Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supporting Information to

Cu-catalyzed cascade difluoroalkylation/5-endo cyclization/β-fluorine cleavage of ynones

Jingwen Su, Wenbin Guo, Yi Liu, Lichun, Kong, Hanliang Zheng* and Gangguo Zhu*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China *E-Mail: hanliang@zjnu.edu.cn; gangguo@zjnu.cn

Contents

1. General Information	
2. Supplementary optimization of the reaction condition	S2
3. General Procedures for Experiments and Analytical Data	S3-S15
4. Mechanistic Experiments	S16-S21
5. NMR Spectra	S22-S65
6. X-Ray Crystallographic Data	
7. Computational Data	

1. General Information

Unless otherwise noted, materials obtained from commercial suppliers were used directly without further purification. Ynones were prepared according to the method reported in the literature.¹ Melting points reported here were measured by a melting point instrument and were uncorrected. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on a 600 MHz or 400 MHz NMR spectrometer. Chemical shifts are given in parts per million on the delta (δ) scale, and the coupling constants are given in hertz. ¹H NMR chemical shifts were determined relative to the internal standard tetramethylsilane (TMS) at 0.00 ppm, ¹³C NMR shifts were determined relative to the residual solvent peaks of CDCl₃ at δ 77.00 ppm, and ¹⁹F NMR chemical shifts were determined relative to to the residual solvent peaks of CDCl₃ at δ 0.00 ppm. High-resolution mass spectrometry (HRMS) analysis was carried out using a TOF MS instrument with an ESI source. Flash column chromatography was carried out on the silica gel (200-300 mesh).

2. Supplementary optimization of the reaction condition.

Ph Ia	le + BrCF₂CO₂Et − 2a	Cu(MeCN) ₄ PF ₆ , L1 , base DCM, 80 °C, 17 h	EtO ₂ C Ph Me 3a
Entry	Base	Yield $(\%)^b$	Z/E^{c}
1	Na ₂ CO ₃	8	1.5:1
2	Cs ₂ CO ₃	58	6.6:1
3	Li ₂ CO ₃	trace	-
4	NaHCO ₃	8	3.7:1
5	КОМе	8	3.0:1
6	K ₂ HPO ₄	21	8.2:1
7	KH ₂ PO ₄	36	8.6:1

 \cap

Tables S1. Base screening^a

¹ (a) Q.-X. Wang, and J. A. May, Formation of β -oxo-*N*-vinylimidates via intermolecular ester incorporation in Huisgen cyclization/carbene cascade reactions. *Org. Lett.*, 2020, **22**, 9579; (b) T. P. Reddy, J. Gujral, P. Roy, and D. B. Ramachary, Catalytic ynone-amidine formal [4 + 2]-cycloaddition for the regioselective synthesis of tricyclic azepines. *Org. Lett.*, 2020, **22**, 9653.

8	KOAc	8	3.8:1
9	KF	35	7.0:1

^a Reaction conditions: 1a (0.2 mmol), 2a (0.7 mmol), base (0.4 mmol), [Cu] (20 mol%), ligand (40 mol%), solvent (2 mL), 80 °C, 17 h. ^b GC yield with 1.0 equivalent naphthene as internal standard.
^c Determined by ¹⁹F NMR.

3. General Procedures for Experiments and Analytical Data

To a mixture of Cu(MeCN)₄PF₆ (14.9 mg, 0.04 mmol), L1 (18.9 mg, 0.08 mmol), 2a (142.1 mg, 0.7 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of DCM was added 1a (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After stirring at 80 °C for 17 h, the reaction mixture was quenched with water, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave 42 mg (72% yield) of **3a** as a yellow oil, Z/E = 10:1. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.06 – 7.04 (m, 2H), 4.27 (s, 1H), 4.16 – 4.08 (m 2H), 2.51 (d, J = 18.0 Hz, 1H), 2.21 (dd, J = 18.0, 1.5 Hz, 1H), 1.20 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.10, 160.25 (d, J = 35.1 Hz), 147.59 (d, J = 290.8 Hz), 141.24 (d, J = 3.3 Hz), 129.65 (d, J = 2.5 Hz), 128.26, 128.19, 126.80, 62.34, 56.36, 51.34, 38.52, 30.80, 25.31, 13.85; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.12; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₉FO₃+H⁺: 291.1391; Found 291.1393.

Compound 3b: 44 mg, 75% yield, yellow oil, Z/E > 20:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.09 (d, J = 7.8 Hz, 2H), 6.93 (d, J = 7.8 Hz, 2H), 4.23 (s, 1H), 4.18 – 4.06 (m, 2H), 2.50 (d, J = 18.0 Hz, 1H), 2.31 (s, 3H), 2.19 (dd, J = 18.0, 1.5 Hz, 1H), 1.21 – 1.17 (m, 6H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.31, 160.29 (d, J = 34.8 Hz), 147.43 (d, J = 290.5 Hz), 138.22 (d, J = 3.3 Hz), 136.36, 129.92, 128.94, 128.05, 62.32, 56.01, 51.29, 38.49, 30.79, 25.30, 21.01, 13.88; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.52; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₂₁FO₃+H⁺: 305.1547; Found 305.1538.

Compound 3c: 48 mg, 70% yield, yellow oil, Z/E > 20:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.3 Hz, 2H), 4.17 (s, 1H), 4.09 – 4.01 (m, 2H), 2.45 (d, J = 18.0 Hz, 1H), 2.12 (dd, J = 18.0, 1.5 Hz, 1H), 1.22 (s, 9H), 1.12 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H), 0.70 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.32, 160.32 (d, J = 35.2 Hz), 149.56, 147.47 (d, J = 289.8 Hz), 138.05 (d, J = 3.2 Hz), 129.84, 127.80, 125.08, 62.29, 55.93, 51.35, 38.56, 34.40, 31.32, 30.69, 25.33, 13.82; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.52; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₂₇FO₃+H⁺: 347.2017; Found 347.2005.

Compound **3d:** 48 mg, 62% yield, yellow oil, Z/E > 20:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.03 – 6.97 (m, 4H), 4.26 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 2.47 (d, J = 18.0 Hz, 1H), 2.21 (d, J = 18.0 Hz, 1H), 1.21 – 1.20 (m, 3H), 1.19 (s, 3H), 0.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.83, 162.86, 160.39 (d, J = 6.7 Hz), 160.01, 147.66 (d, J = 292.2 Hz), 137.06 (t, J = 3.4 Hz), 129.58 (d, J = 5.7 Hz), 115.19 (d, J = 21.4 Hz), 62.44, 55.57, 51.20, 38.47, 30.73, 25.29, 13.88; ¹⁹F NMR (565 MHz, CDCl₃) δ -110.78, -115.74; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₇H₁₈F₂O₃+H⁺: 309.1297; Found 309.1290.

Compound **3e:** 53 mg, 81% yield, yellow oil, Z/E > 20:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 4.25 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.46 (d, J = 18.0 Hz, 1H), 2.22 (dd, J = 18.0, 1.5 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.19 (s, 3H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.63, 160.13 (d, J = 34.6 Hz), 147.68 (d, J = 292.7 Hz), 139.78 (d, J = 3.5 Hz), 132.66, 129.45, 129.30, 128.48, 62.48, 55.72, 51.21, 38.49, 30.78, 25.30, 13.89; ¹⁹F NMR (565 MHz, CDCl₃) δ -110.56; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₈CIFO₃+H⁺: 325.1001; Found 325.0995.

Compound **3***f*: 51 mg, 80% yield, yellow oil, Z/E = 12:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 4.22 (s, 1H), 4.16 – 4.11 (m, 2H), 3.78 (s, 3H), 2.49 (d, J = 18.0 Hz, 1H), 2.19 (dd, J = 18.0, 1.5 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H), 1.18 (s, 3H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.35, 160.30 (d, J = 35.2 Hz), 158.32, 147.46 (d, J = 290.5 Hz), 133.47 (d, J = 3.2 Hz), 129.98, 129.12, 113.61, 62.35, 55.58, 55.19, 51.26, 38.55, 30.70, 25.29, 13.89; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.50; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₂₁FO₄+H⁺: 321.1497; Found 321.1501.

Compound **3g:** 45 mg, 70% yield, yellow oil, Z/E = 16:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (600 MHz, CDCl₃) δ 9.98 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.36 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 2.50 (d, J = 18.1 Hz, 1H), 2.26 (dd, J =18.1, 1.3 Hz, 1H), 1.23 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.23, 191.65, 160.07 (d, J = 34.4 Hz), 148.35 (d, J = 3.5 Hz), 147.87 (d, J = 293.6 Hz), 135.10, 129.75, 128.90, 128.87, 62.54, 56.42, 51.31, 38.74, 30.89, 25.32, 13.87; ¹⁹F NMR (565 MHz, CDCl₃) δ -109.94; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₉FO₄+H⁺: 319.1340; Found 319.1340.

Compound 3h: 43 mg, 60% yield, yellow oil, Z/E = 11:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 4.32 (s, 1H), 4.15 – 4.09 (m, 2H), 2.49 (d, J = 18.0 Hz, 1H), 2.24 (dd, J = 18.0, 1.4 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.22 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 0.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.49, 166.26, 160.09 (d, J = 34.6 Hz), 148.80 (d, J = 293.6 Hz), 146.40 (d, J = 3.3 Hz), 129.57, 129.14, 129.06 (d, J = 3.1 Hz), 128.17, 62.48, 60.98, 56.28, 51.32, 38.62, 30.83, 25.29, 14.32, 13.87; ¹⁹F NMR (565 MHz, CDCl₃) δ -110.22; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₂₃FO₅+H⁺: 363.1602; Found 363.1592.

Compound 3i: 49 mg, 69% yield, yellow oil, Z/E = 11:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.34 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 2.48 (d, J = 18.1 Hz, 1H), 2.25 (dd, J = 18.1, 1.4 Hz, 1H), 1.22 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.38, 160.08 (d, J = 34.2 Hz), 147.82 (d, J = 293.8 Hz), 145.30, 129.13 (q, J = 32.7 Hz)128.99 (d, J = 3.3 Hz), 128.48, 125.29 (d, J = 3.8 Hz), 124.05 (q, J = 272.21 Hz), 62.55, 56.10, 51.22, 38.60, 30.84, 25.33, 13.85; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.50, -110.10; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈F₄O₃+H⁺: 359.1265; Found 359.1281.

Compound **3***j*: 45 mg, 71% yield, yellow oil, Z/E = 10:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 4.32 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.45 (d, J = 18.1 Hz, 1H), 2.26 (dd, J = 18.1, 1.4 Hz, 1H), 1.22 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H), 0.76 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 202.91, 160.01 (d, J = 34.0 Hz), 147.92 (d, J = 295.4 Hz), 146.76 (d, J = 3.5 Hz), 132.15, 128.94, 128.59, 118.55, 110.88, 62.62, 56.32, 51.23, 38.71, 30.88, 25.33, 13.89; ¹⁹F NMR (377 MHz, CDCl₃) δ -109.62; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈FNO₃+H⁺: 316.1343; Found 316.1333.

Compound 3k: 47 mg, 73% yield, yellow oil, Z/E = 14:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 5.8, 3.5 Hz, 1H), 7.17 – 7.15 (m, 2H), 6.84 (dd, J = 5.9, 3.5 Hz, 1H), 4.89 (s, 1H), 4.16 (q, J = 7.2, 2H), 2.50 (d, J = 18.1Hz, 1H), 2.20 (dd, J = 18.1, 1.4 Hz, 1H), 1.25 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H), 0.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.81, 160.05 (d, J = 35.5 Hz), 147.85 (d, J = 290.3 Hz), 139.93 (d, J = 3.6 Hz), 134.88, 129.70, 129.40 (d, J = 3.4 Hz), 127.95, 127.57, 127.07, 62.58, 51.76, 51.52, 39.10, 30.78, 23.85, 13.85; ¹⁹F NMR (377 MHz, CDCl₃) δ -109.26; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₈ClFO₃+H⁺: 325.1001; Found 325.0987.

Compound 31: 40 mg, 65% yield, yellow oil, Z/E = 12:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.23 – 7.22 (m, 2H), 7.04 (s, 1H), 6.93 (d, J = 6.3 Hz, 1H), 4.24 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.49 (d, J = 18.1 Hz, 1H), 2.23 (dd, J= 18.1, 1.4 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.20 (s, 3H), 0.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.54, 160.11 (d, J = 35.1 Hz), 147.80 (d, J = 292.4 Hz), 143.23 (d, J = 3.6 Hz), 134.20, 129.56, 128.96, 128.30, 127.07, 126.34, 62.54, 56.00, 51.24, 38.55, 30.82, 25.32, 13.86; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.14; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₈ClFO₃+H⁺: 325.1001; Found 325.0996.

Compound **3m**: 43 mg, 60% yield, yellow oil, Z/E = 10:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 2.2 Hz, 1H), 7.16 (dd, J = 8.4, 2.2 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 4.85 (s, 1H), 4.22 – 4.16 (m, 2H), 2.46 (d, J = 18.2Hz, 1H), 2.23 (dd, J = 18.1, 1.4 Hz, 1H), 1.25 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.97, 160.01 (d, J = 34.2 Hz), 148.02 (d, J = 294.3 Hz), 144.57 (d, J = 3.8Hz), 134.91, 128.33 (d, J = 3.5 Hz), 127.19, 126.65, 62.69, 55.78, 51.16, 38.61, 30.84, 25.33, 13.87; ¹⁹F NMR (377 MHz, CDCl₃) δ -109.25; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₇Cl₂FO₃+H⁺: 359.0612; Found 325.0603.

Compound **3n**: 46 mg, 72% yield, yellow oil, Z/E = 12:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (600 MHz, CDCl₃) δ 6.85 (s, 1H), 6.62 (s, 2H), 4.19 (s, 1H), 4.17 – 4.11 (m, 2H), 2.52 (d, J = 18.0 Hz, 1H), 2.27 (s, 6H), 2.18 (dd, J = 18.1, 1.5 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H), 1.18 (s, 3H), 0.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.54, 160.34 (d, J = 34.9 Hz), 147.40 (d, J = 289.8 Hz), 141.04 (d, J = 3.2 Hz), 137.57, 129.90, 128.45, 126.09, 62.33, 56.23, 51.30, 38.45, 30.88, 25.33, 21.38, 13.83; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.60; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₂₃FO₃+H⁺: 319.1704; Found 319.1696.

Compound **3o:** 51 mg, 77% yield, yellow solid, mp 124-126 °C, Z/E = 10:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, J = 8.0 Hz, 1H), 6.54 (d, J = 1.8 Hz, 1H), 6.49 (dd, J = 8.0, 1.8 Hz, 1H), 5.93 (s, 2H), 4.20 (s, 1H), 4.22 – 4.12 (m, 2H), 2.49 (d, J = 18.1 Hz, 1H), 2.18 (dd, J = 18.0, 1.5 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.17 (s, 3H), 0.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 204.11, 160.25 (d, J = 34.9 Hz), 147.54 (d, J = 291.7 Hz), 147.51, 146.44 (d, J = 41.3 Hz), 135.16 (d, J = 4.1 Hz), 129.72, 121.19, 108.77, 108.04, 101.04, 62.40, 55.98, 51.19, 38.57, 30.81, 25.29, 13.93; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.09; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₉FO₅+H⁺: 335.1289; Found 335.1278.

Compound **3***p*: 27 mg, 40% yield, yellow oil, Z/E = 10:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 3H), 7.49 – 7.43 (m, 3H), 7.26 – 7.23 (m, 1H), 4.46 (s, 1H), 4.12 – 4.05 (m, 2H), 2.60 (d, J = 18.1 Hz, 1H), 2.25 (dd, J =18.0, 1.4 Hz, 1H), 1.26 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H), 0.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.24, 160.23 (d, J = 34.9 Hz), 147.70 (d, J = 291.3 Hz), 139.01, 133.21, 132.32, 129.82 (d, J =2.7 Hz), 127.82, 127.79, 127.60, 127.34, 126.29, 126.16, 125.80, 62.39, 56.42, 51.36, 38.79, 30.95, 25.40, 13.84; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.87. HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₁H₂₁FO₃+H⁺: 341.1547; Found 341.1547.

Compound **3r:** 30 mg, 51% yield, yellow oil, Z/E = 10:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 5.1, 1.2 Hz, 1H), 6.93 (dd, J = 5.1, 3.5 Hz, 1H), 6.76 (dt, J = 3.5, 0.8 Hz, 1H), 4.57 (s, 1H), 4.21 (q, J = 7.2 Hz, 2H), 2.61 (d, J = 18.1 Hz, 1H), 2.21 (dd, J = 18.1, 1.6 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.18 (s, 3H), 0.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.26, 160.21 (d, J = 34.8 Hz), 147.82 (d, J = 292.0 Hz), 143.42 (d, J = 4.1 Hz), 129.47 (d, J = 3.5 Hz), 126.59, 125.24, 123.59, 62.53, 51.58, 50.89, 38.60, 30.09, 24.92, 13.92; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.12; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₅H₁₇FO₃S+H⁺: 297.0955; Found 297.0959.

Compound **3u**: 41 mg, 62% yield, colorless oil, Z/E = 8:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H), 7.23 – 7.20 (m, 1H), 7.06 (d, J = 7.5 Hz, 2H), 4.32 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 2.51 (d, J = 18.5Hz, 1H), 2.43 (d, J = 18.5 Hz, 1H), 1.59 – 1.39 (m, 5H), 1.31 – 1.19 (m, 6H), 1.15 – 1.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 204.34, 160.31 (d, J = 35.0 Hz), 147.45 (d, J = 290.5 Hz), 140.55 (d, J = 3.6 Hz), 129.86 (d, J = 2.7 Hz), 128.58, 128.18, 126.77, 62.33, 56.32, 47.22, 42.11, 38.62, 34.71, 25.60, 23.15, 22.45, 13.90; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.67; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₀H₂₃FO₃+H⁺: 331.1704; Found 337.1694.

Compound 3v: 38 mg, 60% yield, yellow solid, Z/E = 8:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 40:1; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.3 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.08 – 7.06 (m, 2H), 4.37 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.63 (d, J = 18.2 Hz, 1H), 2.29 (dd, J = 18.2, 1.6 Hz, 1H), 1.82 – 1.63 (m, 4H), 1.42 – 1.35 (m, 1H), 1.25 (s, 2H), 1.21 (t, J = 7.1 Hz, 3H), 1.11 – 1.04 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 204.11, 160.29 (d, J = 34.8 Hz), 146.87 (d, J = 291.3 Hz), 141.81 (d, J = 3.5 Hz), 129.88 (d, J = 2.4 Hz), 128.29, 128.06, 126.77, 62.36, 54.60, 50.53, 49.01, 40.71, 34.60, 26.92, 23.55 (d, J = 5.0 Hz), 13.90; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.12; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₂₁FO₃+H⁺: 317.1547; Found 317.1537.

Compound **3***w*: 23 mg, 38% yield, yellow solid, Z/E = 11:1; dr = 3:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H), 7.22 – 7.18 (m, 1H), 7.15 – 7.13 (m, 2H), 4.52 (s, 1H), 4.19 – 4.14 (m, 2H), 2.95 – 2.89 (m, 1H), 2.76 – 2.44 (m, 1H), 2.24 – 1.84 (m, 4H), 1.43 – 1.22 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.66, 160.37 (d, *J* = 35.0 Hz), 147.46 (d, *J* = 291.0 Hz), 144.85 (d, *J* = 3.6 Hz), 128.75, 128.18 (d, *J* = 9.1 Hz), 126.69, 126.53, 62.43, 52.06, 49.54, 48.86, 34.37, 29.78, 25.97, 13.84; ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -110.41; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₈H₁₉FO₃+H⁺: 303.1391; Found 303.1399.

Compound 3y: 31 mg, 46% yield, white solid, mp 121-123 °C, Z:E = 14:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 3H), 7.11 (d, J = 6.7 Hz, 2H), 4.29 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.50 – 3.43 (m, 1H),

1.51 (d, J = 6.8 Hz, 3H), 1.45 (d, J = 6.8 Hz, 3H), 1.37 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.43, 160.43 (d, J = 33.6 Hz), 147.15 (d, J = 281.4 Hz), 140.64 (d, J = 3.6 Hz), 128.31, 128.02, 127.98, 127.15, 63.50, 61.94, 53.87, 45.32, 30.09, 23.85, 20.22, 19.93, 13.94; ¹⁹F NMR (377 MHz, CDCl₃) δ -121.15; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₉H₂₄FNO₃+H⁺: 334.1813; Found 334.1817.

Compound **3aa**: 33 mg, 52% yield, yellow oil, Z/E = 1:5; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 (t, J = 7.4 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.10 – 7.09 (m, 2H), 3.92 (d, J = 3.3 Hz, 1H), 3.53 - 3.43 (m, 2H), 3.20 - 3.25 (m, 2H), 2.43 (d, J = 17.6 Hz, 1H), 2.25 (d, J = 17.6 Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.19 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H), 0.73 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 204.23 (d, J = 14.9 Hz), 160.66 (d, J = 29.8 Hz), 157.65 (d, J = 291.5 Hz), 139.08, 128.29, 128.24, 127.04, 121.25 (d, J = 9.1 Hz), 55.12, 52.74, 42.69, 39.16, 38.80, 29.61, 24.96, 14.17, 12.18; ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -96.10, -98.87; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₂₄FNO₂+H⁺: 318.1864; Found 318.1866.

Compound **3ab:** 50 mg, 51% yield, yellow oil, Z/E = 11:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.26 (s, 1H), 4.16 – 4.08 (m, 2H), 3.92 (q, J = 7.2 Hz, 1H), 2.49 - 2.44 (m, 3H), 2.20 (dd, J = 17.9, 1.4 Hz, 1H), 1.86 (dt, J = 13.5, 6.8 Hz, 1H), 1.59 (d, J = 7.1 Hz, 3H), 1.18 (t, J = 7.2 Hz, 6H), 0.91 (d, J = 6.6 Hz, 6H), 0.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.87, 173.15, 160.15 (d, J = 34.9 Hz), 149.67, 147.70 (d,

J = 291.7 Hz), 140.87, 138.66 (d, J = 3.4 Hz), 137.16, 129.53, 129.42 (d, J = 2.8 Hz), 128.94, 127.20, 121.25, 62.44, 55.73, 51.25, 45.25, 45.05, 38.51, 30.71, 30.20, 25.29, 22.40, 18.46, 13.88; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.71; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₃₅FO₅+H⁺: 495.2541; Found 459.2549.

Compound **3ac:** 48 mg, 57% yield, yellow oil, Z/E = 16:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 4.26 - 4.21 (m, 3H), 4.18 - 4.09 (m, 2H), 2.48 (d, J = 18.0 Hz, 1H), 2.19 (dd, J = 17.9, 1.4 Hz, 1H), 1.58 (s, 6H), 1.24 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 6H), 0.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.15, 174.16, 160.25 (d, J = 35.3 Hz), 154.22, 147.56 (d, J = 290.0 Hz), 135.00, 129.71, 128.81, 118.99, 79.18, 62.31, 61.40, 55.59, 51.28, 38.49, 30.66, 25.37 (d, J = 10.1 Hz), 25.24, 13.96 (d, J = 19.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -111.09; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₃H₂₉FO₆+H⁺: 421.2021; Found 421.2023.

Compound 3ad: 59 mg, 61% yield, yellow oil, Z:E = 16:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 8.1 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 6.70 (s, 1H), 4.20 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 2.85 – 2.83 (m, 2H), 2.52 – 2.45 (m, 2H), 2.19 – 1.91 (m, 6H), 1.64 – 1.43 (m, 6H), 1.40 (s, 1H), 1.24 – 1.17 (m, 6H), 0.90 (s, 3H), 0.78 (d, J = 1.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.46, 160.35 (d, J = 35.0 Hz), 147.31 (d, J = 292.2 Hz), 138.56, 138.20, 136.24, 129.99, 128.38, 125.99, 125.09, 125.06,

62.33, 55.94, 51.20, 50.54, 47.97, 44.26 (d, J = 1.9 Hz), 38.50, 38.07, 35.84, 31.60, 30.83, 29.44 (d, J = 3.1 Hz), 26.91, 26.51, 25.60, 25.36 (d, J = 2.9 Hz), 21.58, 13.88; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.76 (d, J = 10.5 Hz); HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₉H₃₅FNO₄+H⁺: 427.2592; Found 427.2594.

Compound **3***ae*: 87 mg, 58% yield, yellow oil, Z/E = 8:1; Flash column chromatography conditions: petroleum ethers/EtOAc = 30:1; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 4.39 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.62 (t, J = 6.8 Hz, 2H), 2.54 (d, J = 18.1 Hz, 1H), 2.27 (dd, J = 18.0, 1.4 Hz, 1H), 2.12 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.60 – 1.03 (m, 35H), 0.87 (d, J = 6.7 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 203.47, 164.86, 160.18 (d, J = 34.3 Hz), 148.31 (d, J = 242.0 Hz), 146.37, 140.57, 130.20, 129.15, 128.45, 128.28, 126.88, 125.12, 123.16, 117.51, 75.11, 62.56, 56.38, 51.30, 39.39, 38.75, 37.46, 37.30, 32.82, 30.93, 28.00, 25.41, 24.83, 24.47, 22.75, 22.66, 21.05, 20.65, 19.78, 19.69, 13.91, 13.10, 12.26, 11.88; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.22; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₄₇H₆₇FO₆+H⁺: 747.4994; Found 747.5004.

3. Mechanistic Experiments

To a mixture of Cu(MeCN)₄PF₆ (14.9 mg, 0.04 mmol), L1 (18.9 mg, 0.08 mmol), 2a (142.1 mg, 0.7 mmol), TEMPO (125 mg, 0.8 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of DCM was added 1a (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After stirring at 80 °C for 17 h, the reaction mixture was quenched with water, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, and concentrated to give 4a in 47% ¹⁹F NMR yield using PhCF₃ as the internal standard.

To a mixture of Cu(MeCN)₄PF₆ (14.9 mg, 0.04 mmol), L1 (18.9 mg, 0.08 mmol), 2a (142.1 mg, 0.7 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of DCM was added [D]-1u (45.4 mg, 0.2 mmol) under nitrogen atmosphere. After stirring at 80 °C for 17 h, the reaction mixture was quenched with water, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄. Column chromatography on silica gel (petroleum ethers/EtOAc = 40:1) gave 38 mg (58% yield) of [D]-3u, 70% D, as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 6.9 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 0H), 7.03 (d, *J* = 7.4 Hz, 1H), 4.29 (s, 0H), 4.12 (q, *J* = 7.2 Hz, 1H), 2.48 (d, *J* = 18.6 Hz, 0H), 2.40 (d, *J* = 18.3 Hz, 0H), 1.53 – 1.31 (m, 4H), 1.22 – 1.09 (m, 3H), 0.89 – 0.84 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 204.32, 160.30 (d, *J* = 35.1 Hz), 147.42 (d, *J* = 290.5 Hz), 140.54 (d, *J* = 3.5 Hz), 129.85 (d, *J* = 2.7 Hz), 128.57, 128.17, 126.76, 62.33, 56.32, 47.20, 42.10, 38.61, 34.70, 25.60, 23.15, 22.45, 13.91; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.70; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₀H₂₂DFO₃+H⁺: 332.1767; Found 332.1765.

To a mixture of Cu(MeCN)₄PF₆ (14.9 mg, 0.04 mmol), L1 (18.9 mg, 0.08 mmol), 2a (142.1 mg, 0.7 mmol), benzimidazole (118 mg, 1.0 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of DCM was added 1a (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After stirring at 80 °C for 17 h, the reaction mixture was quenched with water, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, Column chromatography on silica gel (petroleum ethers/EtOAc = 10:1) gave 23 mg (68% yield) of **5a**; as yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.86 – 7.83 (m, 1H), 7.62 – 7.60 (m, 1H), 7.44 – 7.34 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 143.91, 139.07, 130.55, 124.81, 124.17, 120.98, 111.08, 108.97 (t, *J* = 250.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -93.70; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₈H₆F₂N₂+H⁺: 169.0572; Found 169.0570.

To a mixture of Cu(MeCN)₄PF₆ (14.9 mg, 0.04 mmol), L1 (18.9 mg, 0.08 mmol), 2a (142.1 mg, 0.7 mmol) and K₂CO₃ (55.3 mg, 0.4 mmol) in 2 mL of CD₃CN was added 1a (37.2 mg, 0.2 mmol) under nitrogen atmosphere. After completion of the reaction, the gas in the reaction vessel was bubbled into a sealed tube with CDCl₃ cooled to -70 °C and then subjected to ¹⁹F NMR and analysis using PhCF₃ as the internal standard and GC-MS analysis, the signal of CF₃Br was detected at low temperature.

Determination of the KIE Values

The method to calculate KIE is according to the reported method² through parallel reactions of 1u and [D]-1u (72% D) using the general produce with *N*,*N*-Dimethyltrifluoroacetamide as the internal standard.

² a) X.-H. Yang, R. Davison, S.-Z. Nie, Cruz, F. A., T. M. McGinnis and V. M. Dong, Catalytic hydrothiolation: counterion-controlled regioselectivity. *J. Am. Chem. Soc.* 2019, 141, 3006; b) C. Obradors, R. M. Martinez and R. A. Shenvi, Ph(*i*-PrO) SiH₂: An exceptional reductant for metal-catalyzed hydrogen atom transfers, *J. Am. Chem. Soc.* 138, 4962-4971 (2016).

Adjusted initial rates:

 $k_{\rm H} = 0.3733$

 $k_{\rm H} * 28\% + k_{\rm D} * 72\% = 0.2133$

 $k_{\rm D}$ =0.1511

 $KIE = k_{\rm H} / k_{\rm D} = 2.47$

Competitive reactions of 1u and [D]-1u (72% D) were conducted under the standard conditions

with N,N-Dimethyltrifluoroacetamide as the internal standard.

-	time (min)	15	30	45	60	75
	yield of H	4%	9%	12%	16%	19%
	yield of D	1%	3%	4%	6%	8%

 $KIE = k_{\rm H} / k_{\rm D} = 2.18$

² Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F. Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J. *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

4. NMR Spectra

S28

S32

S41

S46

5. X-Ray Crystallographic Data

The crystal of (*Z*)-**30** (major isomer) was recrystallized in ethyl acetate/petroleum ethers via slow evaporation at room temperature. Crystal data for (*Z*)-**30** (C₁₈H₁₉FO₅, 334.33): triclinic, space group P -1, *a* = 7.0823(8) Å, *b* = 8.7728(10) Å, *c* = 13.8942(15) Å, α = 92.044(4), β = 102.990(4), γ = 94.510(4), *U* = 837.31(16) Å³, *Z* = 2, *T* = 298(2) K, absorption coefficient 0.103 mm⁻¹, reflections collected 3827, independent reflections1889 [*R*(int) = 0.0760], refinement by full-matrix leastsquares on *F*², data/restraints/parameters 1889/1/228, goodness-of-fit on *F*² = 1.023, final *R* indices [*I*>2s(*I*)] *R*₁ = 0.0758, *wR*₂ = 0.2113, largest diff peak and hole 0.231 and -0.196 e.Å⁻³. Crystallographic data for the structure (*Z*)-**30** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2215733.

Figure S1. X-Ray crystal structure of (Z)-30 with the ellipsoid contour at 50% probability levels.

The crystal of (*Z*)-**3aa** (minor isomer) was recrystallized in ethyl acetate/petroleum ethers via slow evaporation at room temperature. Crystal data for (*Z*)-**3aa** (C₁₉H₂₄FNO₂, 317.18): triclinic, space group P -1, a = 6.2396(2) Å, b = 9.9099(4) Å, c = 14.5635(6) Å, $\alpha = 98.240(2)$, $\beta = 98.468(2)$, $\gamma = 91.823(2)$, U = 880.22(6) Å³, Z = 2, T = 298 K, absorption coefficient 0.682 mm⁻¹, reflections

collected 3199, independent reflections 2453 [R(int) = 0.1314], refinement by full-matrix leastsquares on F^2 , data/restraints/parameters 2453/0/213, goodness-of-fit on $F^2 = 1.048$, final R indices [I > 2s(I)] $R_1 = 0.0682$, $wR_2 = 0.2032$, largest diff peak and hole 0.391 and -0.244 e.Å⁻³. Crystallographic data for the structure (Z)-**3aa** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2215372.

Figure S2. X-Ray crystal structure of (Z)-3aa with the ellipsoid contour at 50% probability levels.

6. Computational Data

Computational details: All density functional theory (DFT) calculations were performed using Gaussian 16.² Geometry optimizations and frequencies were calculated at the B3LYP-D3(BJ)/6-31g(d,p)-SMD(dichloromethane) level of theory.^{3,4} Frequency calculations confirmed that optimized structures are minima (no imaginary frequency) or transition structures (one imaginary frequency). To obtain more accurate electronic energies, single-point energy calculations were performed at the ω B97XD/def2-TZVP-SMD(dichloromethane) level of theory with the optimized structures. Grimme's quasi-RRHO correction⁵ for the frequencies that are below 100 cm⁻¹ and concentration correction for all species (from 1 atm to 1 mol/L) are implemented by the GoodVibes program.⁶

³ (a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1988, **37**, 785. (b) Becke, A. D. Density-functional thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* 1993, **98**, 5648; (c) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, **132**, 154104.

⁴ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, **113**, 6378.

⁵ Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* 2012, **18**, 9955.

⁶ Luchini, G.; Alegre-Requena J. V.; Guan, Y.; Funes-Ardoiz, I.; Paton, R. S. 2019, GoodVibes: GoodVibes 3.0.1 http://doi.org/10.5281/zenodo.595246

1 (Z)-3a -984.58201 -1.1 2 (E)-3a -984.58033 -1.1 3 (Z)-3aa -1043.282793 +0.9	Entry	structure	Calcd. G (hartree)	Calcd. ∆G (kcal/mol)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	(Z)- 3 a	-984.58201	11	
3 (Z)- 3 aa -1043.282793 +0.9	2	(E)- 3a	-984.58033	-1.1	
+0.9	3	(Z)- 3aa	-1043.282793		
4 (<i>E</i>)- 3 aa -1043.284176	4	(E)- 3 aa	-1043.284176	+0.9	

Table S1. The Gibbs free energies of (*Z*)-**3a**, (*E*)-**3a**, (*Z*)-**3aa** and (*E*)-**3aa**.

The	calcula	ated	Cartesian	coordinates	of	optimized	structures
(Z)-3	a			Н	-0.36199	0.68927	2.09937
С	-0.79992	0.29611	-0.62188	С	1.7829	3.0498	-0.09579
С	-2.27721	0.83163	-0.8154	Н	0.88094	2.0548	-1.77759
С	-3.00389	0.33484	0.44731	С	1.86111	3.1313	1.29664
С	-2.36284	-1.00117	0.77325	Н	1.13637	2.32912	3.1617
С	-1.00051	-1.00283	0.13713	Н	2.39174	3.70162	-0.71558
Н	-2.80992	1.00649	1.29495	Н	2.5279	3.84784	1.76665
Н	-4.08699	0.24127	0.33654	Н	-0.37468	0.09835	-1.60683
0	-2.85799	-1.89403	1.43751				
С	-0.12642	-2.01176	0.287	(<i>E</i>)-3	a		
F	-0.45921	-3.10008	0.99742	С	1.25966	-0.62981	0.62967
С	-2.36784	2.34775	-0.97937	С	1.80378	-1.92349	-0.10692
Н	-3.41228	2.64447	-1.12389	С	0.83903	-2.09088	-1.30181
Н	-1.98381	2.87421	-0.10195	С	-0.50575	-1.61292	-0.78807
Н	-1.80078	2.68681	-1.85264	С	-0.2217	-0.65922	0.32346
С	-2.87276	0.14113	-2.05369	Н	1.13074	-1.42665	-2.12714
Н	-2.33865	0.44505	-2.96013	Н	0.78339	-3.10952	-1.69272
Н	-2.81108	-0.95067	-1.98019	О	-1.60663	-1.9705	-1.17415
Н	-3.92802	0.40767	-2.17373	С	-1.15988	0.04601	0.95723
С	1.28472	-2.1207	-0.19551	F	-0.83365	0.8227	2.00866
0	2.01128	-3.03511	0.13961	С	3.2613	-1.81335	-0.55051
0	1.62243	-1.11164	-1.00121	Н	3.57517	-2.74342	-1.03649
С	3.01633	-1.03661	-1.41677	Н	3.40845	-0.99395	-1.25877
Н	2.98802	-0.41532	-2.31284	Н	3.92289	-1.64328	0.30543
Н	3.35522	-2.04025	-1.68139	С	1.64095	-3.11712	0.84815
С	3.87179	-0.41669	-0.32898	Н	2.28662	-3.00109	1.72494
Н	4.89939	-0.31615	-0.69334	Н	0.60894	-3.21599	1.20355
Н	3.49983	0.57541	-0.06047	Н	1.91159	-4.05209	0.34648
Н	3.88563	-1.04554	0.56478	С	-2.63866	0.05967	0.69326
С	0.1372	1.26619	0.07992	О	-3.4457	-0.28102	1.53376
С	0.22607	1.35393	1.47452	О	-2.90943	0.52324	-0.5232
С	0.92977	2.12345	-0.69455	С	-4.30676	0.49645	-0.93917
С	1.07988	2.27903	2.07825	Н	-4.76588	-0.41399	-0.54896

Η	-4.25519	0.43707	-2.02739
С	-5.03484	1.74225	-0.47493
Н	-6.05821	1.72976	-0.86382
Η	-5.08165	1.78489	0.61615
Н	-4.53745	2.64399	-0.84429
С	1.92077	0.67179	0.20615
С	1.5508	1.35358	-0.96131
С	2.9611	1.19484	0.98405
С	2.2125	2.52062	-1.34448
Н	0.73471	0.98049	-1.57193
С	3.62366	2.36269	0.60485
Н	3.25021	0.68082	1.89657
С	3.25276	3.02917	-0.56412
Н	1.91127	3.03537	-2.25221
Н	4.42505	2.75345	1.22511
Η	3.76471	3.93957	-0.86101
Η	1.42926	-0.7451	1.70443

(Z)-**3**aa

С	0.80078	-0.43728	0.57298
С	1.77851	-1.51136	1.20435
С	2.117	-2.43243	0.0151
С	0.86185	-2.4559	-0.84411
С	0.08748	-1.22936	-0.50911
Η	2.92318	-2.00068	-0.59348
Η	2.4228	-3.44104	0.30488
0	0.56023	-3.31508	-1.65658
С	-1.06156	-0.85698	-1.08236
F	-1.64844	-1.59946	-2.0405
С	3.02408	-0.90442	1.84703
Н	3.64822	-1.69615	2.27536
Н	3.62637	-0.35376	1.11988
Η	2.75689	-0.21526	2.65531
С	0.98807	-2.30958	2.25429
Η	0.68352	-1.66424	3.08508
Η	0.08352	-2.75684	1.82623
Н	1.59875	-3.12265	2.66068
С	-1.75743	0.47035	-0.8959
0	-1.5785	1.32766	-1.76518
С	1.47534	0.82152	0.05622
С	2.09167	0.88122	-1.20057
С	1.50598	1.9614	0.86974
С	2.731	2.04578	-1.62585
Н	2.0605	0.01973	-1.85989

С	2.14056	3.1298	0.446
Н	1.02291	1.93175	1.84242
С	2.75882	3.17472	-0.80448
Н	3.20106	2.07314	-2.60454
Н	2.1472	4.00415	1.09035
Н	3.25086	4.08277	-1.13975
Н	0.09952	-0.12426	1.35194
Ν	-2.517	0.63911	0.20778
С	-3.15836	1.94356	0.41609
Н	-3.36748	2.37606	-0.56393
Н	-4.11229	1.76579	0.91942
С	-2.85787	-0.45118	1.13067
Н	-2.00409	-1.12404	1.22084
Н	-3.01638	-0.00191	2.11459
С	-4.09296	-1.22499	0.67591
Η	-4.34017	-2.00582	1.40235
Η	-4.95947	-0.5639	0.57497
Η	-3.90768	-1.69962	-0.2928
С	-2.27515	2.88119	1.23565
Н	-2.78493	3.83671	1.39697
Н	-2.0435	2.4491	2.21484
Н	-1.33487	3.07532	0.7125

(E)**-3aa**

С	1.51258	-0.81396	0.61303
С	2.01287	-2.07326	-0.20717
С	1.01826	-2.15996	-1.38582
С	-0.29764	-1.62284	-0.84819
С	0.02206	-0.8191	0.35668
Н	1.32706	-1.49959	-2.20769
Н	0.90267	-3.16585	-1.79781
0	-1.40702	-1.79517	-1.33337
С	-0.89583	-0.1665	1.0723
F	-0.50347	0.55777	2.1458
С	3.46239	-1.96237	-0.67658
Н	3.75128	-2.86836	-1.22026
Н	3.60809	-1.10707	-1.34166
Н	4.14484	-1.85	0.17268
С	1.84869	-3.31353	0.6862
Н	2.51161	-3.25565	1.55593
Н	0.82119	-3.41338	1.05366
Н	2.09465	-4.22432	0.13011
С	-2.40143	-0.18809	0.95478

0	-3.01893	-0.92205	1.7316
С	2.16192	0.50593	0.22982
С	1.76252	1.23359	-0.90036
С	3.20784	1.01148	1.0113
С	2.39567	2.42914	-1.24098
Η	0.94701	0.87149	-1.51773
С	3.84327	2.20751	0.67469
Η	3.52088	0.46316	1.89555
С	3.4397	2.92107	-0.45487
Η	2.06988	2.97813	-2.11973
Η	4.64899	2.58366	1.29838
Η	3.92966	3.8539	-0.7172
Η	1.72157	-0.98331	1.67325
Ν	-2.97128	0.65872	0.07403
С	-4.43488	0.69184	-0.01286
Η	-4.83075	0.46385	0.97821
Η	-4.72464	1.71527	-0.26768
С	-2.2004	1.49245	-0.85886
Η	-1.36174	0.91554	-1.24807
Η	-2.85558	1.70154	-1.70769
С	-1.71581	2.79368	-0.22478
Η	-1.17231	3.39316	-0.96215
Η	-2.55878	3.38565	0.14592
Η	-1.04309	2.59554	0.61428
С	-4.97222	-0.2998	-1.04248
Η	-6.06373	-0.23243	-1.09797
Η	-4.56648	-0.09554	-2.0385
Η	-4.70186	-1.32224	-0.76501