrm{m}$), $3.81(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.87-2.94(1 \mathrm{H}, \mathrm{m}), 2.70-2.76(1 \mathrm{H}, \mathrm{m}), 2.21-2.29(1 \mathrm{H}, \mathrm{m})$, 1.89-1.95 (1H, m), $1.70(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,148.1,147.7,134.4,134.0$, 109.2, 103.3, 97.0, 55.5, 49.5, 32.1, 29.9, 22.8, 20.7 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}: 227.2547$, found: 227.2523 .
8gy: IR (ATR): v 3492, 2942, 2871, 2841, 1621, 1607, 1592, 1488, 1466, 1455, 1440, 1337, 1273, 1194, $1143,1040,938,793,742,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.39(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{t}, J=$ $7.9 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{ddd}, J=15.7,9.2,4.3 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{ddd}, J=15.7,8.6,3.8 \mathrm{~Hz}), 2.30(1 \mathrm{H}$, dddd, $J=16.6,8.7,8.6,4.3 \mathrm{~Hz}), 1.96(1 \mathrm{H}, \operatorname{dddd}, J=16.6,9.1,8.7,3.8 \mathrm{~Hz}), 1.72(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz})$
ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,153.9,148.8,147.1,121.0,112.6,102.7,99.5,55.4,50.7$, 33.2, 32.5, 18.7 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}: 227.2547$, found: 227.2550.

6-Iodo-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8hx)
5-Iodo-3-(prop-1-en-2-yl)-2,3-dihydro-1 \boldsymbol{H}-inden-4-ol (8hy)

8hx and $\mathbf{8 h y}$ ($1: 2$) were obtained as a yellow oil in 60% yield (53.8 mg).
8hx: IR (ATR): v 3475, 2956, 2888, 2854, 1720, 1571, 1426, 1298, 1190, 1026, 959, 844, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(1 \mathrm{H}, \mathrm{s}), 6.71(1 \mathrm{H}, \mathrm{s}), 4.77-4.82(2 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz})$, 2.92-3.01 ($1 \mathrm{H}, \mathrm{m}$), 2.74-2.81 $(1 \mathrm{H}, \mathrm{m}), 2.19-2.27(1 \mathrm{H}, \mathrm{m}), 1.83-1.91(1 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2,149.4,140.2,136.0,112.5,111.8,82.5,52.1,32.8,30.4,18.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IONa}$ 322.9909, found: 322.9920 .
8hy: IR (ATR): v 3469 2955, 2922, 2852, 1713, 1463, 1194, 1018, 793, $751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.01-5.22(2 \mathrm{H}, \mathrm{m}), 4.67-4.68(1 \mathrm{H}, \mathrm{m}), 4.02$ $(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.91-2.98(1 \mathrm{H}, \mathrm{m}), 2.73-2.80(1 \mathrm{H}, \mathrm{m}), 2.20-2.28(1 \mathrm{H}, \mathrm{m}), 1.87-1.92(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}$, m) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,148.8,135.2,130.6,121.2,116.0,113.8,109.5,81.2$, 54.8, 29.9, 26.7, 20.5 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IONa}: 322.9909$, found: 322.9898 .

6-Bromo-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8ix)
5-Bromo-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8iy)

8ix and 8iy (3:2) were obtained as a yellow oil in 40% yield (30.4 mg).
8ix: IR (ATR) : v 3490, 2966, 2820, 1720, 1508, 1484, 1283, 1014, 898, 775, $694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.72(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{s}), 4.66-4.73(1 \mathrm{H}, \mathrm{m}), 4.45-4.47(1 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{t}$, $J=7.9 \mathrm{~Hz}), 2.92-3.01(1 \mathrm{H}, \mathrm{m}), 2.72-2.80(1 \mathrm{H}, \mathrm{m}), 2.19-2.26(1 \mathrm{H}, \mathrm{m}), 1.89-1.97(1 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.4,147.2,145.8,134.8,130.6,112.6,111.9,109.0,51.2,33.4$, 30.8, 20.5 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}: 275.0049$, found: 275.0060 .

8iy: IR (ATR): v 3210, 2955, 2922, 2852, 2359, 2342, 2308, 1463, 1289, 1198, 792, 752, $668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{s}), 4.88(1 \mathrm{H}, \mathrm{m})$, $4.84(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}), 2.92-2.98(1 \mathrm{H}, \mathrm{m}), 2.79-2.85(1 \mathrm{H}, \mathrm{m}), 2.28-2.35(1 \mathrm{H}, \mathrm{m})$, 1.97-2.03 (1H, m), $1.73(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.8,149.5,147.7,146.4,131.4$, 128.4, 118.0, 111.9, 111.9, 51.4, 32.0, 31.7, 19.8 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrONa}: 275.0049$, found: 275.0067 .

6-Chloro-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8jx)
5-Chloro-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8jy)

$\mathbf{8 j x}$ and $\mathbf{8 j y}$ (2:1) were obtained as a yellow oil in 45% yield (28.0 mg).
8jx: IR (ATR): v 3320, 2956, 2840, 1640, 1522, 1218, 996, 802, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.92(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{s}), 4.78-4.83(2 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{t}, J=7.8$ $\mathrm{Hz}), 2.93-2.98(1 \mathrm{H}, \mathrm{m}), 2.83-2.90(1 \mathrm{H}, \mathrm{m}), 2.25-2.34(1 \mathrm{H}, \mathrm{m}), 1.96-2.02(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{d}, J=1.4$, $0.8 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,140.7,132.8,127.5,123.3,122.1,120.1,113.7,51.2$, 28.3, 25.8, 17.7 ppm . HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClONa}$: 231.0554, found: 231.0528.

8jy: IR (ATR): v 3172, 2922, 2852, 1979, 1463, 1198, 1027, 793, $751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}$, dd, $J=8.8,5.5 \mathrm{~Hz}), 2.93-2.99(1 \mathrm{H}, \mathrm{m}), 2.80-2.86(1 \mathrm{H}, \mathrm{m}), 2.29-2.36(1 \mathrm{H}, \mathrm{m}), 1.97-2.04(1 \mathrm{H}, \mathrm{m}), 1.74$ (3H, s) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.6,147.6,145.6,131.3,128.4,117.8,117.3,111.8,51.2$, $32.0,31.8,19.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClONa}$ 231.0554, found: 231.0541

6-Fluoro-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8kx)
5-Fluoro-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8ky)

$\mathbf{8 k x}$ and $\mathbf{8 k y}$ (1:1) were obtained as a yellow oil in 24% yield (13.7 mg).
8kx: IR (ATR): v 3460, 2960, 2829, 1920, 1517, 1228, 1009, 799, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.37(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{m}), 4.93-4.94(1 \mathrm{H}, \mathrm{m})$, 4.83-4.85 ($1 \mathrm{H}, \mathrm{m}$), $3.80(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.79-2.86(1 \mathrm{H}, \mathrm{m}), 2.69-2.76(1 \mathrm{H}, \mathrm{m}), 2.17-2.24(1 \mathrm{H}, \mathrm{m})$, $1.81-1.92(1 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.2(\mathrm{~d}, J=$ 243.0 Hz), 144.8, 133.2, 128.7, 124.6, 123.5, 121.7, $114.8(\mathrm{~d}, ~ J=22.6 \mathrm{~Hz}), 52.2,28.9,26.4,17.6 \mathrm{ppm}$. HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FONa}$ 215.0848, found: 215.0833 .
8ky: IR (ATR): v 3520, 2987, 2805, 1832, 1529, 1225, 980, 802, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.95(1 \mathrm{H}, \mathrm{dd}, J=10.5,8.6 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{s}), 5.21-5.29(1 \mathrm{H}, \mathrm{m})$, 5.14-5.19 (1H, m), $4.15(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.12-3.22(1 \mathrm{H}, \mathrm{m}), 3.03-3.10(1 \mathrm{H}, \mathrm{m}), 2.47-2.53(1 \mathrm{H}, \mathrm{m})$, 2.12-2.19 ($1 \mathrm{H}, \mathrm{m}$), $1.87(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7(\mathrm{~d}, J=$ 243.2 Hz), 143.2, 139.5, 132.5, 123.5, 120.7, 117.2, 115.1, 51.2, 30.1, 25.8, 17.8 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FONa}$: 215.0848 , found: 215.0836 .

1-(Prop-1-en-2-yl)-6-(trifluoromethyl)-2,3-dihydro-1H-inden-5-ol (8ix)

3-(Prop-1-en-2-yl)-5-(trifluoromethyl)-2,3-dihydro-1H-inden-4-ol (81y)

$\mathbf{8 1 x}$ and $\mathbf{8 l y}$ ($1: 1$) were obtained as a yellow oil in $\mathbf{6 4 \%}$ yield $(46.5 \mathrm{mg})$.
81x: IR (ATR): v 3612, 2980, 2774, 2018, 1956, 1610, 1217, 1002, 860, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.46(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{s}), 5.42-5.43(1 \mathrm{H}, \mathrm{m}), 5.07-5.10(1 \mathrm{H}, \mathrm{m}), 3.77(1 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz}), 2.97-3.05(1 \mathrm{H}, \mathrm{m}), 2.76-2.85(1 \mathrm{H}, \mathrm{m}), 2.25-2.33(1 \mathrm{H}, \mathrm{m}), 1.93-1.99(1 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{dd}, J=$ $1.3,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,145.4,133.3 .131 .7,125.2(\mathrm{q}, J=234.8, \mathrm{~Hz}$), 121.4, 117.5, 106.5, 48.8, 29.6, 25.4, 17.9 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{ONa}$: 265.0817, found: 265.0806.

8ly: IR (ATR): v 3151, 2977, 2936, 2818, 2289, 1643, 1287, 1202, 1084, 917, $870 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.87(1 \mathrm{H}, \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{s}), 4.71-4.73(1 \mathrm{H}, \mathrm{m}), 4.51-4.52(1 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{m}), 2.97-3.03$ $(1 \mathrm{H}, \mathrm{m}), 2.82-2.86(1 \mathrm{H}, \mathrm{m}), 2.25-2.32(1 \mathrm{H}, \mathrm{m}), 1.95-2.01(1 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.6 \mathrm{~Hz}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2,147.5,133.8,131.4,124.7(\mathrm{q}, J=243.2 \mathrm{~Hz}), 118.8,108.5,54.2$, 29.6, 26.0, 18.2 ppm. HRMS (ESI) [M+Na] calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{ONa}$ 265.0817, found: 265.0823.

6-Methyl-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (8mx)

5-Methyl-3-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-4-ol (8my)

8mx and $\mathbf{8 m y}$ (1:1) were obtained as a yellow oil in 45% yield (25.5 mg).
8mx: IR (ATR): v 3229, 2970, 2886, 2267, 1659, 1226, 1188, 1015, 989, 821, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.84(1 \mathrm{H}, \mathrm{s}), 6.65(1 \mathrm{H}, \mathrm{s}), 4.80-4.81(2 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, $2.85-2.90(1 \mathrm{H}, \mathrm{m}), 2.76-2.82(1 \mathrm{H}, \mathrm{m}), 2.21-2.27(1 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.89-1.97(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{dd}, J$ $=1.2,0.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,148.0,143.5,137.5,126.6,121.5,111.3$, 110.9, 52.8, 31.7, 30.1, 19.2, 16.0 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}$ 211.1099, found: 211.1120 .
8my: IR (ATR): v 3378, 2964, 2880, 2117, 1654, 1238, 1180, 986, 805, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.96(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{s}), 5.09(1 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz})$, $4.97(1 \mathrm{H}, \mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 2.92-2.98(1 \mathrm{H}, \mathrm{m}), 2.82-2.88(1 \mathrm{H}, \mathrm{m}), 2.28-2.34$ $(1 \mathrm{H}, \mathrm{m}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.94-2.02(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 153.5,147.2,145.9,129.2,128.7,126.9,116.5,113.4,52.8,32.4,31.6,30.7,23.1 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}$: 211.1099, found: 211.1083.

Cyclization of 11, 12, 23, 24

To a solution of $11(57.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ was added potassium carbonate $(416 \mathrm{mg}$, 0.90 mmol) and molecular sieve 4A ($6 \mathrm{mg}, 10 \mathrm{wt} \%$) at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added phenyliodine diacetate (PIDA) (116 mg , 0.36 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was warmed up to $60{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford mixture of 13x and 13y (2:1) in 60% yield $(33.6 \mathrm{mg})$ as a colorless oil. Regioisomers $\mathbf{1 3 x}$ and $\mathbf{1 3 y}$ were separated by preparative TLC with hexane/EtOAc. (1/1).

8-(Prop-1-en-2-yl)-5,6,7,8-tetrahydronaphthalen-1-ol (13x)

IR (ATR): v 3420, 2998, 2850, 2218, 1678, 1245, 996, 810, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.97(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 4.87-4.90(1 \mathrm{H}, \mathrm{m})$, 4.66-4.67 ($1 \mathrm{H}, \mathrm{m}$), $4.57(1 \mathrm{H}$, brs), $3.46(1 \mathrm{H}, \mathrm{m}), 2.67-2.74(2 \mathrm{H}, \mathrm{m}), 1.83-1.90(2 \mathrm{H}, \mathrm{m}), 1.65-1.77(2 \mathrm{H}, \mathrm{m})$ $1.62(3 \mathrm{H}$, dd, $J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.5,149.4,139.1,130.6,130.4$, 115.1, 113.5, 113.1, 47.0, 30.1, 28.7, 21.4, 19.6 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}$: 211.1099, found: 211.1104.

5-(Prop-1-en-2-yl)-5,6,7,8-tetrahydronaphthalen-2-ol (13y)

IR (ATR): v 3518, 2916, 2821, 2336, 2219, 1648, 1331, 1078, 925, 786, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.96(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{dd}, J=8.2,8.0 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.85-4.88(1 \mathrm{H}$, $\mathrm{m}), 4.64-4.68(1 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{s}), 3.44(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.61-2.78(2 \mathrm{H}, \mathrm{m}), 1.82-1.91(2 \mathrm{H}, \mathrm{m})$, $1.63-1.77(2 \mathrm{H}, \mathrm{m}) 1.63(3 \mathrm{H}, \mathrm{dd}, J=1.3,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.8,159.0$, $127.8,120.5,119.5,112.8,109.4,104.2,54.8,36.9,24.8,21.7,18.2$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}: 211.1099$, found: 211.1127 .

To a solution of $\mathbf{1 2}(61.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ were added potassium carbonate (418 mg , 3.0 mmol) and molecular sieve 4A ($6 \mathrm{mg}, 10 \mathrm{wt} \%$) at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added phenyliodine diacetate (PIDA) (117 mg , 0.36 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was warmed up to
$60{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford mixture of $\mathbf{1 4 x}$ and $\mathbf{1 4 y}$ (5:2) in 79% yield $(48.0 \mathrm{mg})$ as a yellow oil. Regioisomers $\mathbf{1 4 x}$ and $\mathbf{1 4 y}$ were separated by preparative TLC with hexane/EtOAc. (1/1)

5-(Prop-1-en-2-yl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-2-ol (14x)

IR (ATR) : v 3318, 2980, 2873, 1578, 1437, 1328, 1024, 970, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.31(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=2.6 \mathrm{~Hz}), 5.06-5.08(1 \mathrm{H}, \mathrm{m})$, 4.66-4.68 ($1 \mathrm{H}, \mathrm{m}$), $3.62(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.73-2.85(2 \mathrm{H}, \mathrm{m}), 1.97-2.10(2 \mathrm{H}, \mathrm{m}), 1.82-1.89(1 \mathrm{H}, \mathrm{m})$, $1.81(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 1.62-1.76(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.1,154.1$, $149.0,147.3,121.2,112.8,102.8,99.7,55.6,50.8,32.6,31.3,27.2,18.9 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ONa}$: 225.1255 , found: 226.1277 .

9-(Prop-1-en-2-yl)-6,7,8,9-tetrahydro-5 \boldsymbol{H}-benzo[7]annulen-1-ol (14y)

IR (ATR) : v 3470, 2922, 2816, 1548, 1446, 1338, 1151, 1090, 820, $689 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.70-4.72(1 \mathrm{H}$, m), 4.50-4.51 $(1 \mathrm{H}, \mathrm{m}), 3.87-3.93(1 \mathrm{H}, \mathrm{m}), 2.85-2.98(2 \mathrm{H}, \mathrm{m}), 2.09-2.22(2 \mathrm{H}, \mathrm{m}), 1.92-2.02(5 \mathrm{H}, \mathrm{m})$, 1.78-1.88 (2H, m) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,148.3,146.1,135.6,125.2,115.0,112.9$, $110.7,49.3,43.7,33.8,31.5,23.7,17.8 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ONa}: 225.1255$, found: 226.1238 .

To a solution of $\mathbf{2 3}(57.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ were added potassium carbonate (415 mg , $3.0 \mathrm{mmol})$ and molecular sieve $4 \mathrm{~A}(6 \mathrm{mg}, 10 \mathrm{wt} \%)$ at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added phenyliodine diacetate (PIDA) (115 mg , 0.36 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford mixture of 25x and 25y (2:1) in 35% yield $(19.4 \mathrm{mg})$ as a yellow oil. Regioisomers $\mathbf{2 5 x}$ and $\mathbf{2 5 y}$ were separated by preparative TLC with hexane/EtOAc. (1/1).

1-Vinyl-2,3-dihydro-1H-inden-5-ol (25x)

IR (ATR) : v 3410, 2967, 2856, 1610, 1228, 1004, 810, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.34$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 5.80-5.88(1 \mathrm{H}, \mathrm{m}), 5.04-5.11(1 \mathrm{H}, \mathrm{m}), 4.95-5.01(1 \mathrm{H}, \mathrm{m})$, $3.94(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 2.91-2.98(1 \mathrm{H}, \mathrm{m}), 2.77-2.84(1 \mathrm{H}, \mathrm{m}), 2.23-2.32(1 \mathrm{H}, \mathrm{m}), 1.88-1.97$
$(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9,151.2,145.8,144.1,121.2,114.7,103.6,100.5,56.9$, 43.8, 42.4, 27.7 ppm. HRMS (ESI) [M+Na] calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}: 213.0892$, found: 213.0884.

3-Vinyl-2,3-dihydro-1H-inden-4-ol (25y)

IR (ATR) : v 3519, 2980, 2847, 1619, 1554, 1226, 1015, 885, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.52(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 5.77-5.85(1 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{s}), 5.01-5.08(1 \mathrm{H}, \mathrm{m})$, 4.94-5.00 ($1 \mathrm{H}, \mathrm{m}$), $4.07(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.95-3.08(2 \mathrm{H}, \mathrm{m}), 2.41-2.47(1 \mathrm{H}, \mathrm{m}), 2.05-2.13$ $(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 155.4,147.8,146.2,137.4,120.7,117.0,110.7,110.5,52.7$, 40.8, 38.5, 28.7 ppm. HRMS (ESI) [M+Na] calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}: 213.0892$, found: 213.0866.

To a solution of $\mathbf{2 4}(57.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ were added potassium carbonate $(417 \mathrm{mg}$, $3.0 \mathrm{mmol})$ and molecular sieve $4 \mathrm{~A}(6 \mathrm{mg}, 10 \mathrm{wt} \%)$ at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added phenyliodine diacetate (PIDA) (117 mg , 0.36 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford mixture of 26x and 26y (1:1) in 14% yield (7.9 mg) as colorless oil. Regioisomers 26x and 26y were separated by preparative TLC with hexane/EtOAc. (1/1).

1-Methyl-1-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-ol (26x)

IR (ATR) : v 3386, 2915, 1573, 1440, 1218, 1053, 932, $712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}), 4.76-4.77(1 \mathrm{H}, \mathrm{m}), 4.57-4.61$ $(2 \mathrm{H}, \mathrm{m}), 2.82-2.84(2 \mathrm{H}, \mathrm{m}), 2.24-2.29(1 \mathrm{H}, \mathrm{m}), 1.81-1.87(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.0,154.6,151.0,145.4,124.5,113.4,111.4,110.2,52.6,39.2$, 30.6, 26.3, 20.3 ppm. HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}$ 211.1099, found: 211.1090.

3-Methyl-3-(prop-1-en-2-yl)-2,3-dihydro-1 \boldsymbol{H}-inden-4-ol (26y)
IR (ATR) : v 3418, 2943, 1656, 1501, 1229, 1053, 990, $801 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 4.65-4.66(1 \mathrm{H}, \mathrm{m})$, 4.46-4.47 (1H, m), 2.77-2.80 ($2 \mathrm{H}, \mathrm{m}$), 2.08-2.13 ($1 \mathrm{H}, \mathrm{m}$), 1.71-1.77 $(1 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{d}, \mathrm{m}), 1.43(3 \mathrm{H}, \mathrm{s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.9,150.7,145.9,136.7,128.3,125.7,117.2,108.9,53.5,40.1$, 31.1, 24.6, 20.3 ppm . HRMS (ESI) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}$: 211.1099, found: 211.1076.

Cyclization of 15-18

To a solution of $\mathbf{1 5 - 1 8}(0.30 \mathrm{mmol})$ in dry HFIP $(15 \mathrm{~mL})$ were added potassium carbonate $(125 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ and molecular sieve 4A ($10 \mathrm{wt} \%$) at room temperature under Ar atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added pentafluorophenyliodine ditrifluoroacetate (FPIFA) $(187 \mathrm{mg}, 0.36 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was warmed up to $60^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a pad of Celite ${ }^{\circledR}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography with hexane/EtOAc (30/1-1/1) to afford mixture of 19-22x and 19-22y. Regioisomers 19-22x and 19-22y were separated by preparative TLC with hexane/EtOAc. (1/1).

Tert-butyl 7-hydroxy-4-(prop-1-en-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (19ax)

Tert-butyl 5-hydroxy-4-(prop-1-en-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (19ay)

19ax and 19ay (3:1) were obtained as a yellow oil in 41% yield (35.5 mg).
19ax: IR (ATR) : v 3228, 2970, 2848, 1701, 1648, 1435, 1328, 1260, 1047, 910, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.33(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $5.25-5.26(1 \mathrm{H}, \mathrm{m}), 5.02-5.04(1 \mathrm{H}, \mathrm{m}), 4.18-4.23(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.44-3.49(1 \mathrm{H}, \mathrm{m})$, 2.12-2.18 (1H, m), 1.77-1.81 (1H, m), $1.58(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 1.53(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.7,146.8,142.1,140.8,135.3,130.7,123.7,120.5,116.6,80.2,50.1,41.4,26.7,20.8$, 17.0 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}$: 312.1576, found: 312.1592.

19ay: IR (ATR) : v 3306, 2995, 2816, 1716, 1640, 1398, 1041, 996, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz})$, 4.81-4.82 $(2 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{brs}), 3.95-4.00(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.42-3.47(1 \mathrm{H}, \mathrm{m})$, 1.93-2.01 ($2 \mathrm{H}, \mathrm{m}$), $1.61\left(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}\right.$), $1.50(9 \mathrm{H}, \mathrm{s})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.2,152.7,142.8,139.5,138.8,129.7,126.2,121.5,115.5,109.9,81.2,54.9,42.7,28.8$, 22.9, 20.7 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}$: 312.1576 , found: 312.1555.

4-(Prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-7-ol (19bx) 4-(Prop-1-en-2-yl)-1-tosyl-1,2,3,4-tetrahydroquinolin-5-ol (19by)

19bx and 19by ($5: 2$) were obtained as a yellow oil in 28% yield (29.0 mg).
19bx: IR (ATR) : v 3423, 2956, 2908, 2817, 1601, 1467, 1332, 1148, 1025, 990, 810, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.37(3 \mathrm{H}, \mathrm{m}), 7.05(2 \mathrm{H}, \mathrm{m}), 7.12-7.16(3 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.75$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 5.15-5.17(1 \mathrm{H}, \mathrm{m}), 4.82-4.85(1 \mathrm{H}, \mathrm{m}), 4.17-4.22(1 \mathrm{H}, \mathrm{m}), 3.70-3.77(1 \mathrm{H}, \mathrm{m})$, $3.46(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.48(3 \mathrm{H}, \mathrm{s}), 1.82-1.91(2 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,143.8,142.7,136.5,136.2,128.8,127.1,126.6,115.7,104.0,101.8,100.6$, $51.8,45.5,37.3,23.2,17.5 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}: 366.1140$, found: 366.1148 .

19by: IR (ATR) : v 3510, 2944, 2896, 2804, 1614, 1510, 1127, 1005, 977, 820, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(2 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 7.18-7.22(3 \mathrm{H}, \mathrm{m}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=8.0$, $2.2 \mathrm{~Hz}), 4.63-4.64(1 \mathrm{H}, \mathrm{m}), 4.52-4.53(1 \mathrm{H}, \mathrm{m}), 4.05-4.10(1 \mathrm{H}, \mathrm{m}), 3.65-3.70(1 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{t}, J=7.9$ $\mathrm{Hz}), 2.35(3 \mathrm{H}, \mathrm{s}), 1.69-1.73(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,143.3$, $142.2,136.8,136.5,129.1,127.5,126.6,126.1,116.8,115.5,113.1,112.2,55.6,45.4,21.9,21.4,21.3$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}: 366.1140$, found: 366.1155 .

Tert-butyl 7-hydroxy-4-(prop-1-en-2-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (20x)
Tert-butyl 5-hydroxy-4-(prop-1-en-2-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (20y)

20x and 20y (1:1) were obtained as a yellow oil in 48% yield (41.8 mg).
20x: IR (ATR) : v 3217, 2956, 2845, 1710, 1580, 1435, 1332, 1248, 1003, 890, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=8.2,8.2 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0$ $\mathrm{Hz}), 4.73-4.77(2 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.27-3.30(1 \mathrm{H}, \mathrm{m}), 2.85-2.90(1 \mathrm{H}, \mathrm{m}), 1.63$ $(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 1.54(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,148.3,146.7,137.7$, $120.5,117.7,110.3,109.8,81.2,53.1,47.7,46.8,29.1,18.6 \mathrm{ppm}$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}: 312.1576$, found: 312.1558 .
20y: IR (ATR) : v 3456, 2879, 1720, 1468, 1402, 1367, 1128, 990, 821, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 6.23-6.27(2 \mathrm{H}, \mathrm{m}), 5.04-5.11(2 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{t}$, $J=7.9 \mathrm{~Hz}), 3.30-3.35(1 \mathrm{H}, \mathrm{m}), 3.20-3.25(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}), 1.55(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,142.3,132.1,130.0,123.8,121.8,118.9,113.5,67.7,56.2,49.1,35.8$, 29.8, 26.2, 16.5 ppm . HRMS (ESI) [M+Na] calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}: 312.1576$, found: 312.1584.

4-(Prop-1-en-2-yl)chroman-7-ol (21x)
4-(Prop-1-en-2-yl)chroman-5-ol (21y)

21x and 21y (2:1) were obtained as a yellow oil in 38% yield (21.6 mg).

21x: IR (ATR) : v 3210, 2950, 1532, 1438, 1260, 1034, 906, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.87(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 4.96-4.97(1 \mathrm{H}, \mathrm{m})$, 4.69-4.70 ($1 \mathrm{H}, \mathrm{m}$), 4.17-4.22 ($1 \mathrm{H}, \mathrm{m}$), 4.08-4.12 $(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 1.96-1.99(2 \mathrm{H}, \mathrm{m})$, $1.67(3 \mathrm{H}, \mathrm{dd}, J=1.3,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,155.2,147.7,130.8,116.2$, 114.8, 108.1, 103.2, 64.4, 42.5, 27.1, 19.5 ppm . HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$: 213.0892, found: 213.0907.

21y: IR (ATR) : v 3473, 2914, 2286, 1630, 1302, 1165, 1002, 984, $710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.98(1 \mathrm{H}, \mathrm{dd}, J=8.2,8.0 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.4 \mathrm{~Hz})$, 4.93-4.95 $(1 \mathrm{H}, \mathrm{m}), 4.69-4.70(1 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{s}), 4.12-4.16(1 \mathrm{H}, \mathrm{m}), 4.03-4.08(1 \mathrm{H}, \mathrm{m})$, $3.60(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.04-2.16(2 \mathrm{H}, \mathrm{m}), 1.82(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 157.4,156.0,146.4,135.4,121.6,118.4,112.7,106.2,65.1,42.3,36.5,20.6$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}: 213.0892$, found: 213.0883.

3-(Prop-1-en-2-yl)-2,3-dihydrobenzofuran-6-ol (22x)

3-(Prop-1-en-2-yl)-2,3-dihydrobenzofuran-4-ol (22y)

22x and 22y (3:2) were obtained as a yellow oil in 38% yield (19.9 mg).
22x: IR (ATR) : v 3179, 2920, 2245, 1670, 1338, 1221, 1018, 902, $850 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.11(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.42-6.46(2 \mathrm{H}, \mathrm{m}), 5.22-5.23(1 \mathrm{H}, \mathrm{m}), 4.97-4.99(1 \mathrm{H}, \mathrm{m}), 4.15-4.19$ $(1 \mathrm{H}, \mathrm{m}), 4.00-4.03(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.72(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.6,157.2,147.1,121.3,117.0,110.2,109.9,101.3,68.5,52.8,14.6$ ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}: 199.0736$, found: 199.0748 .
22y: IR (ATR) : v 3370, 2978, 2218, 1725, 1560, 1285, 1039, 910, 802, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.12(1 \mathrm{H}, \mathrm{dd}, J=8.2,8.0 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}), 6.42(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.3 \mathrm{~Hz})$, $5.42-5.51(2 \mathrm{H}, \mathrm{m}), 5.09-5.11(1 \mathrm{H}, \mathrm{m}), 4.78-4.82(1 \mathrm{H}, \mathrm{m}), 4.38(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 4.14-4.17(1 \mathrm{H}, \mathrm{m})$, $1.73(3 \mathrm{H}, \mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6,156.0,147.4,137.5,120.8$, 117.7, 110.3, 100.8, 69.2, 53.8, 20.7 ppm. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}: 199.0736$, found: 199.0751 .

4. NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2} \mathbf{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2 c}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$\left.\right|^{\text {N }}$
Br

$\stackrel{\stackrel{0}{4}}{\stackrel{\sim}{m}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2 d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2 d}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
OMe

正
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2 h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2} \mathbf{h}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2 k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2 k}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 e}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 f}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
 $\left.\right|^{\circ}$

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3} \mathbf{h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 i}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3} \mathbf{j}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3} \mathbf{k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 k}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 m}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3 m}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 a}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4} \mathbf{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 e}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 f}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 g}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 h}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 i}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 j}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 k}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 m}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4 m}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{a}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 d}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{e}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{f}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{g}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 h}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{i}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7} \mathbf{j}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 k}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^3]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^4]${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{m}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 3}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 3}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6 c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6 c}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 4}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^5]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 7 b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^6]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7} \mathbf{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 8 e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 8 e}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^7]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

|

$\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & & \text { ppm }\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 9 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 9 b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5 a}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 9} \mathbf{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 9 c}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5 b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 0 b}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8} \mathbf{a x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 a y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \mathbf{b x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8} \mathbf{b x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \mathbf{b y}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8} \mathbf{b y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 c x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 c x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 c y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 c y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 d y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 e y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 e y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 f x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 f x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^8]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 f y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 f y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 g x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 g x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 g y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 g y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

 혈
等等
11

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 h x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8} \mathbf{h} \mathbf{x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

จัต ํ.

[^9]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \mathbf{h y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 i x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 i x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 i y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 i y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

- 11

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 j x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 j x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^10]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 j y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 j y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

\square
M|
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \mathbf{k x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 k x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

|

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \mathbf{k y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 k y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 1 x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 1 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 1 y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 l y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 m x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 m x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

\＆	ה゙
®i่	守官
\dagger	11

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 m y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8} \mathbf{m y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3 y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
Cos)

$$
3-2
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4} \mathbf{x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$$
\left|\left.\right|^{\stackrel{\circ}{\infty}}\right.
$$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4 y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4 y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^11]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5 x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 5 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^12]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5 y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 5} \mathbf{y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6 x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 6 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $2 \mathbf{6} \mathbf{y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 6} \mathbf{y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 a x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 a x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 a y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 a y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$1|1|$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 b x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 b x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 b y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 b y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

\[

$$
\begin{aligned}
& —^{55.56} \\
& —^{45.33} \\
& \mathcal{K}_{21.33}^{21.91} \begin{array}{l}
21.39 \\
21.35
\end{array}
\end{aligned}
$$
\]

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0 x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Boc

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0} \mathbf{y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0} \mathbf{y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1} \mathbf{x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 1} \mathbf{x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 1} \mathbf{y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

 $\stackrel{\circ}{\dot{\infty}}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2} \mathbf{x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 2} \mathbf{x}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

11

$\underset{\mid}{\substack{\text { a } \\ \vdots \\ j}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2} \mathbf{y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 2} \mathbf{y}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

|

5. Theoretical Calculation

DFT calculation were performed at $\mathrm{PBE} 0 / 6-31+\mathrm{G}(\mathrm{d})$ level of theory by using the Gaussian 16 program package. ${ }^{34}$ The structures were optimized, and the vibrational frequency analyses were conducted on the optimized structures. The given energies are zero-point corrected.

1

$\mathrm{E}=-196.295210$ a.u.
HOMO: - 6.555818672 eV
C - $0.73530000-0.671794000 .00004700$
H - $0.71354200-1.76358900-0.00003000$
C $0.44909300-0.040924000 .00007900$
C $0.628815001 .45070300-0.00000200$
H $1.204211001 .76964000-0.88003500$
H - 0.314071002 .002579000 .00011700
H 1.204536001 .769716000 .87978900
C - $2.10806400-0.07508000-0.00002300$
H -2.67660300 -0.40448300 -0.88010500
H - $2.67678100-0.404724000 .87984400$
H -2.10321200 1.018293000 .00013900
C $1.73598000-0.81950400-0.00002400$
H $2.34606800-0.57374400-0.88044700$
Н $2.34609400-0.573989000 .88044900$
H 1.56015200-1.90011100-0.00018500

2

$\mathrm{E}=-157.026651$ a.u.
HOMO: -6.839363544 eV
C 0.538387000 .395371000 .00015000
C - $0.53837100-0.395341000 .00018900$
H -0.39055400 -1.47802800 -0.00005900
C $1.95728200-0.07937800-0.00007900$
H 2.500678000 .288028000 .88053100
H $2.01385800-1.17342600-0.00022000$
H $2.500386000 .28818300-0.88080900$
C - $1.957282000 .07936600-0.00008500$
H -2.50039400 -0.28834200 -0.88075400
H -2.50060500 -0.28797400 0.88059900
H -2.01393700 $1.17340500-0.00035100$
H 0.390472001 .478045000 .00000700

3

$\mathrm{E}=-235.560346$ a.u.
HOMO: - 6.3139075479999995 eV

C 0.674728000 .000000000 .00009100
C - $0.674728000 .00000000-0.00003200$
C $1.52444500-1.243702000 .00009300$
H $0.95949900-2.177045000 .00009200$
H $2.18396700-1.25609700-0.87905500$
H $2.18396700-1.256085000 .87923800$
C - $1.524445001 .24370200-0.00012900$
H -2.18408300 1.256080000 .87893000
H - $0.959499002 .17704500-0.00004900$
H - $2.183853001 .25610200-0.87936300$
C 1.524444001 .243703000 .00016800
H 2.183922001 .256055000 .87934800
H $2.184010001 .25613100-0.87894500$
H 0.959496002 .177045000 .00017900
C - $1.52444300-1.24370300-0.00015800$
H - $2.18405800-1.256111000 .87892000$
H -2.18387400-1.25607600 -0.87937300
H - $0.95949500-2.17704400-0.00011800$

4

$\mathrm{E}=-307.121034$ a.u.
HOMO: - 6.519083012 eV
C 1.16809289-1.18830018 0.00000009
C - $0.22251277-1.22124298-0.00000007$
C -0.93966759-0.02407564-0.00000010
C -0.26387842 1.197530580 .00000005
C 1.129530331 .216725500 .00000017
C 1.853834070 .026927830 .00000018
H 1.72122443 -2.12446737 0.00000014
H -0.76706589-2.16098722 -0.000000021
H - 0.824628372 .131461750 .00000000
H 1.648407092 .172262640 .00000030
H 2.940073290 .045565920 .00000026
O -2.29877785-0.11082570-0.00000026
H -2.68017892 $0.77737922-0.00000029$

5

$E=-422.741945$ a.u.

HOMO: - 6.7035776600000005 eV
C 1.52230600-1.12140500-0.23998200
C $0.44538200-1.989181000 .39437600$
C - $0.93056700-1.58248700-0.11893500$
H $1.56938200-1.31125500-1.32354900$
H $2.51696200-1.336716000 .16211600$
H $0.62584100-3.050072000 .18629700$
H $0.47150000-1.865725001 .48487400$
H -1.06092300 -1.90792700 -1.16369700
H - $1.71632500-2.087996000 .46283500$
C $1.256658000 .36152300-0.05312900$
C - 0.138357000 .814277000 .02644700
C - $1.13668100-0.09895000-0.04324100$
O $2.185243001 .15885200-0.01323900$
C - 0.384266002 .288574000 .12607400
H 0.249607002 .724232000 .90499900
H - $0.116078002 .79337700-0.81020400$
H - 1.431574002 .504607000 .34812100
O -2.42177300 0.33211100-0.08072300
H -3.02300100 -0.42433000 -0.04976100

6

$\mathrm{E}=-192.906129$ a.u.
HOMO: - 6.470646364 eV
C - 0.462661001 .350857000 .00000000
H - 1.530128001 .541528000 .00000000
H 0.199810002 .213520000 .00000000
C 0.0000000000 .094752000 .00000000
O $1.32570800-0.225543000 .00000000$
H 1.850572000 .588117000 .00000000
C - $0.85499500-1.139468000 .00000000$
H - $1.49824200-1.172165000 .88521700$
H - $1.49824200-1.17216500-0.88521700$
H - $0.22349600-2.031333000 .00000000$

6. References

(1) C. A. Bewley and P. Wipf, WO 2012/116254 A3, 2012.
(2) O. Ablialimov, M. Kedziorek, M. Malinska, K. Wozniak and K. Grela, Organimetallics, 2014, 33, 2160-2171.
(3) K. Yashiro, K. Hanaya, M. Shoji and T. Sugai, T. Biosci. Biotech. Biochem., 2015, 79, 1926-1930.
(4) T. Shindo, Y. Fukuyama and T. Sugai, Synthesis, 2004, 692-700.
(5) C. Francesco, D. S. Antonio, N. Fabrizio, M. C. Gian, G. Gianfabio, A. F. Jose`, Y. M. Gisela, E. R. Maria and R. Elizabeth, J. Med. Chem., 2000, 43, 599-608.
(6) R. V. Bonnert, T. J. Luker, R. T. Mohammed, S. Thom and A. Cook, A. WO 2007/068894 A2, 2007.
(7) M. Kahraman, S. P. Govek, J. Y. Nagasawa and N. D. Smith, WO 2011/156518 A2, 2011.
(8) L. Wei, B. Matthew, C. Nan, S. Muhong, J. T. Nicholas, A. Jalil, W. Xing, B. H. Brian and I. D. Gary Org. Lett., 2007, 9, 2915-2918.
(9) A. A. Faisal, S. Wei, E. L. Mark and C. H. David, Tetrahedron, 2020, 76, 131521.
(10) P. H. Gilmartin and M. C. Kozlowski, Org. Lett., 2020, 22, 2914-2919.
(11) D. G. Batt, $W O$ 2010/009069 A1, 2010.
(12) T. Aotsuka, H. Kanazawa and K. Kumazawa, $W O$ 2009/072581 A1, 2009.
(13) S. Sengupta, M. G. B. Drew, R. Mukhopadhyay, B. Achari, A. Kr. Banerjee, J. Org. Chem., 2005, 70, 7694-7700.
(14) J. Mao, S. Q. Zhang, B. F. Shi and W. Bao W, Chem. Commun., 2014, 50, 3692-3694.
(15) T. Barf, K. Hammer, M. Luthman, F. Lehmann and R. Ringom, WO 2004/063156 A1, 2004.
(16) A. Srikrishna and P. C. Ravikumar, Synthesis, 2007, 65-74.
(17) S. A. Snyder, S. P. Breazzano, A. G. Ross, Y. Lin and A. L. Zografos, J. Am. Chem. Soc., 2009, 131, 1753-1765.
(18) J. A. Christopher, P. Bamborough, C. Alder, A. Campbell, G. J. Cutler, K. Down, A. M. Hamadi, A. M. Jolly, J. K. Kerns, F. S. Lucas, G. W. Mellor, D. Miller, M. A. Morse, K. D. Pancholi, W. Rumsey, Y. E. Solanke and R. Williamson R. J. Med. Chem., 2009, 52, 3098-3102.
(19) V. Bollu, B. C. Boren, J. Dalgard, B. T. Flatt, N. Haq, S. Hudson, R. Mohan, M. Morrissey and B. Pratt, $W O$ 2011/071565 A1, 2011.
(20) G. Majetich, R. Hicks, Y. Zhang, X. Tian, T. L. Feltman, J. Fang and S. Jr. Duncan, J. Org. Chem., 1996, 61, 8169-8165.
(21) Y. F. Wang, Y. R. Gao, S. Mao, Y. L. Zhang, D. D. Guo, Z. L. Yan, S. H. Guo and Y. Q. Wang, Org. Lett., 2014, 16, 1610-1613.
(22) Y. Li, Y. Y. Hu and S. L. Zhang, Chem. Commun., 2013, 49, 10635-10637.
(23) K. A. Bahou, D. Braddock, M. Christopher, G. Adam, G. P. Savage, Z. Shi and T. He, J. Org. Chem., 2020, 85, 4906-4917.
(24) W. W. Qiu, K. Surendra, L. Yin and E. J. Corey, E. J. Org. Lett., 2011, 13, 5893-5895.
(25) J. C. Conrad, J. Kong, B. N. Laforteza and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 11640-11641
(26) P. Zhao and C. M. Beaudry, Org. Lett., 2013, 15, 402-405.
(27) M. Kiuchi, K. Marukawa, M. Hamada and K. Sugahara, WO 2008/153159 A1, 2008.
(28) A. R. B. Manas and R. A. J. Smith, Tetrahedron, 1987, 43, 1847-1856.
(29) I. Sokolovs, D. Lubriks and E. Suna, J. Am. Chem. Soc., 2014, 136, 6920-6938.
(30) S. Y. Moon, J. Nam, K. Rathwell and W. S. Kim, Org. Lett., 2014, 16, 338-341.
(31) S. D. Nielsen, G. Smith, M. Begtrup and J. L. Kristensen, Org. Lett., 2010, 16, 4557-4566.
(32) N. Hoffmann and J. P. Pete, J. Org. Chem., 1997, 62, 6952-6960.
(33) P. F. Schuda and W. A. Price, J. Org. Chem., 1987, 52, 1972-1979.
(34) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Y. D. Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

[^0]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

[^2]: $\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^4]: | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | |
 | :--- |

[^5]: $\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^6]: $\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

[^7]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array} \quad \mathrm{ppm}$

[^8]: $\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^9]: $\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

[^10]:

[^11]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

[^12]:

