Supporting Information

N -allylbenzimidazole as a strategic surrogate in Rh -catalyzed stereoselective trans-propenylation of aryl $\mathbf{C}\left(s p^{2}\right)-\mathrm{H}$ bond

Pragati Biswal, ${ }^{\dagger, \mathrm{a,b}}$ Tanmayee Nanda ${ }^{\dagger}{ }^{\dagger, a, \mathrm{~b},}$ Shyam Kumar Banjare, ${ }^{\text {a,b }}$ Smruti Ranjan Mohanty, ${ }^{\mathrm{a}, \mathrm{b}}$ Ranjit Mishra, ${ }^{\mathrm{a}, \mathrm{b}}$ and Ponneri C. Ravikumar ${ }^{*}{ }^{*, \mathrm{~b}}$
${ }^{\text {a }}$ School of chemical sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Odisha 752050
${ }^{\text {b }}$ Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
(${ }^{\dagger}$ Contributed equally)
E-mail:pcr@niser.ac.in

Table of Contents

1. General information S3
2. Experimental procedure S4
2.1 Preparation of 2-Phenylpyridines
2.2 Preparation of 2-Phenylpyrimidines
2.3 Preparation of 1-Phenylpyrazoles
2.4 Preparation of 6-(4-chlorophenyl)-purines
2.5 Preparation of N -allylamines
2.6 Preparation of internal alkene 1ax
2.7 Optimization of reaction conditions
2.8 Screening of allyl reagents
3. General reaction procedure S10
3.1 General reaction procedure for $[\mathrm{Rh}]$-catalyzed alkenylation reaction
3.2 General reaction procedure for $[\mathrm{Rh}]$-catalyzed alkenylation reaction in 1 mmol scale
4. Control and mechanistic experiments S11
4.1 General reaction procedure for the standard reaction with internal alkene 1ax
4.3 H / D scrambling studies with $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}$
4.3 H/D scrambling studies with $\mathrm{D}_{2} \mathrm{O}$ in presence of alkene
4.4 Synthesis of Intermediate-1 (Int-1)
4.5 Synthesis of Intermediate-2 (Int-2)
4.6 Reaction with Intermediate-1 (Int-1)
4.7 Reaction with radical scavenger TEMPO or BHT
4.8 Detection of propylene gas from the control experiments
4.9 Standard reaction with d_{3}-TFE solvent
4.10 Detection of reaction byproducts (HRMS)
4.11 Proposed catalytic cycle
5. Reference S24
6. Experimental characterization data of products S25
7. NMR spectra of the synthesized products $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and ${ }^{19} \mathrm{~F}$ NMR) S42
8. Crystallographic data S111

1. General Information: ${ }^{1}$

All the starting materials were bought from Sigma Aldrich, Alfa-Aesar, Avra, TCI and Spectrochem, and used without any further purification. For column chromatography, silica gel (100-200, 230-400 mesh) was used from Acme. A gradient elution using distilled hexane and ethyl acetate was performed, based on Merck aluminum TLC sheets. All isolated compounds were characterized by ${ }^{1} \mathrm{H}$ NMR (Bruker-400/700 MHz), ${ }^{13} \mathrm{C}$ NMR spectroscopy and HRMS. Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR can be found in the Supporting Information. Nuclear Magnetic Resonance spectra were recorded on a Bruker $400 / 700 \mathrm{MHz}$ instrument. HRMS signal analysis was performed using Bruker micro TOF Q-II mass spectrometer. X-ray analysis was conducted using Rigaku Smartlab X-ray diffractometer in NISER, Bhubaneswar. All ${ }^{1} \mathrm{H}$ NMR experiments were reported in parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent. ${ }^{2}$ All ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to CDCl_{3} (77.36 ppm). ${ }^{2}$ Chemical shift multiplicities have represented as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{td}=$ triplet of doublet. Allyl carbonates, ${ }^{3}$ and 2-(2-propylphenyl)pyridine ${ }^{4}$ were prepared by following literature reports.

Abbreviations:

$\mathrm{EtOH}=$ Ethanol, $\mathrm{NaHCO}_{3}=$ Sodium bicarbonate, $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}=$ 1,2,3,4,5-pentamethyl cyclopentadienyl rhodium (III) chloride dimer, $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Sodium carbonate, $\mathrm{Cu}(\mathrm{OAc})_{2}=$ Copper acetate, $\mathrm{TLC}=$ Thin layer chromatography, $\mathrm{LiClO}_{4}=$ Lithium perchlorate, $\mathrm{Zn}(\mathrm{OAc})_{2}=$ Zinc acetate, EtOAc $=$ Ethyl acetate, $\mathrm{TFE}=$ Trifluoroethanol, $\mathrm{DCM}=$ Dichloromethane, $\mathrm{MeOH}=$ Methanol, DMF $=N, N$-Dimethylformamide, $\mathrm{D}_{2} \mathrm{O}=$ Deuterium oxide.

(2) Experimental procedure:

(2.1) Preparation of 2-Phenylpyridines ${ }^{5}$

In an oven-dried 25 mL round-bottom flask, 2-bromopyridine (1 equiv, 1 mmol), toluene (0.33 M , $3.3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.33 \mathrm{M}, 3.3 \mathrm{~mL})$, and $\mathrm{EtOH}(1.33 \mathrm{M}, 0.75 \mathrm{~mL})$ were taken. To this solution, arylboronic acid (1.3 equiv, 1.3 mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (7.4 equiv, 7.4 mmol), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.03$ equiv, 3 mol $\%)$ were added. Then, the reaction mixture was refluxed at $110{ }^{\circ} \mathrm{C}$ until the completion of starting material (as monitored by TLC). After completion of the reaction (12-20 h), the reaction mixture was cooled down to room temperature and was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with EtOAc and washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified through column chromatography (100-200 mesh silica, eluant: hexane/EtOAc) giving the desired phenylpyridines $\mathbf{2}$.

(2.2) Preparation of 2-Phenylpyrimidines ${ }^{6}$

To an oven-dried 25 mL round bottom flask, 2-bromopyrimidine (1 equiv, 1 mmol), aryl boronic acid (1.2 equiv, 1.2 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.02 equiv, $2 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (7 equiv, 7 mmol), and dioxane $(0.33 \mathrm{M}, 3.3 \mathrm{~mL})$ were added. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ until the 2-chloropyrimidine was consumed completely (monitored by TLC). The residue was diluted with EtOAc (30 mL), washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (30 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography on silica gel (100-200 mesh silica, eluant: hexane/EtOAc) to afford the arylpyrimidines 4.

(2.3) Preparation of 1-Phenylpyrazoles ${ }^{7}$

A solution of aryl iodide (1 equiv, 1 mmol), pyrazole (2 equiv, 2 mmol), CuO (0.2 equiv, 0.2 mmol), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv, 2 mmol) in anhydrous DMF ($0.6 \mathrm{M}, 1.66 \mathrm{~mL}$) was stirred at $150{ }^{\circ} \mathrm{C}$ up to completion of the reaction (monitored by TLC). After the completion of the reaction (12-20 h), the reaction mixture was filtered, and the solid was washed with dichloromethane. The filtrate was extracted with water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The crude was purified by column chromatography on silica gel (100-200 mesh silica gel, eluant: hexane/EtOAc) to get desired arylpyrazoles 5 .

(2.4) Preparation of 6-(4-chlorophenyl)-purines ${ }^{8}$

(i) Potassium carbonate (3 equiv, 3 mmol) was added to a continuously stirring solution of 6bromopurine (1 equiv, 1 mmol) in anhydrous $\operatorname{DMF}(0.1 \mathrm{M}, 10 \mathrm{~mL})$ at ambient temperature under N_{2}. After 20 min , alkyl bromide (1.5 equiv, 1.5 mmol) was added. The resulting mixture was stirred for 12 h , filtered, and evaporated in vacuo. N-protected-6-bromopurines were obtained after column purification (100-200 silica gel) using EtOAc/hexane eluent system.
(ii) In an oven-dried 25 mL round-bottom flask, N -protected-6-bromopurines (1 equiv, 1 mmol), toluene ($0.33 \mathrm{M}, 3.3 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(0.33 \mathrm{M}, 3.3 \mathrm{~mL})$, and $\mathrm{EtOH}(1.33 \mathrm{M}, 0.75 \mathrm{~mL})$, were taken. To this solution, aryl-boronic acid (1.3 equiv, 1.3 mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (7.4 equiv, 7.4 mmol), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.3$ equiv, 3 mol \%) were added. Then, the reaction mixture was refluxed at $110{ }^{\circ} \mathrm{C}$. After completion of the reaction (as monitored by TLC), the reaction mixture was cooled down to room temperature and was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with EtOAc and washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified through column
chromatography (100-200 mesh silica gel, eluant: hexane/EtOAc) giving the desired 9-alkyl-6-(4-chlorophenyl)-purines 6.

(2.5) Preparation of N -allylamines

To an oven-dried 25 mL round bottom flask, charged with a magnetic stir bar, amines/indole/benzimidazole (1 equiv, 0.5 mmol) and anhydrous DMF ($0.3 \mathrm{M}, 1.66 \mathrm{~mL}$) were taken under a nitrogen atmosphere. The solution was cooled to $0^{\circ} \mathrm{C}$. Then, NaH (1.2 equiv, 0.6 mmol) was added and stirred for 30 min . To this solution, allyl bromide (1.1 equiv, 5.5 mmol) was added dropwise and allowed to stir at room temperature up to the completion of the reaction (monitored by TLC, 2-3 h). After completion, the reaction mixture was washed with ice-cold brine and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by column chromatography to get corresponding N-allyl derivatives $\mathbf{1}$.

(2.6) Preparation of internal alkene 1ax

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} ($0.76 \mathrm{mmol}, 2$ equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, alkene $1 \mathrm{a}\left(0.38 \mathrm{mmol}\right.$, 1 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.57 \mathrm{mmol}, 1.5$ equiv), and TFE ($0.1 \mathrm{M}, 3.8 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$. Progress of the reaction was monitored by TLC. After 14 h , the reaction mixture was cooled to room temperature and was transferred into a 25 mL round bottom flask. The solvent was removed under reduced pressure. The crude mixture was purified by column chromatography to get the internal alkene 1ax as a colorless oil ($28 \mathrm{mg}, 45 \%$ yield). The ratio (trans to cis) of alkene was calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

(2.7) Optimization of reaction conditions (Table S1):

Our investigation began with the reaction of N -allyl benzimidazole 1a and 2-(4-chlorophenyl) pyridine $\mathbf{2 f}$ (Table S1). We were delighted to find that $5 \mathrm{~mol} \%$ of $\mathrm{Cp} * \mathrm{Rh}$ catalyst and 2 equiv. of LiClO_{4} in combination with 1.5 equiv of $\mathrm{Zn}(\mathrm{OAc})_{2}$ gave mono-propenylated product $\mathbf{3 a f}$ in 75% of yield (Table S1, entry 1). The use of a cationic Rh-complex resulted in 31\% yield of 3af (Table S1, entry 2), whereas $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ dimer and Wilkinson's catalyst failed to deliver the product (Table S1, entries 3-4). When solvents other than TFE were screened, lower yields were observed (Table S1, entries 5-7). These results suggest that the protic solvent TFE plays a crucial role in the reaction. It has been reported that the use of water can enhance the hydrolysis of C-N bonds. ${ }^{18}$ Therefore, to enhance the rate of C-N bond cleavage of N -allylbenzimidazole, a $1: 1$ ratio of TFE: $\mathrm{H}_{2} \mathrm{O}$ was explored (Table S1, entry 8), but instead of improved yield, we observed only a trace amount of product. We have also screened the reaction at lower temperatures however, lower yields were observed (Table

S1, entries 9-11). LiClO_{4} works well for this protocol, replacing it with costly silver additives such as AgSbF_{6} and AgOAc , resulting in no reaction (Table S 1 , entries 12-13).

Table S1: Optimization of reaction conditions

	$\xrightarrow[\substack{\mathrm{Zn}(\mathrm{OAc})_{2}(1.5 \text { equiv }) \\ \mathrm{TFE}(0.1 \mathrm{M}), 130^{\circ} \mathrm{C}, 3 \mathrm{~h}}]{\frac{\left[\mathrm{Cp} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)}{\mathrm{LiClO}(2 \text { equiv })}}$	
entry	deviation from the standard conditions	yield of 3a
1	none	75
2	$\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}$	31
3	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	$n \mathrm{r}$
4	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$	nr
5	MeOH	25
6	HFIP	20
7	TFT	nr
8	TFE $+\mathrm{H}_{2} \mathrm{O}$	trace
9	temperature $70^{\circ} \mathrm{C}$ instead of $130{ }^{\circ} \mathrm{C}$	nr
10	temperature $90^{\circ} \mathrm{C}$ instead of $130^{\circ} \mathrm{C}$	trace
11	temperature $110{ }^{\circ} \mathrm{C}$ instead of $130{ }^{\circ} \mathrm{C}$	40
$12^{\text {c }}$	AgSbF_{6} instead of LiClO_{4}	nr
$13^{\text {c }}$	AgOAc instead of LiClO_{4}	nr
14	NaIO_{4} instead of LiClO_{4}	20
15	1a (1 equiv) instead of 3 equiv	22
16	1a (2 equiv) instead of 3 equiv	46
17	$\mathrm{Zn}(\mathrm{OTf})_{2}$ instead of $\mathrm{Zn}(\mathrm{OAc})_{2}$	60
18	PivOH instead of $\mathrm{Zn}(\mathrm{OAc})_{2}$	trace
19	$\mathrm{Cu}(\mathrm{OTf})_{2}$ instead of $\mathrm{Zn}(\mathrm{OAc})_{2}$	$n \mathrm{r}$
20	2 h	35
21	4 h	73
22	6 h	20
23	without [Rh]	nr
24	without LiClO_{4}	trace
$25^{\text {d }}$	without $\mathrm{Zn}(\mathrm{OAc})_{2}$	55 (12 h)

${ }^{a}$ Reaction conditions: $\mathbf{2 f}$ (1 equiv, 0.06 mmol), $\mathbf{1 a}$ (3 equiv, 0.18 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 0.003$ mmol), LiClO_{4} (2 equiv, 0.12 mmol), $\mathrm{Zn}(\mathrm{OAc})_{2}(1.5$ equiv, 0.09 mmol), TFE ($0.1 \mathrm{M}, 0.6 \mathrm{~mL}$), 130 ${ }^{\circ} \mathrm{C}, \mathrm{N}_{2},{ }^{b}$ Isolated yield. ${ }^{c} 20 \mathrm{~mol} \%$ of silver additives were used, ${ }^{d}$ Isolated yield after 12 h .

In addition, the use of NaIO_{4} in place of LiClO_{4} resulted in only a 20% yield of the product $\mathbf{3 a f}$ (Table S1, entry 14). Varying the equivalents of N-allyl benzimidazole resulted in lower yields (Table S1, entries 15-16). Further screening of Lewis and protic acid additives $-\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{PivOH}$, and $\mathrm{Cu}(\mathrm{OTf})_{2}$

- did not result in an improved yield of $\mathbf{3 a f}$ (Table S1, entries 17-19). To determine the effect of time, three parallel reactions were performed, and it was observed that after 4 h the product begins to decompose under the reaction conditions (Table S1, entries 20-22). Finally, control experiments confirmed the necessity of catalyst $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$, additive LiClO_{4}, and $\mathrm{Zn}(\mathrm{OAc})_{2}$ (Table S 1 , entries 23-25). From these results, it is clear that LiClO_{4} may be acting as a halide scavenger as well as a Lewis acid.

(2.8) Screening of allyl reagents (Table S2):

With the optimized conditions in hand, we proceeded to study the electronic influence of the N-allyl coupling partner on the C-H alkenylation of 2-arylpyridine $\mathbf{2 f}$. When $\mathbf{1 a}$ contains either a π-electronwithdrawing group (EWG) such as $-\mathrm{NO}_{2}(\mathbf{1 b})$ or an electron donating group (EDG) such as -OMe (1c), similar reactivity was observed; both yielded $\sim 50 \%$ of $\mathbf{3 a f}$, indicating that the nature of the substituent in the benzenoid system has no remarkable impact. Similarly, when 2-methyl- N allylbenzimidazole 1d was taken as an alkenylating source, 3af was obtained in 41% yield. Further, to check the influence of the benzenoid ring, N-allyl imidazole $\mathbf{1 e}$ and allylamine $\mathbf{1 f}$ were used instead of 1a, while N-allyl imidazole gave 43%, and allylamine didn't give any product. These results imply that the presence of the benzene ring facilitates this transformation. Monosubstituted or disubstituted alkenes ($\mathbf{1} \mathbf{g}$ and $\mathbf{1 h}$) could not deliver the respective alkenylated products, indicating that alkene
insertion into the Rh-C bond is subject to steric constraints and occurs prior to C-N bond cleavage. To check the role of the N 3 nitrogen atom of $\mathbf{1 a}, \mathrm{N}$-allyl indole $\mathbf{1 i}$ was employed as the coupling partner. In this case, we did not observe any product 3af, suggesting that the reaction is facilitated by interaction with the N 3 atom of $\mathbf{1 a}$ (likely binding with Lewis acid). Further, N-allyl indoline $\mathbf{1 j}$ was also tested and found to be ineffective for this transformation. When the more electron-deficient N allyl phthalimide $\mathbf{1 k}$ and N-allyl isatin $\mathbf{1 1}$ were used, product 3af was not observed. The use of 1,3diallylbenzimidazole 1m and N-allyl-4-bromopurine $\mathbf{1 n}$ gave mixtures of alkenylated and allylated products in poor yields. In contrast to imidazole $\mathbf{1 e}, N$-allyl pyrazole $\mathbf{1 o}$ did not give the product 3af. Moreover, when aryl pyridine $2 f$ was subjected to the standard reaction conditions with the more frequently used allylating reagents such as allyl alcohol $\mathbf{1 p}$ and allyl ethyl carbonate $\mathbf{1 q}$, none of them produced either C-H allylated or alkenylated products. These studies confirm the efficiency and selectivity of N-allyl benzimidazole 1a for a highly selective transformation.

(3) General reaction procedures:

(3.1) General reaction procedure for $\mathbf{R h}$-catalyzed alkenylation reaction

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} ($0.2 \mathrm{mmol}, 2$ equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, phenylpyridine 2 / phenyl pyrimidine 4 / phenylpyrazole 5/9-alkyl-6-(4-chlorophenyl)-purines 6 (0.1 mmol, 1 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}, 1.5$ equiv), alkene $1 \mathbf{1 a}$ ($0.3 \mathrm{mmol}, 3$ equiv) and TFE ($0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the solvent was evaporated under reduced pressure, and the crude was purified by column chromatography using EtOAc/hexane as eluent to get the corresponding alkenylated product 3aa/7aa/8aa/9aa.

(3.2) General reaction procedure for $\mathbf{R h}$-catalyzed alkenylation reaction in $\mathbf{1} \mathbf{~ m m o l}$ scale:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (2.0 mmol , 2 equiv) was added and heated under reduced pressure to avoid moisture. To this tube, phenyl pyridine $\mathbf{2 a}$ (1 mmol, 1 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(1.5 \mathrm{mmol}, 1.5$ equiv), alkene $1 \mathbf{1 a}$ (3.0 $\mathrm{mmol}, 3$ equiv) and TFE ($0.1 \mathrm{M}, 10 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130{ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the solvent was evaporated under reduced pressure, and the crude was purified by column chromatography using EtOAc/hexane as eluent to get the corresponding alkenylated product 3aa (144 mg) in 74% yield.

(4) Control and Mechanistic Experiments:

(4.1) General reaction procedure for the standard reaction with internal alkene 1ax:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (0.2 mmol , 2 equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, 4-Clphenyl pyridine $2 f\left(0.1 \mathrm{mmol}, 1\right.$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}$, 1.5 equiv), alkene 1ax ($0.3 \mathrm{mmol}, 3$ equiv) and $\operatorname{TFE}(0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was evaporated under reduced pressure, and the crude was purified by column
chromatography using EtOAc/hexane as eluent. The starting material $\mathbf{2 f}$ was recovered (17 mg) in 91% yield.

Conclusion: Internal alkene 1ax is not an active coupling partner during the course of the reaction.

(4.2) H / D scrambling studies with $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}$:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} ($0.2 \mathrm{mmol}, 2$ equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, 4-Clphenyl pyridine $2 \mathbf{2 f}\left(0.1 \mathrm{mmol}, 1\right.$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}$, 1.5 equiv), $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}$ (10 equiv) and $\mathrm{TFE}(0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$ for 20 min . The solvent was evaporated under reduced pressure. The percentage of deuterium incorporation was calculated form the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

(4.3) H/D scrambling studies with $\mathrm{D}_{2} \mathrm{O}$ in presence of alkene:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (0.2 mmol , 2 equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, 4chlorophenylpyridine $\mathbf{2 f}$ ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15$ mmol, $2 \mathbf{f}^{\prime}$ quiv), alkene $\mathbf{1 a}$ ($0.3 \mathrm{mmol}, 3$ equiv), $\mathrm{D}_{2} \mathrm{O}$ ($1 \mathrm{mmol}, 10$ equiv) and $\mathrm{TFE}(0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130{ }^{\circ} \mathrm{C}$ for 30 min . The solvent was evaporated under reduced pressure and was purified by column chromatography using EtOAc/hexane as eluent giving 2f' (9 mg) and 3af' (8 mg)
in 48% and 37% yield respectively. The percentage of deuterium incorporation was calculated from
${ }^{1} \mathrm{H}$-NMR spectrum of isolated $\mathbf{2 f}$ ' and 3af'.
Conclusion: Cyclometalation step is reversible.

(4.4) Synthesis of Intermediate-1 (Int-1):

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} ($0.1 \mathrm{mmol}, 2$ equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, 4chlorophenylpyridine $\mathbf{2 f}$ ($0.05 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}\left(0.05 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Zn}(\mathrm{OAc})_{2}(0.075$ mmol, 1.5 equiv) and TFE ($0.1 \mathrm{M}, 0.5 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$ for 12 h . The solvent was removed under reduced pressure and was recrystallized with methanol/DCM. The reddish-colored crystals obtained (17 mg) in 73% yield were characterized by NMR and HRMS.

(4.5) Synthesis of Intermediate-2 (Int-2):

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (0.1 mmol , 2 equiv) was added and heated under reduced pressure to avoid moisture. To this tube, 2-(benzo[d][1,3]dioxol-5-yl)pyridine $2 \mathbf{l}$ ($0.05 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}\left(0.05 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Zn}(\mathrm{OAc})_{2}(0.075 \mathrm{mmol}$, 1.5 equiv) and TFE ($0.1 \mathrm{M}, 0.5 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure and was recrystallized from methanol/DCM. The reddish-colored crystals obtained (12 mg) in 50% yield were characterized by NMR, HRMS, and single crystal X-ray.

(4.6) General procedure of the standard reaction with Intermediate-1(Int-1):

To an oven dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (0.2 mmol , 2 equiv) was added and heated under reduced pressure to eliminate trace of moisture. To this tube, 4-Cl-phenyl pyridine $\mathbf{2 f}$ ($0.1 \mathrm{mmol}, 1$ equiv), Int-1 ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}, 1.5$ equiv), alkene $\mathbf{1 a}$ ($0.3 \mathrm{mmol}, 3$ equiv), and TFE ($0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$. The reaction was monitored by TLC. After 12 h , the solvent was evaporated under reduced pressure, and the crude mixture was purified by column chromatography using EtOAc/hexane as eluent giving 3af (15 mg), $\mathbf{2 f}(5 \mathrm{mg})$ in 61% and 28% yield respectively.

Conclusion: Int-1 is involved as an active Rhoda-cycle intermediate during the reaction.

(4.7) Standard reaction with radical scavenger TEMPO or BHT:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} ($0.2 \mathrm{mmol}, 2$ equiv) was added and heated under reduced pressure to eliminate a trace of moisture. To this tube, phenyl pyridine 2a ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}, 1.5$ equiv), alkene $1 \mathbf{1 a}$ ($0.3 \mathrm{mmol}, 3$ equiv), BHT/TEMPO ($0.1 \mathrm{mmol}, 1$ equiv), and TFE ($0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$ for 3 h . The reaction was monitored by TLC. The solvent was evaporated under reduced pressure, and the crude mixture was purified by column chromatography using EtOAc/hexane as eluent, which afforded the corresponding alkenylated product $\mathbf{3 a a}(15 \mathrm{mg} / 9 \mathrm{mg})$ in $75 \% / 46 \%$ yield from BHT and TEMPO experiment respectively.
Conclusions: The reaction is not going through a radical mechanism.

(4.8) Detection of propylene gas through head-space GC analysis:

To an oven-dried 25 mL , Schlenk tube charged with a magnetic stir bar was added $\mathrm{LiClO}_{4}(0.2 \mathrm{mmol}$, 2 equiv) and heated under reduced pressure. To this tube, 2^{\prime}-allyl phenyl pyridine 3aax ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}, 1.5$ equiv) followed by TFE $(0.1$ $\mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130{ }^{\circ} \mathrm{C}$ for 3 h . Then the gas was collected from the reaction tube through the side arm by a gas trap syringe and was injected into the gas chromatography.

Peak Number (\#)	Retention Time (min)	Area $\left(.1 * u V^{*} \mathrm{sec}\right)$	$\begin{aligned} & \text { Area \% } \\ & (\%) \end{aligned}$	Original
1	5.580	285108	100.000	0.000

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, was added $\mathrm{LiClO}_{4}(0.2 \mathrm{mmol}$, 2 equiv) and heated under reduced pressure. To this tube, phenylpyridine $\mathbf{2 a}$ ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}, 1.5$ equiv), alkene $1 \mathrm{a}(0.3 \mathrm{mmol}, 3$ equiv) followed by TFE ($0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130^{\circ} \mathrm{C}$ for 3 h . Then the gas was collected from the reaction tube through the side arm by a gas trap syringe and was injected into the GC.

Peak (\#)	Number	Retention Time (min)	Area (. $1 * u V^{*} \mathrm{sec}$)	$\begin{aligned} & \text { Area \% } \\ & (\%) \end{aligned}$	Original
1		5.592	161456	100.000	0.000

Operator ID:	TANMAY
Company name:	Lab
Method filename:	D:VFID - Ranjit April 2022\Cap fid.mth
Method name:	TCD
Analysed:	21-05-2022 17:01
Printed:	$21-05-202218: 25$
GC method:	
Sampler method:	
Sample ID:	test77
Channel:	(Channel A)
Analysis type:	UnkNown
Calculation method:	External STD (Area)
Chromatogram filename:	D:\FID - Ranjit April 2022\test77.dat
Calibration method:	Response Factors'
Sample amount:	1

Peak (\#)	Number	Retention (min)	Time	Area $\left(.1^{*} u V^{*} \sec \right)$	Area (\%)	\%
1		5.397		123170900	100.	

(4.9) Standard reaction with d_{3}-TFE solvent:

To an oven-dried 25 mL Schlenk tube charged with a magnetic stir bar, LiClO_{4} (0.2 mmol , 2 equiv) was added and heated under reduced pressure to eliminate trace of moisture. To this tube, phenylpyridine 2a (0.1 mmol , 1 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Zn}(\mathrm{OAc})_{2}(0.15 \mathrm{mmol}$,
1.5 equiv), alkene $1 \mathbf{1 a}$ ($0.3 \mathrm{mmol}, 3$ equiv) followed by d_{3}-TFE ($0.1 \mathrm{M}, 1 \mathrm{~mL}$) were added under nitrogen atmosphere. The reaction mixture was stirred (750 rpm) in a preheated aluminum block at $130{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was monitored by TLC. The solvent was evaporated under reduced pressure, and the crude mixture was purified by column chromatography using EtOAc/hexane as eluent, which afforded the corresponding alkenylated product d1-3aa (15 mg) in 77% yield.

Conclusion: Rh-D is forming in situ, which is the active catalyst for alkene isomerization. ${ }^{9}$

(4.10) Detection of reaction byproducts (HRMS):

The standard reaction was performed, and the reaction mixture was passed through a short celite pad. The crude mixture was submitted for the detection of intermediates and byproducts.

(4.11) Proposed catalytic cycle:

Detail mechanistic cycle for alkene isomerization step:

Based on our mechanistic investigations and previous literature reports, ${ }^{10,11}$ a catalytic cycle is proposed. The $\mathrm{Rh}(\mathrm{III})$ catalyst \mathbf{A} initially undergoes cyclometalation with 2a reversibly forming intermediate \mathbf{B} (characterized by NMR, HRMS, and XRD). π-Complexation of intermediate \mathbf{B} with

1a, followed by alkene insertion into the C - Rh bond gives intermediate D . The elimination of benzimidazole (detected in HRMS) by the assistance of the zinc additive leads to the allylated intermediate E, which, upon isomerization, delivers the alkenylated product 3aa.

5. References:

[1] Biswal, P.; Banjare, S. K.; Pati, B. V.; Mohanty, S. R.; Ravikumar, P. C. J. Org. Chem. 2021, 86, 1108-1117.
[2] Gottlieb, H. E.; Kotlyar, V.; Abraham, N. J. Org. Chem. 1997, 62, 7512-7515.
[3] L. Hoang, Z Yang, M. Smith, R Pal, L. Miska, E. Pérez, W. Pelter, X. Cheng Z, M. Takacs, Org. Lett.2015, 17, 940-943.
[4] Ramachandran, K.; Anbarasan, P. Eur. J. Org. Chem. 2017, 2017, 3965-3968.
[5] Kim, J. Y.; Park, S. H.; Ryu, J.; Hwan, S. C.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110-9113.
[6] Zheng, X.; Song, B.; Xu, B. Eur. J. Org. Chem. 2010, 2010, 4376-4380.
[7] Németh, J.; Debreczeni, N.; Gresits, I. Catal Lett. 2015, 145, 1113-1119.
[8] Brændvang, M.; Gundersen, L.-L Bioorg. Med. Chem. 2005, 13, 6360-6373.
[9] Syntheses of Cp*Rh-hydride complexes by reaction with alcohol solvents: a) White, C.; Oliver, A. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1973, 1901. (b) Nutton, A.; Bailey, P. M.; Maitlis, P. M. J. Organomet. Chem. 1981, 213, 313. A Cp*Rh-hydride complex, which is formed by oxidation alcohol, is considered to be an active species in the α-methylation of ketones and functionalization of styrene via C-C bond cleavage: (c) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Angew. Chem., Int. Ed. 2014, 53, 761 (d) Onodera, S.; Togashi, R.; Ishikawa, S.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc. 2020, 142, 7345.
[10] (a) Yan, R.; Wang, Z. X. Org. Biomol. Chem. 2018, 16, 3961; b) Hu, X.-Q.; Hu, Z.; Zhang, G.; Sivendran, N.; Gooßen, L. J. Org. Lett. 2018, 20, 4337.
[11] Selected reports on Rh-catalyzed alkene isomerization: a) Tsang, D. S.; Yang, S.; Alphonse, F.-A.; Yudin, A. K. Chem. - Eur. J. 2008, 14, 886. b) Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev. 2015, 115, 5462. c) Azpíroz, R.; Di Giuseppe, A.; Urriolabeitia, A.; Passarelli, V.; Polo, V.; Pérez-Torrente, J. J.; Oro, L. A.; Castarlenas, R. ACS Catal. 2019, 9, 9372. d) Massad, I.; Marek, I. ACS Catal. 2020, 10, 5793. e) Fiorito, D.; Scaringi, S.; Mazet, C. Chem. Soc. Rev. 2021, 50, 1391.

6. Experimental characterization data of products:

(E)-2-(2-(Prop-1-en-1-yl)phenyl)pyridine (3aa): was prepared according to the general procedure $\mathbf{3 . 1}(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3aa (16 mg) in 82% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.5 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 8.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{dd}, J$ $=16.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 159.5,149.7,139.0,136.5,136.1,130.3,129.8,128.7,127.5$, 127.1, 126.4, 125.2, 121.9, 19.0.

IR (KBr, cm^{-1}): 3414, 2912, 1584, 1424, 964.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N} 196.1121$; Found 196.1127.

(E)-2-(4-Methyl-2-(prop-1-en-1-yl)phenyl)pyridine (3ab): was prepared according to the general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ab (16 mg) in 77% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.3 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 8.70(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.13(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $1.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{C D C l} 3,175 \mathbf{M H z}): \delta 159.5,149.6,138.4,136.3$ (2C), 136.1, 130.3, 129.9, 128.0, 127.2, 127.1, 125.2, 121.7, 21.6, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3458, 2913, 1608, 1585, 1464, 964.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}$ 210.1277; Found 210.1284 .
(E)-2-(4-Ethyl-2-(prop-1-en-1-yl)phenyl)pyridine (3ac): was prepared according to
 general procedure $3.1(4 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ac (14 mg) in 63% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.4 ($5 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 8.70(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.14(\mathrm{~m}$, $1 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 159.5,149.6,144.8,136.5,136.3,136.1,130.3,130.0,127.2$, 126.9, 125.9, 125.2, 121.7, 29.1, 19.0, 15.9.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3499, 2962, 1607, 1585, 1463, 965.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N} 224.1434$; Found 224.1453.

(E)-2-(4-Methoxy-2-(prop-1-en-1-yl)phenyl)pyridine (3ad): was prepared according to the general procedure $\mathbf{3 . 1}(4 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving $\mathbf{3 a d}(17 \mathrm{mg})$ in 76% yield.

Physical State: colorless liquid
$\mathbf{R}_{\boldsymbol{f}}$-value: 0.3 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right): \delta 8.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.14(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, J=6.4 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 160.0,159.2,149.6,137.9,136.1,132.1,131.7,130.0,127.7$, 125.2, 121.5, 113.1, 111.4, 55.6, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3424, 2929, 1602, 1586, 1462, 963.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}$ 226.1226; Found 226.1230.

(E)-2-(4-Fluoro-2-(prop-1-en-1-yl)phenyl)pyridine (3ae): was prepared according to general procedure $3.1(2 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ae (17 mg) in 80% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 (10\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, 700 MHz$): \delta 8.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{td}, J=7.7 \mathrm{~Hz}, 2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{td}, J=7.7 \mathrm{~Hz}$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) 6.23-6.18(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 163.2\left(\mathrm{~d}, J_{C-F}=244.8 \mathrm{~Hz}\right), 158.6,149.7,138.7\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right)$, $136.3,135.1\left(\mathrm{~d}, J_{C-F}=2.8 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-F}=8.7 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-F}=2.1 \mathrm{~Hz}\right), 128.8,125.2,122.0$, $114.1\left(\mathrm{~d}, J_{C-F}=21.5 \mathrm{~Hz}\right), 112.7\left(\mathrm{~d}, J_{C-F}=22.0\right)$, 19.0.
${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathbf{~ M H z}\right)$: -114.1.
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3393, 2912, 1606, 1587, 1463, 1159, 963.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN}$ 214.1027; Found 214.1030.

(E)-2-(4-Chloro-2-(prop-1-en-1-yl)phenyl)pyridine (3af): was prepared according to the general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3af (17 mg) in 75\% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.45 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 8.70(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.16(\mathrm{~m}$, 1 H), 1.82 (dd, $J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 158.4,149.8,138.2,137.3,136.3,134.7,131.7,128.9,128.8$, 127.1, 126.4, 125.1, 122.2, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3422, 2912, 1592, 1462, 1099, 961.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN} 230.0731$; Found 230.0732.
(E)-1-(3-(Prop-1-en-1-yl)-4-(pyridin-2-yl)phenyl)ethanone (3ag): was prepared according to general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ag (19 mg) in 80% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 ($20 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, 400 MHz$): \delta 8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-$ $6.26(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 198.4,158.4,149.9,143.1,137.2,137.0,136.4,130.7,129.1$ (2C), 126.8, 126.7, 125.2, 122.6, 27.1, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3429, 2915, 1683, 1584, 1356, 1240, 964.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}$ 238.1226; Found 238.1218.

(E)-2-(2-(prop-1-en-1-yl)-4-(trifluoromethyl)phenyl)pyridine (3ah): was prepared according to general procedure $\mathbf{3 . 1}(2 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ah (22 mg) in 84% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.5 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C D}_{3}, 400 \mathrm{MHz}\right): \delta 8.74(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{td}, J=7.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-$ $6.25(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 158.2,149.9,141.9,137.2,136.4,130.8,129.5,129.2,128.7$, $127.2\left(\mathrm{q}, J_{C-F}=264.0 \mathrm{~Hz}\right), 125.1,123.6\left(\mathrm{q}, J_{C-F}=3.7 \mathrm{~Hz}\right), 123.4\left(\mathrm{q}, J_{C-F}=3.9 \mathrm{~Hz}\right), 122.6,19.0$.
${ }^{19}{ }^{\mathbf{F}}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 7 6} \mathbf{~ M H z}\right): \delta-62.6$.
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3460, 2915, 1651, 1586, 1336, 1124, 962.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N} 264.0995$; Found 264.0985.

(E)-3-(Prop-1-en-1-yl)-4-(pyridin-2-yl)benzaldehyde (3ai): was prepared according to the general procedure $\mathbf{3 . 1}(5 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ai (18 mg) in 81% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.5 ($30 \% \mathrm{EtOAc} /$ hexane)
 $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, $1 \mathrm{H}), 6.59(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.27(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 192.5,158.3,150.0,144.4,137.6,136.6,136.4,131.2,129.5$, 128.8, 128.2, 127.9, 125.1, 122.7, 19.0 .

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3431, 2921, 1695, 1584, 1435, 963.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}$ 224.1070; Found 224.1051.

Methyl (E)-3-(prop-1-en-1-yl)-4-(pyridin-2-yl)benzoate (3aj): was prepared according to general procedure $\mathbf{3 . 1}$ (13 h). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3aj (20 mg) in 79\% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.4 (20\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, 700 MHz$): \delta 8.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (td, $J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.29(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 167.3,158.5,149.9,142.9,136.8,136.4,130.5,130.3,128.9$, $128.9,128.0,127.9,125.2,122.5,52.5,19.0$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3430, 2950, 1720, 1584, 1435, 1290, 1107, 965.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}$ 254.1176; Found 254.1151.

(E)-2-(4-Chloro-2-(prop-1-en-1-yl)phenyl)-5-methylpyridine (3ak): was prepared according to general procedure 3.1 (9 h). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ak (19 mg) in 78% yield.

Physical State: Oily liquid \mathbf{R}_{f}-value: 0.4 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.22 (m, 2H), $6.42(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.14(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{dd}, J=6.8$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 155.5,150.2,138.2,137.3,136.9,134.5,131.7,131.6,128.9$, 128.7, 127.1, 126.3, 124.6, 19.0, 18.5.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3413, 2916, 1591, 1469, 1090, 962.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN} 244.0888$; Found 244.0890.

(E)-2-(4-(Prop-1-en-1-yl)benzo[d][1,3]dioxol-5-yl)pyridine (3al): was prepared according to general procedure 3.1 (3 h). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3al (16 mg) in 67% yield.

Physical State: colorless liquid \mathbf{R}_{f}-value: 0.5 ($20 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, 400 MHz$): \delta 8.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.48(\mathrm{~m}, 1 \mathrm{H})$, 6.25 (dd, $J=16.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 1.81$ (dd, $J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 159.3,149.6,147.9,145.6,136.2,134.0,132.0,125.2,124.6$, 124.2, 121.8, 119.5, 106.8, 101.3, 19.7.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3413, 2909, 1622, 1585, 1445, 1245, 1059, 943.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2} 240.1019$; Found 240.1027 .

(E)-1-(4-(Prop-1-en-1-yl)-3-(pyridin-2-yl)phenyl)ethan-1-one (3an): was prepared according to the general procedure $\mathbf{3 . 1}(5 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3an (16 mg) in 67% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.4 (20\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right): \delta 8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{dd}, J=6.8 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 197.8,158.6,149.8,141.1,139.1,136.5,135.7,130.9,130.4$, 129.1, 128.4, 126.6, 125.2, 122.4, 26.9, 19.2.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3421, 2912, 1680, 1600, 1465, 1241, 964.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}$ 238.1226; Found 238.1239.

(E)-2-(3-(prop-1-en-1-yl)furan-2-yl)pyridine (3ar): was prepared according to general procedure $3.1(24 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3ar (14 mg) in 76\% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.6 (5\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 700 \mathbf{M H z}\right): \delta 8.62(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.11(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CDCl3, $\left.\mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 151.4,149.6,147.0,142.7,136.6,128.0,124.1,122.8,121.4$, 120.2, 110.3, 19.06.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3471, 2932, 2911, 1591, 1555, 1445, 973.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}$ 186.0913; Found 186.0920.

(E)-2-(3-(prop-1-en-1-yl)thiophen-2-yl)pyridine (3as): was prepared according to the general procedure $\mathbf{3 . 1}(24 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 3as (14 mg) in 70% yield.

Physical State: Oily liquid
\mathbf{R}_{f}-value: 0.6 ($0 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, 700 MHz$): \delta 8.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24-6.19(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 153.5,150.0,137.7,137.6,136.7,128.6,127.5,126.3,125.2$, 123.1, 121.8, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3470, 2929, 2909, 1581, 1563, 1434, 968.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NS}$ 202.0685; Found 202.0682.

(E)-2-(2-(Prop-1-en-1-yl)phenyl)pyrimidine (7aa): was prepared according to the general procedure $3.1(20 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 7aa (13 mg) in 66% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.2 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }^{2}, 400 \mathrm{MHz}\right): \delta 8.86(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.82(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.17(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 167.7,157.3,137.3,136.8,130.9,129.9,129.8,127.5,127.1$, 126.8, 118.8, 19.1.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3433, 2912, 1567, 1553, 1414, 961.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2}$ 197.1073; Found 197.1080.

(E)-2-(4-Methyl-2-(prop-1-en-1-yl)phenyl)pyrimidine (7ab): was prepared according to the general procedure $3.1(5 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 7ab (16 mg) in 76\% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 (10\% EtOAc/hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right): \delta 8.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.13(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (s, 3H), 1.86 (dd, $J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 167.9,157.1,139.8,137.4,134.3,131.1,130.3,128.0,127.6$, 127.1, 118.6, 21.73, 19.07.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3032, 2917, 1608, 1566, 1415, 960.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2}$ 211.1230; Found 211.1234.

(E)-2-(4-Fluoro-2-(prop-1-en-1-yl)phenyl)pyrimidine (7ac): was prepared according to general procedure $\mathbf{3 . 1}(11 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 7ac (19 mg) in 89% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 (20\% EtOAc/hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 700 \mathrm{MHz}\right): \delta 8.86(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.21(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 166.9,163.9\left(\mathrm{~d}, J_{C-F}=248.1 \mathrm{~Hz}\right), 157.3,140.0\left(\mathrm{~d}, J_{C-F}=8.2 \mathrm{~Hz}\right)$, $133.3\left(\mathrm{~d}, J_{C-F}=8.9 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-F}=2.8 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{C-F}=1.9 \mathrm{~Hz}\right), 128.8,118.9,114.2\left(\mathrm{~d}, J_{C-F}=\right.$ $21.6 \mathrm{~Hz}), 113.2\left(\mathrm{~d}, J_{C-F}=22.3 \mathrm{~Hz}\right), 19.1$.
${ }^{19}$ F NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 7 6} \mathbf{~ M H z}\right): \delta-112.0$.
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3443, 2912, 1607, 1577, 1409, 1267, 960.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FN}_{2} 215.0979$; Found 215.0993.

(E)-2-(4-Chloro-2-(prop-1-en-1-yl)phenyl)pyrimidine (7ad): was prepared according to the general procedure $\mathbf{3 . 1}(20 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 7ad (19 mg) in 82% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.3 (10\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\left.400 \mathbf{M H z}\right): \delta 8.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.16$ $(\mathrm{m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 166.8,157.3,139.2,136.0,135.1,132.5,129.0,128.9,127.1$, 126.8, 119.0, 19.1.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3446, 2923, 1563, 1417, 1265, 1102, 961.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{2}$ 231.0684; Found 231.0678.

(E)-2-(4-Chloro-2-(prop-1-en-1-yl)phenyl)-5-methyl pyrimidine (7ae): was prepared according to the general procedure $\mathbf{3 . 1}(20 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 7ae (19 mg) in 78% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.45 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 8.67(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27-6.18(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.86$ (dd, $J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 164.3,157.5,139.0,135.6,135.2,132.3,129.0,128.7,128.3$, 127.1, 126.7, 19.1, 15.8.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3452, 2924, 1588, 1429, 1101, 959.
HRMS (ESI) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClN}_{2}$ 245.0840; Found 245.0843.

(E)-1-(2-(Prop-1-en-1-yl)phenyl)-1H-pyrazole (8aa): was prepared according to the general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 8aa (12 mg) in 65% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 ($10 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 700 \mathbf{~ M H z}\right): \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{td}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.21-6.20(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 140.8,138.3,133.9,131.7,129.0,128.6,127.6,126.9,126.6$, 126.5, 106.6, 19.1.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3424, 2912, 1691, 1517, 1393, 1044, 965.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}$ 185. 1079; Found 185. 1085.

(E)-1-(4-Methyl-2-(prop-1-en-1-yl)phenyl)-1H-pyrazole (8ab): was prepared according to the general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 8ab (14 mg) in 70% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 ($5 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, 700 \mathrm{MHz}\right): \delta 7.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.17(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 140.6,138.4,136.0,133.6,131.7,128.7,128.4,127.2,126.5$ (2C), 106.4, 21.5, 19.1.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3422, 2920, 1690, 1515, 1395, 965.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}$ 199.1230; Found 199.1238.
(E)-1-(4-Methoxy-2-(prop-1-en-1-yl)phenyl)-1H-pyrazole (8ac): was prepared according to the general procedure $3.1(3 \mathrm{~h})$. The crude reaction mixture was purified by column
 chromatography using silica gel (100-200 mesh size) giving 8ac (17 mg) in 80% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.2 ($5 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.21-6.14 (m, 1H), 6.09 (dd, $J=15.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right): \delta 159.7,140.5,135.5,131.9,131.8,129.2,128.0,126.3,113.2$, 111.2, 106.3, 55.8, 19.0.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3430,2913,1652,1604,1518,1294,1043,964$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 215.1179; Found 215.1192.

(E)-1-(4-Chloro-2-(prop-1-en-1-yl)phenyl)-1H-pyrazole (8ad): was prepared according to the general procedure $3.1(2 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 8ad (16 mg) in 73% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.4 (5\% EtOAc/hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 7.66(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 141.1,135.4,134.4,131.6,130.5,127.9,127.6,126.8,125.6$, 120.6, 106.9, 19.1.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3444, 2912, 1651, 1517, 1485, 1109, 955.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{2}$ 219.0684; Found 219.0680.

```
(E)-1-(3-(Prop-1-en-1-yl)-4-(1H-pyrazol-1-yl)phenyl)ethanone (8ae): was
```



``` prepared according to the general procedure \(\mathbf{3 . 1}(3 \mathrm{~h})\). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 8ae ( 15 mg ) in \(66 \%\) yield.
Physical State: colorless liquid \(\mathbf{R}_{f}\)-value: 0.2 (5\% EtOAc/hexane)
\({ }^{1} \mathbf{H}\) NMR ( \(\left.\mathbf{C D C l}_{3}, 700 \mathrm{MHz}\right): \delta 7.93\) (s, 2H), 7.77 (d, \(J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 7.68 (d, \(J\) \(=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=16.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 197.0,141.2,138.4,138.2,136.3,132.0,131.7,128.1,127.0\), 125.9, 107.1, 26.9, 19.3.
IR ( \(\mathrm{KBr}, \mathrm{cm}^{-1}\) ): 3444, 2915, 1682, 1605, 1517, 1450, 1264, 968.
HRMS (ESI) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)Calcd for \(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\) 227.1179; Found 227.1186.
```


(E)-9-Benzyl-6-(4-chloro-2-(prop-1-en-1-yl)phenyl)-9H-purine (9aa): was prepared according to the general procedure $3.1(12 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 9aa (25 mg) in 70% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.3 (20\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.62(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.21(\mathrm{~m}, 1 \mathrm{H})$, 5.49 (s, 2H), 1.79 (dd, $J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 157.6,152.7,152.4,144.9,139.3,136.3,135.3,132.9,132.9$, $131.7,129.5,129.3,129.0,128.4,128.3,127.0,126.6,47.7,19.0$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3435, 2925, 1708, 1580, 1499, 1328, 958.
HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{4}$ 361.1215; Found 361.1222.
(E)-9-Benzyl-6-(4-methyl-2-(prop-1-en-1-yl)phenyl)-9H-purine (9ab): was
 prepared according to the general procedure $3.1(12 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving $9 \mathbf{a b}(26 \mathrm{mg})$ in 76% yield.

Physical State: Colorless liquid \mathbf{R}_{f}-value: 0.3 ($20 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right): \delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24-6.16(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 159.1,152.7,152.3,144.5,140.0,137.4,135.6,132.7,131.6$, $130.8,129.7,129.5,128.9,128.3,127.9,127.4,127.3,47.7,21.8,19.0$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3563, 2919, 2851, 1582, 1504, 1454, 963.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4}$ 341.1761; Found 341.1773.

(E)-9-benzyl-6-(4-methoxy-2-(prop-1-en-1-yl)phenyl)-9H-purine (9ac): was prepared according to general procedure $\mathbf{3 . 1}(12 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 9 ac (29 mg) in 81% yield.

Physical State: Colorless liquid
\mathbf{R}_{f}-value: 0.4 ($50 \% \mathrm{EtOAc} /$ hexane)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 700 \mathbf{M H z}\right): \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 5 \mathrm{H})$, $7.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=15.4 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-$ $6.22(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 161.1,158.6,152.6,152.2,144.4,139.3,135.5,133.4,132.4$, 129.7, 129.5, 128.9, 128.2, 127.9, 126.3, 112.9, 111.9, 55.7, 47.6, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3487, 2934, 2910, 1579, 1504, 1454, 962.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}$ 357.1710; Found 357.1711.

(E)-6-(4-chloro-2-(prop-1-en-1-yl)phenyl)-9-ethyl-9H-purine (9ad): was prepared according to general procedure $3.1(12 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 9 ad $(20 \mathrm{mg})$ in 67% yield.

Physical State: Colorless liquid
\mathbf{R}_{f}-value: 0.2 (20\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl3, $\left.700 \mathbf{~ M H z}\right): \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.24(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.63 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 157.5,152.4,152.2,144.6,139.2,136.2,132.9,132.8,131.8$, 129.2, 128.4, 127.0, 126.6, 39.4, 19.0, 15.7.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3503, 2935, 2915, 1582, 1501, 1445, 957.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{4}$ 299.1058; Found 299.1061.

(E)-6-(4-chloro-2-(prop-1-en-1-yl)phenyl)-9-(3-methylbut-2-en-1-yl)-9Hpurine (9ae): was prepared according to the general procedure $3.1(12 \mathrm{~h})$. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 9ae (24 mg) in 71% yield.

Physical State: Colorless liquid \mathbf{R}_{f}-value: 0.2 (20\% EtOAc/hexane)
${ }^{1} \mathbf{H}$ NMR (CDCl,$\left.~ 400 ~ M H z\right): ~ \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.60$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.22(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.83$ (s, 3H), 1.79 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 157.4,152.4,152.2,144.7,140.2,139.2,136.2,132.9,132.7$, $131.8,129.2,128.4,127.0,126.6,117.6,41.8,26.0,19.0,18.5$.

IR (KBr, cm^{-1}): 3504, 2937, 2912, 1580, 1499, 957.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{4}$: 339.1371, Found: 339.1381.
(E)-6-(4-Chloro-2-(prop-1-en-1-yl)phenyl)-9-isobutyl-9H-purine (9af): was
 prepared according to the general procedure 3.1 (12 h). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving 9ab (24 mg) in 73% yield.

Physical State: colorless liquid
\mathbf{R}_{f}-value: 0.3 ($20 \% \mathrm{EtOAc} /$ hexane)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 700 \mathrm{MHz}\right): \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.34$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.24(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 157.5,152.5,152.4,145.4,139.3,136.2,132.9,132.5,131.7$, 129.2, 128.4, 127.0, 126.6, 51.6, 29.4, 20.3, 19.0.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3455, 2927, 1708, 1586, 1327, 1107, 936.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClN}_{4}$ 327.1371; Found 327.1372.

Intermediate-1 (Int-1): was prepared according to the general procedure 4.6. The crude reaction mixture was purified by column chromatography using silica gel (100200 mesh size) giving Int-1 (17 mg) in $\mathbf{7 3 \%}$ yield.

Physical State: reddish solid
\mathbf{R}_{f}-value: 0.5 ($100 \% \mathrm{EtOAc}$)
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 700 \mathrm{MHz}\right): \delta 8.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 15 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 7 5} \mathbf{~ M H z}\right): \delta 180.3(\mathrm{~d}, J=32.9 \mathrm{~Hz}), 164.7,151.6,142.5,137.6,136.4,136.0$, $124.5,123.4,122.5,119.5,96.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 9.4$.

HRMS (ESI) m/z: [M-Cl] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22}$ ClNRh 426.0490; Found 426.0462.

Intermediate-2 (Int-2): was prepared according to the general procedure 4.7. The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving Int-2 (12 mg) in 50% yield.

Physical State: reddish solid \mathbf{R}_{f}-value: 0.5 ($100 \% \mathrm{EtOAc}$)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 8.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67$ (s, 15H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 165.7,152.8,152.6(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 151.5,147.6,139.5,137.2$, $121.4,119.4,119.2,104.3,99.9,96.8(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 9.7$.

HRMS (ESI) m/z: [M-Cl] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Rh} 436.0778$; Found 436.0772.
7. NMR spectra of the synthesized compounds $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, and $\left.{ }^{19} \mathrm{~F}\right)$:

Display Report

Analysis Info		Acquisition Date	3/2/2021 10:54:05 AM
Analysis Name	D IDataiMAR-20211PCR102032021_PCR_TN_1497.a		
Method	Pos_tune_10w-m	Operator	Amit S Sahu
Sample Name	Tmix-131118	Instrument	micrOTOF-Q11 10337
Comment			

Acquisition Paramoter								
Source Type Focus Scan Begin Scan End	ESI Not active $50 \mathrm{~m} / \mathrm{z}$ $3000 \mathrm{~m} / \mathrm{z}$		Ion Polanty Set Capilary Set End Plate Offset Set Collision Cell RF	$\begin{aligned} & \text { Positive } \\ & 4500 \mathrm{~V} \\ & -500 \mathrm{~V} \\ & 130.0 \mathrm{Vpp} \end{aligned}$		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	$\begin{aligned} & 0.4 \mathrm{Bar} \\ & 180^{\circ} \mathrm{C} \\ & 4.0 \mathrm{limin} \\ & \text { Waste } \end{aligned}$	
Intens $\times 10^{6}$								
$1.8$$17$								
1.6								
		0.10	0.15	0.20	0.25			Time /min

Display Report

Analysis info

Display Report

3af, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Display Report

Acquisition Date $1 / 5 / 2021$ 11:59.03 AM
Operator Amit S.Sahu instrument microtof-Q II 10337

uker Compass DataAnalysis 4.0

Display Report

S57

Display Report

Analysis Info	
Analysis Name	D:IDatalFEB-20214PCRI25022021_PCR_TN_1482.d
Method	Pos_tune_low m
Sample Name	Tmix-131118
Comment	

Acquisition Date	2/25/2021 2:44:09 PM
Operator Instrument	PRAKASH BEHERA
micrOTOF-Q II 10337	

Acquisition Parameter								
Source Type Focus Scan Begin Scan End	ES: Not active $\begin{aligned} & 50 \mathrm{~m} / \mathrm{z} \\ & 3000 \mathrm{~m} / \mathrm{z} \end{aligned}$		Ion Polarity Set Capillary Set End Plate Offise Set Colifision Cell RF	$\begin{aligned} & \text { Positive } \\ & 4500 \mathrm{~V} \\ & -500 \mathrm{~V} \\ & 1300 \mathrm{Vpp} \end{aligned}$		izer eater as Valve	04 Bar $180^{\circ} \mathrm{C}$ 4.0 imm Waste	
$\begin{aligned} & \text { Intens } \\ & \times 10^{6} \end{aligned}$								
2.5								
2.4								
23								
0.025	0.050	0075	0.100	0.150	0.175	0.200	0225	(
--T								\|m

uker Compass DataAnalysis 4.0

Display Report

Analysis Info

$\begin{array}{ll}\text { Analysis Name DiDatalMAR-20211SNi23032021_SN_NS_1845.0 } \\ \text { Method } & \text { Pos tune low.m }\end{array}$
Method Pos fune low.m
Sample Name Tmix-131118
Comment
Acquisition Parameter

Source Type	ES!
Focus	Not active
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$

Bruker Compass DataAnalysis 4.0
printed: $\quad 3 / 23 / 20213: 52: 07 \mathrm{PM}$
Page 1 of 1

Display Report

Analysis Info	
Analysis Name	DiDatalMAR-20211SNI24032021_SN_NS_1859.d
Method	Pos_fune_low m
Sample Name	Tmix-131118
Comment	

Display Report

Analysis info	
Aralysis Name	D.DatalMAR-20211PCRI22032021_PCR_PB_1795.d
Method	Pos_turn__low.m
Sample Name	Tmix-131118
Comment	

Acquisition Date	$3 / 22 / 2021$ 10:55:13 AM
Operator Instrument	Amit S.Sahu micrOTOF-Q II 10337

Acquisition Parameter

ruker Compass DataAnalysis 4.0

Display Report

Analysis Info	
Analysis Name	DiData\FEG-20211PCRL26022021_PCR_TN_1484.d
Method	Pos_tune_low m
Sample Name	Tmix-131118
Comment	

Acquisition Date $\quad 2 / 26 / 202111: 31: 15 \mathrm{AM}$

Operator Amit S. Sahu Instrument micrOTOF-Q II 10337

Bruker Compass DataAnalysis 40

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of the product 3an.

Display Report

Analysis info	
Analysis Name	D.DatalFEB-2021\PCR124022021_PCR_PB_1780.d/
Method	Pos_tune_low.m
Sample Name	Tmix-131118
Comment	

Acquisition Date $2 / 24 / 20213: 16.11 \mathrm{PM}$
Operator Amit S.Sahu Instrument micrOTOF-Qil 10337

Acquisition Parameter

Display Report

Acquisition Date	11/30R2021 11:09.37 AM
Operator	PRAKASH BEHERA
Instrument	micrOTOF-Q 1110337

Acquisition Parameter

Soutce Type.	ESi	in Polarity	Positive	Set Nebulizet	0.4 Bar
	Not ative				
Scan Begrin	50 mv	Set Capllary	4500 V	Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan End	$3000 \mathrm{~m} / \mathrm{s}$	Sort ind Fate Oftset	500 V	Set Dry Gas	4.0 mmin
		Ser Culls on Celr Rif	130.0 Vmp	Sot Divert Vaive	Waste

Display Report

岕
$\cdots \sim$
7ab, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

7ab, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Display Report

Analysis Info	
Analysis Name	DUDatatMAR-20211PCRI24032021_PCR_PB_1826.0
Mothod	Pos_fune_lowm
Sample Name	Tmix-131118
Comment	

Display Report

Analysis info	
Analysis Name	D.LDataiMAR-20211PCR\16032021_PCR_PB_1837 d
Method	Pos_tune_fow.m
Sample Name	Tmix-131118
Comment	

Acquisition Date 3/16/2021 3:25:47 PM
Operator Amit S Sahu Instrument micrOTOF-Q || 10337

Acquisition	Parameter
Source Type	ES
Focus	Not active
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$

Ion Polarity	Positive
Set Capillary	4500 V
Set End Plate Ottset	-500 V
Set Collision Cell RF	1300 Vpp

Display Report

Analysis Info

Aralysis Name	DIDataiFEB-20211PCR118022021_PCR_TN_1476.c Method
Pos_tune_low m	
Sample Name	Tmix-131118
Comment	

Acquisition Date 2/22/202111:07:49 AM
Operator Amit S.Sahu Instrument microTOF-Q || 10337

Acquisition Parameter

Source Type	ESi	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capiliary	4500 V	Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan lagin	$50 \mathrm{~m} / \mathrm{c}$	Sot End Plate Orrset	-500 V	Set Dry Gas	$4.0 \mathrm{l} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	130.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 40

Display Report

Analysis Info	
Analysis Name	D DataLAPR-20211HSB126042021_HSB_R_1771.d
Method	Pos_tune jow m
Sample Name	Tmix-131118
Comment	

Acquisition Date	4/26/2021 3:42:06 PM
Operator	Amit S.Sahu
Instrument	micrOTOF-Q II 10337

[^0]

PCR-TN-1506SHYAM

SHYAM
XEVO-G2XSQTOF\#YFA1739
04062029
100

185.1079

Display Report

Analysis Info	
Analysis Name	D IDataiMAR-20211PCRL26032021_FCR_IN_1511 d
Method	Pos_tuno low m
Sample Name	Tmix-131118
Comment	

Acquisition Date	$3 / 26 / 20213: 18: 32 \mathrm{PM}$
Operator Amit S.Sanu Instrument micrOTOF O II 10337	

Acquisition Parameter

Source Type Focus Scan Begir Scan End	ESi Not active $50 \mathrm{~m} / \mathrm{z}$ $3000 \mathrm{~m} / \mathrm{z}$	Ion Polarity Set Capillary Sot End Plate Offset Set Collision Cell RE		$\begin{aligned} & \text { Positive } \\ & 4500 \mathrm{~V} \\ & -500 \mathrm{~V} \\ & 1300 \mathrm{Vpp} \end{aligned}$		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Vaive		$\begin{aligned} & 0.4 \text { Bar } \\ & 180^{\circ} \mathrm{C} \\ & 4.0 \mathrm{Vmin} \\ & \text { Waste } \end{aligned}$	
$\begin{gathered} \text { intens } \\ \times 10^{6} \end{gathered}$									
1.60									
1.55									
150									
1.45									

Iruker Compass DataAnalysis 4.0
printed. $\quad 3 / 26 / 2021$ 3:33:56 PM
Page 1 of 1

Display Report

Analysis Info	
Analysis Name	DIDatalFEB-2021IPCR128022021_PCR_TN_1493.d
Method	Pos tune Iow m
Sample Name	Tmix-131118
Comment	

Display Report

Analysis info

Analysis Name	D.iDatalfEB-2021\PCR118022021_PCR_TN_1475 d
Method	Pos_tune_low.m
Sample Name	Tmix-131118

Comment

Acquisition Date 2/22/2021 11:05:34 AM
Operator Amit S.Sahu Instrument micrOTOF-Q II 10337

Acquisition Parameter

Bruker Compass DataAnalysis 4.0
printed: $\quad 2 / 22 / 20214: 33: 58 \mathrm{PM}$
Page 1 of 1

Display Report

Analysis Info	
Analysis Name	D.DataiMAR-2021_PCR102032021_PCR_TN_1406.d
Method	Pos_tune_low m
Sample Name	Tmix-131118
Comment	

Acquisition Parameter

Source Type Focus Scan Begin Scan End	ESI Not active $50 \mathrm{~m} / \mathrm{z}$ $3000 \mathrm{~m} / \mathrm{s}$		Ion Polarity Set Capillary Set End Plate Offset Set Colision Cell RF	$\begin{aligned} & \text { Positive } \\ & 4500 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 130.0 \mathrm{Vpp} \end{aligned}$		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		0.4 Bar $180^{\circ} \mathrm{C}$ $4.0 \mathrm{l} / \mathrm{min}$ Waste
$\begin{array}{r} \text { Intens } \\ \times 10^{6} \end{array}$								
190								
1.85								
1.80								
1.75								
$170 \frac{1}{0.02}+0.03+0.04,0.05$								
\square		0.04	0.05	0.06	0.07	0.08	0.09	

'uker Compass DataAnalysis 40

Display Report

Analysis info

Analysis Name	D: DatalMAR-20211PCR126032021 PCR TN $1525 \mathrm{~d}^{\text {d }}$	Acquisition Date	3/26/2021 11:19:21 AM
Method	Pos tune low. m		
Sample Name	Tmix-131118	Operator	Amit S.Sahu
		Instrument	microtof-Q II 10337

Display Report

Display Report

Display Report

Display Report

Analysis info

Display Report

Analysis Info	
Analysis Name	D.DatalMAR-2021PCR131032021_PCR_TN_1532B d
Method	Pos tuno_low.m
Sampie Name	Tmix. 131118
Comment	

Acquisition Parameter

Display Report

Analysis info

Analysis Name	D. IDataIMAR 202\%1PCR131032021 PCR TN 1548 c	Acquisition Date	$3 / 31 / 2021$ 10.46.47 AM		
Method	Pos tune low m				
Sample Name	Tmix-131118	Operator	Amit S Sahu		
Comment		Instrument	micrQTOF-Q \\|	10337	

Acquisition Parameter

Iruker Compass DataAnalysis 40

8. Crystallographic data:

(a) Crystals of the compounds 9af ((E)-6-(4-chloro-2-(prop-1-en-1-yl)phenyl)-9-isobutyl-9H-purine) were obtained after slow evaporation of the mixture of DCM and MeOH . Crystals suited for single crystal X-Ray diffraction measurements were mounted on a glass fiber. Geometry and intensity data were collected with a Rigaku Smartlab X-ray diffractometer equipped with graphite-monochromated $(\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda=1.54184$, multilayer optics). Temperature was controlled using an Oxford Cryostream 700 instrument. Intensities were integrated with SAINT and SMART software packages and corrected for absorption with SADABS. The structure was solved by direct methods and refined on F2 with SHELXL-97 using Olex-2 software.

Figure S1. Crystal structure of 9af (50\% ellipsoid probability)
Table S2 Crystal data and structure refinement for PBTN-PURINE.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1} $\mathrm{F}(000)$
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$

PBTN-PURINE
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{4}$
325.81
299.7(5)
triclinic
P-1
9.4208(3)
10.0653(3)
10.3448(3)
65.854(3)
83.509(3)
69.754(3)
839.33(5)

2
1.289
2.040
342.0
$0.15 \times 0.13 \times 0.12$
$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
9.374 to 151.084

(b) Crystals of the compounds Int-2 were obtained after slow evaporation of MeOH . Crystals suited for single crystal X-Ray diffraction measurements were mounted on a glass fiber. Geometry and intensity data were collected with a Rigaku Smartlab X-ray diffractometer equipped with graphitemonochromated ($\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda=1.54184$, multilayer optics). Temperature was controlled using an Oxford Cryostream 700 instrument. Intensities were integrated with SAINT and SMART software packages and corrected for absorption with SADABS. The structure was solved by direct methods and refined on F2 with SHELXL-97 using Olex-2 software.

Figure S2. Crystal structure of Int-2 (50\% ellipsoid probability).
Table S3 Crystal data and structure refinement for pcr-pb-tn-1nt-oxobri.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/A
b/Å c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
pcr-pb-tn-1nt-oxobri
$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClNO}_{2} \mathrm{Rh}$
471.77
299.7(3)
monoclinic
P2 $1 / \mathrm{n}$
$15.79550(10)$
$7.59350(10)$
15.85550(10)

90
91.3970(10)

90
1901.19(3)

1
0.412
2.173
240.0
$0.17 \times 0.16 \times 0.13$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
7.806 to 148.996

$$
-19 \leq h \leq 19,-9 \leq k \leq 6,-19 \leq 1 \leq 19
$$

$$
27928
$$

$3854\left[\mathrm{R}_{\text {int }}=0.0441, \mathrm{R}_{\text {sigma }}=0.0211\right]$
3854/0/249
1.102
$\mathrm{R}_{1}=0.0243, \mathrm{wR}_{2}=0.0644$
$\mathrm{R}_{1}=0.0251, \mathrm{wR}_{2}=0.0647$
0.31/-0.61

[^0]: Bruker Compass DataAnalysis $40 \quad$ printed 4/26/2021 3:43:38 PM Page 1 of 1

