Supporting Information

Photoreductive β-aminoalkylation with amino acids affords functionalized γ-aminoketones for nucleoside mimics

Sebastian O. Klein, Adina A. Baniahmad, and Manfred Jung*

Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg

*Email: manfred.jung@pharmazie.uni-freiburg.de

Contents

1.	General information	1-2
2.	Experimental procedures	2-20
3.	¹ H and ¹³ C spectra	20-53
4.	NOESY experiments of compound 3e and 3f	53-55
5.	HPLC spectra	53-56
6.	Negative control experiments	57-58

General information

All reactions were carried out in glassware under inert (nitrogen) atmosphere. All used chemicals and reagents were purchased from commercial sources and were used without further purification. Solvents were freshly purified by distillation/drying over molecular sieves following the instructions from the Purification Book. Particularly mentioned anhydrous/dry solvents were purchased from Acros organics. Reactions were monitored by thin-layer chromatography (TLC) performed with Merck alumina plates coated with silica gel 60 F254 and analyzed under UV light (254 nm and 365 nm) or revealed using KMnO4 as staining agent. The photochemical Giese-type reaction was done with a A160WE LED aquarium light purchased from Kessil. The composition of the mobile phase was adjusted to the compound properties. Flash column chromatography was performed on a Biotage® Isolera Prime/One purification system using 40-60 µm pre-packed silica gel columns from Biotage®, HP-spherical 50 µm pre-packed silica gel columns from Interchim (Jumbo Pack), Sfär Silica D 60 µm, Sfär KP amino D 50 µm or Sfär Silica HC D 20 µm pre-packed silica gel columns from Biotage®. NMR spectroscopy and mass spectrometry were used for product identification. NMR spectra were acquired on a BRUKER Avance 400 spectrometer (400 MHz and 100.6 MHz for ¹H and ¹³C respectively), at a temperature of 303 K unless specified using CDCl₃ or DMSO-d6 as solvent. Chemical shifts (δ) are reported in ppm, multiplicity abbreviations are as follows: bs = broad singlet, s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublet, dt = doublet of triplets, t = triplet, td = triplet of doublets, q = quartet, br q = broad quartet, h = heptet, and m = multiplet, coupling constant (J) are expressed in Hz. The ¹H assignment resulted from COSY experiments. The ¹³C assignment resulted from HSQC experiments. Mass spectra were recorded on an Advion expression CMS using an ASAP® (Atmospheric Solids Analysis Probe; aka APCI: Atmospheric Pressure Chemical Ionization) as ion source, on a Thermo Scientific Exactive mass spectrometer using electrospray ionization (ESI) as ion source or HR-MS were obtained on a THERMO SCIENTIFIC Advantage. HPLC analysis was performed to determine the purity of the final nucleosides on an Agilent Technologies 1260 Infinity II system using diode array detector (DAD) UV detection at either 210, 230, 248, 254, 260 & 280 nm. 2 methods were used:

Method A: XBridge® Shield RP18 5 μ m 4.6 x 150 mm column and eluent A was H₂O containing 0.05 % trifluoracetic acid (TFA) and eluent B was CH₃CN containing 0.05 % TFA. Linear gradient conditions were as follows: 0–1 min: 100:0 (A/B); 1–9 min: 60:40 (A/B); 9–11 min: 5:95; (A/B); 11–13 min: 5:95 (A/B); 13–14 min: 100:0 (A/B); 14–16 min: 100:0 (A/B) with a flowrate of 0.95 mL.min⁻¹.

Method B: Phenomenex Kinetex® 5μm XB-C18 100 Å 250 x 4.6 mm column and eluent A was H₂O containing 0.05 % trifluoracetic acid (TFA) and eluent B was CH₃CN containing 0.05 % TFA. Linear gradient conditions were as follows: 0–1 min: 100:0 (A/B); 1–9 min: 60:40 (A/B); 9–11 min: 5:95; (A/B); 11–13 min: 5:95 (A/B); 13–14 min: 100:0 (A/B); 14–16 min: 100:0 (A/B) with a flowrate of 0.95 mL.min⁻¹.

HPLC purification method:

Method C: XBridge® Prep Shield RP18 5 μ m 19 x 150 mm column and eluent A was H₂O containing 0.05 % trifluoracetic acid (TFA) and eluent B was CH₃CN containing 0.05 % TFA. Linear gradient conditions were as follows: 0–1 min: 100:0 (A/B); 1–9 min: 100:0 \rightarrow 60:40 (A/B); 9–11 min: 60:40 \rightarrow 5:95; (A/B); 11–13 min: 5:95 (A/B); 13–14 min: 5:95 \rightarrow 100:0 (A/B); 14–20 min: 100:0 (A/B) with a flowrate of 17.10 mL.min⁻¹.

Figure 1 Emission spectrum of the blue LED lamp. Emission maximum at 461 nm

Experimental procedures

Photoreductive β -aminoalkylation

A heat-dried vial was charged with (-)-(3aR,6aR)-3a,6a-Dihydro-2,2-dimethyl-4H-cyclopenta-1,3-dioxol-4one (0.62 mmol – 4.62 mmol, 1.00 eq.), α -amino acid (1.85 mmol – 13.87 mmol, 3.00 eq.), and anhydrous CsF (1.85 mmol – 13.87 mmol, 3.00 eq) under nitrogen atmosphere. Then, dry DMSO (3.10 mL – 23.10 mL, 0.20 M) was added followed by addition of 3 mol% (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 – 0.14 mmol, 0.03 eq.). The resulted solution was degassed for 15 min. Then, the reaction vial was irradiated by blue LED light at 467 nm at ambient temperature for 17 h. The reaction progress was monitored by TLC (petrol ether/EtOAc). Then, the reaction mixture was diluted with water and extracted with EtOAc (3x 50 mL). The combined organic layers were washed with brine (3x 50 mL), dried over sodium sulfate, and concentrated under reduced pressure. The obtained residue was purified by flash chromatography to afford products **3a-3t**.

Figure 2 Set up for the decarboxylative redox addition.

tert-butyl ((((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)methyl)carbamate (3a):

Following the general procedure for photoreductive β-aminoalkylation, compound **3a** was obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.75 g, 4.62 mmol), Boc-Gly-OH (2.45 g, 13.87 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.16 g, 0.14 mmol), and CsF (2.13 g, 13.87 mmol) in dry degassed DMSO (0.20 M, 23.10 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-50%) the title compound as yellowish solid (1225 mg, 93%). R_f = 0.42 (petrol ether/EtOAc; 50%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 4.67 (d, *J* = 5.3 Hz, 1H, H2'), 4.70 – 4.60 (m, 1H, -N<u>H</u>CH₂-), 4.25 – 4.21 (m, 1H, H2'), 3.33 – 3.10 (m, 2H, -NHC<u>H₂-), 2.81 – 2.69 (m, 1H, CH₂, H4'), 2.60 – 2.49</u> (m, 1H, H3'), 2.16 – 2.05 (m, 1H, CH₂, H4'), 1.45 – 1.40 (m, 12H, -NHCO₂C(C<u>H</u>₃)₃, C<u>H₃</u>, acetonide), 1.34 (s, 3H, C<u>H₃</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) δ 213.0 (1C, <u>C</u>O), 156.0 (1C, -O<u>C</u>ONH-), 111.9 (1C, -O<u>2C</u>(CH₃)₂), 80.2 (C1), 80.0 (1C, -O<u>C</u>(CH₃)₃), 78.2 (C2), 43.0 (C3), 38.3 (1C, -HN<u>C</u>H₂-), 37.8 (C4), 28.2 (3C, -NHCO₂C(<u>C</u>H3)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.7 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 285.16; found: 308.1470 [M+Na]⁺. *tert*-butyl (2-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)propan-2-yl)carbamate (3b):

Following the general procedure for photoreductive β-aminoalkylation, compound **3b** was obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.31 g, 1.91 mmol), Boc-AiB-OH (1.18 g, 5.73 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.06 g, 0.06 mmol), and CsF (0.88 g, 5.73 mmol) in dry degassed DMSO (0.20 M, 9.60 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-30%) the title compound as yellowish resin (480 mg, 80%). R_f = 0.71 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 4.83 (d, *J* = 5.5 Hz, 1H, H1'), 4.46 (s, 1H, -N<u>H</u>C(CH₃)₂-), 4.29 – 4.26 (m, 1H, H2'), 2.80 (ddd, *J* = 9.9, 5.0, 1.4 Hz, 1H, H3'), 2.72 – 2.63 (m, 1H, H4'), 2.38 – 2.30 (m, 1H, H4'), 1.43 (s, 3H, C<u>H₃</u>, acetonide), 1.41 (s, 9H, -NHCO₂C(C<u>H₃</u>)₃), 1.35 (s, 3H, C<u>H₃</u>, acetonide), 1.32 (s, 3H, -NHC(C<u>H₃</u>)₂-), 1.29 (s, 3H, -NHC(C<u>H₃</u>)₂-). ¹³C-NMR (101 MHz, CDCl₃) δ 213.4 (1C, <u>C</u>O), 154.5 (1C, -NH<u>C</u>O₂-), 112.0 (1C, -O₂<u>C</u>(CH₃)₂), 81.1 (1C, -NHCO₂<u>C</u>(CH₃)₃), 79.1 (1C, C1), 79.0 (1C, C2), 53.5 (1C, -NH<u>C</u>(CH₃)₂-), 47.5 (1C, C3), 37.1 (1C, C4), 28.5 (3C, NHCO₂C(<u>C</u>H₃)₃), 27.0 (1C, <u>C</u>H₃, acetonide), 26.4 (1C, -NHC(<u>C</u>H₃)₂-), 25.4 (1C, -NHC(<u>C</u>H₃)₂-), 25.0 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 313.19; found: 336.1780 [M+Na]⁺.

tert-butyl ((*S*)-1-((3*aR*,4*R*,6*aR*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)ethyl)carbamate (3c, structure assumed) & *tert*-butyl ((*R*)-1-((3*aR*,4*R*,6*aR*)-2,2-dimethyl-6oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)ethyl)carbamate (3d, structure assumed):

Following the general procedure for photoreductive β -aminoalkylation, compound **3c** and **3d** were obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.10 g, 0.62 mmol), Boc-Ala-OH (0.35 g, 1.85 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 g, 0.02 mmol), and CsF (0.28 g, 1.85 mmol) in dry degassed DMSO (0.20 M, 3.10 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-40%) the title compounds (164 mg, 94%, d.r. 1:1.2). **3c** as colorless solid (73 mg) and **3d** as orange resin (91 mg). R_f = 0.53 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 4.82 (d, *J* = 4.9 Hz, 1H, H1'), 4.19 (d, *J* = 8.6 Hz, 1H, -N<u>H</u>CH-), 4.17 – 4.08 (m, 1H, H2'), 4.05 – 3.95 (m, 1H, -NHC<u>H</u>-), 2.68 (dd, *J* = 18.6, 9.2 Hz, 1H, CH₂, H4'), 2.42 (dt, *J* = 9.2, 2.9 Hz, 1H, H3'), 2.21 – 2.10 (m, 1H, CH₂, H4'), 1.42 (s, 12H, -NHCO₂C(C<u>H</u>₃)₃, C<u>H</u>₃, acetonide), 1.33 (s, 3H, C<u>H</u>₃, acetonide), 1.17 (d, *J* = 6.9 Hz, 3H, -CHC<u>H</u>₃). ¹³C-NMR (101 MHz, CDCl₃) δ 213.3 (1C, <u>C</u>O), 155.5 (1C, O<u>C</u>ONH-), 111.6 (1C, -O<u>2</u><u>C</u>(CH₃)₂), 81.3 (1C, C1), 80.3 (1C, -O<u>C</u>(CH₃)₃), 78.3 (1C, C2), 48.1 (1C, -HN<u>C</u>HCH₃-), 44.4 (1C, C3), 35.5 (1C, C4), 28.4 (3C, -NHCO₂C(<u>C</u>H₃)₃), 26.9 (1C, <u>C</u>H₃, acetonide), 24.8 (1C, <u>C</u>H₃, acetonide), 20.2 (1C, <u>C</u>H₃CH-, Me). HRMS calc.: 299.17; found: 322.1630 [M+Na]⁺.

R_f = 0.35 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-d) δ 4.65 (d, J = 5.8 Hz, 1H, H1'), 4.43 – 4.35 (m, 1H, -N<u>H</u>CH-), 4.33 (d, J = 5.9 Hz, 1H, H2'), 3.76 – 3.61 (m, 1H, -NHC<u>H</u>-), 2.71 (dd, J = 18.4, 9.0 Hz, 1H, H4'), 2.36 – 2.28 (m, 1H, H3'), 2.28 – 2.19 (m, 1H, CH₂, H4'), 1.45 – 1.41 (m, 12H, 12H, -NHCO₂C(C<u>H</u>₃)₃, C<u>H₃</u>, acetonide), 1.33 (s, 3H, C<u>H₃</u>, acetonide), 1.19 (d, J = 6.8 Hz, 3H, -CHC<u>H₃</u>). ¹³C-NMR (101 MHz, CDCl₃) δ 212.5 (1C, <u>C</u>O), 155.7 (1C, O<u>C</u>ONH-), 112.2 (1C, -O₂<u>C</u>(CH₃)₂), 78.9 (1C, C1), 78.7 (1C, C2), 48.5 (1C, -HN<u>C</u>HCH₃-), 44.8 (1C, C3), 38.8 (1C, C4), 28.5 (3C, -NHCO₂C(<u>C</u>H3)₃), 27.0 (1C, <u>C</u>H₃, acetonide), 24.9 (1C, <u>C</u>H₃, acetonide), 19.8 (1C, <u>C</u>H₃CH-, Me). HRMS calc.: 299.17; found: 322.1630 [M+Na]⁺.

tert-butyl ((*S*)-1-((3*aR*,4*R*,6*aR*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)-2methylpropyl)carbamate (3e, structure assumed) & *tert*-butyl ((*R*)-1-((3*aR*,4*R*,6*aR*)-2,2-dimethyl-6oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)-2-methylpropyl)carbamate (3f, structure assumed):

Following the general procedure for photoreductive β -aminoalkylation, compound **3e** and **3f** were obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.25 g, 1.54 mmol), Boc-Val-OH (1.01 g, 4.62 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.05 g, 0.05 mmol), and CsF (0.71 g, 4.62 mmol) in dry degassed DMSO (0.20 M, 7.70 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-40%) the title compounds as yellowish resins (376 mg, 75%, d.r. 1.3:1). **3e** (211 mg) and **3f** (165 mg). R_f = 0.67 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 4.80 (d, *J* = 5.5 Hz, 1H, H1'), 4.15 – 4.05 (m, 1H, H2'), 3.58 (td, *J* = 9.3, 2.7 Hz, 1H, -NHC<u>H</u>-), 2.71 – 2.61 (m, 2H, H3, H4'), 2.13 – 2.04 (m, 1H, H4'), 1.65 – 1.55 (m, 1H, -C<u>H</u>(CH₃)₂), 1.43 – 1.40 (m, 12H, -NHCO₂C(C<u>H</u>₃)₃), C<u>H</u>₃, acetonide), 1.33 (s, 3H, C<u>H</u>₃, acetonide), 0.96 (dd, *J* = 9.2, 6.7 Hz, 6H, -CH(C<u>H</u>₃)₂). ¹³C-NMR (101 MHz, CDCl₃) δ 213.4 (1C, <u>C</u>O), 156.2, (1C, O<u>C</u>ONH-), 111.5 (1C, -O<u>2</u><u>C</u>(CH₃)₂), 82.2 (1C, C1), 80.2 (1C, -O<u>C</u>(CH₃)₃), 78.3 (1C, C2), 58.5 (1C, -HN<u>C</u>HCH(CH₃)₂-), 40.5 (1C, C3), 35.3 (1C, C4), 31.5 (1C, -<u>C</u>H(CH₃)₂), 28.4 (3C, -NHCO₂C(<u>C</u>H₃)₃), 26.9 (1C, <u>C</u>H₃, acetonide), 24.8 (1C, <u>C</u>H₃, acetonide), 20.1 (1C, CH₃, -CH(<u>C</u>H₃)₂), 19.1 (1C, CH₃, -CH(<u>C</u>H₃)₂). HRMS calc.: 327.20; found: 350.1943 [M+Na]⁺.

 $R_f = 0.68$ (petrol ether/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.61 (d, J = 7.9 Hz, 1H, H1'), 4.35 (d, J = 6.1 Hz, 1H, H2'), 3.43 – 3.35 (m, 1H, -NHC<u>H</u>-), 2.68 (dd, J = 18.2, 9.0 Hz, 1H, H4'), 2.51 – 2.39 (m, 1H, H3'), 2.29

 $-2.20 \text{ (m, 1H, H4'), 1.81 (h, J = 6.7 Hz, 1H, -C\underline{H}(CH_3)_2), 1.46 - 1.41 \text{ (m, 12H, -NHCO}_2C(C\underline{H}_3)_3, C\underline{H}_3, \text{ acetonide}), 1.32 \text{ (s, 3H, } C\underline{H}_3, \text{ acetonide}), 1.00 \text{ (d, } J = 6.7 Hz, 3H, -CH(C\underline{H}_3)_2), 0.88 \text{ (d, } J = 6.8 Hz, 3H, -CH(C\underline{H}_3)_2).^{13}C NMR (101 MHz, CDCl_3) \delta 212.3 \text{ (1C, } \underline{C}O\text{)}, 156.6 \text{ (1C, } O\underline{C}ONH-\text{)}, 112.2 \text{ (1C, } -O_2\underline{C}(CH_3)_2), 80.0 \text{ (1C, } -O\underline{C}(CH_3)_3), 78.9, (1C, C1), 78.8 \text{ (1C, } C2), 58.0 \text{ (1C, } -HN\underline{C}HCH(CH_3)_2-\text{)}, 41.3 \text{ (1C, } C3), 39.3 \text{ (1C, } C4), 30.0 \text{ (1C, } -\underline{C}H(CH_3)_2), 28.4 (3C, -NHCO_2C(\underline{C}H_3)_3), 26.9 \text{ (1C, } \underline{C}H_3, \text{ acetonide}), 24.9 \text{ (}\underline{C}H_3, \text{ acetonide}), 20.3 \text{ (1C, } CH_3, -CH(\underline{C}H_3)_2), 17.0 \text{ (1C, } CH_3, -CH(\underline{C}H_3)_2). HRMS calc.: 327.20; found: 350.1943 [M+Na]^+.$

tert-butyl (*S*)-3-((*tert*-butoxycarbonyl)amino)-3-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)propanoate (3g, structure assumed) & *tert*-butyl (*R*)-3-((*tert*-butoxycarbonyl)amino)-3-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)propanoate (3h, structure assumed):

Following the general procedure for photoreductive β-aminoalkylation, compound **3g** and **3h** were obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.26 g, 1.59 mmol), Boc-Asp(¹Bu)-OH (1.45 g, 4.77 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.06 g, 0.05 mmol), and CsF (0.73 g, 4.77 mmol) in dry degassed DMSO (0.20 M, 8.00 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-35%) the title compounds as yellowish solids (610 mg, 96%, d.r. 1.1:1). **3g** (321 mg) and **3h** (289 mg). R_f = 0.51 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) *δ* 4.81 – 4.74 (m, 1H, H1⁺), 4.27 – 4.18 (m, 1H, -NHC<u>H</u>CH₂-), 4.17 (d, *J* = 5.7 Hz, 1H, H2⁺), 2.67 (dd, *J* = 18.5, 9.1 Hz, 1H, H4⁺), 2.54 – 2.34 (m, 3H, H3⁺, -C<u>H₂CO₂-), 2.24 – 2.17 (m, 1H, H4⁺), 1.46 – 1.42 (m, 12H, -NHCO₂C(C<u>H₃</u>)₃), C<u>H₃</u>, acetonide), 1.41 (s, 9H, -CO₂C(C<u>H₃</u>)₃), 1.33 (s, 3H, C<u>H₃</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) *δ* 212.2 (1C, <u>C</u>O), 169.8 (1C, -CH₂<u>CO</u>2-), 155.3 (1C, -NH<u>C</u>O₂-), 111.9 (1C, -O₂<u>C</u>(CH₃)₂), 99.9 (1C, -CH₂CO₂<u>C</u>(CH₃)₃), 81.6 (1C, -NHCO₂<u>C</u>(CH₃)₃), 81.1 (1C, C1), 78.2 (1C, C2), 49.7 (1C, NH<u>C</u>HCH₂-), 43.3, (1C, C3) 39.8 (1C, -NHCH<u>C</u>H₂-), 36.3 (1C, C4), 28.2 (3C, -NHCO₂C(<u>C</u>H₃)₃), 27.9 (3C, -CO₂C(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 399.23; found: 422.2149 [M+Na]⁺.</u>

R_f = 0.45 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 5.17 (d, J = 9.3 Hz, 1H, -N<u>H</u>CHCH₂-), 4.66 (dd, J = 5.9, 1.5 Hz, 1H, H1'), 4.36 (d, J = 5.7 Hz, 1H, H2'), 3.92 – 3.85 (m, 1H, -NHC<u>H</u>CH₂-), 2.77 – 2.66 (m, 1H, H4'), 2.60 – 2.38 (m, 2H, -C<u>H₂CO₂-), 2.27 – 2.19 (m, 1H, H4'), 1.45 (s, 9H, -NHCO₂C(C<u>H</u>₃)₃), 1.43 (s, 12H, -CO₂C(C<u>H</u>₃)₃, C<u>H₃</u>, acetonide), 1.32 (s, 3H, C<u>H₃</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) δ 211.8 (1C, <u>C</u>O), 170.2 (1C, -CH₂<u>C</u>O₂-), 155.6 (1C, -NH<u>C</u>O₂-), 112.2 (1C, -O₂<u>C</u>(CH₃)₂), 99.9 (1C, -CH₂CO₂<u>C</u>(CH₃)₃), 81.7 (1C, -NHCO₂<u>C</u>(CH₃)₃), 78.6 (1C, C1), 78.4 (1C, C2), 49.6 (1C, NH<u>C</u>HCH₂-), 42.9 (1C, C3), 38.9 (1C, C4), 38.8 (1C, -</u>

NHCH<u>C</u>H₂-), 28.2 (3C, -NHCO₂C(<u>C</u>H3)₃), 27.9 (3C, -CO₂C(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.7 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 399.23; found: 422.2149 [M+Na]⁺.

tert-butyl (*S*)-4-((*tert*-butoxycarbonyl)amino)-4-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*cyclopenta[*d*][1,3]dioxol-4-yl)butanoate (3i, structure assumed) & *tert*-butyl (*R*)-4-((*tert*butoxycarbonyl)amino)-4-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)butanoate (3j, structure assumed):

Following the general procedure for photoreductive β-aminoalkylation, compounds **3i** and **3j** were obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.11 g, 0.65 mmol), Boc-Glu('Bu)-OH (0.62 g, 1.94 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 g, 0.02 mmol), and CsF (0.30 g, 1.94 mmol) in dry degassed DMSO (0.20 M, 3.20 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-35%) the title compounds as yellowish resins (245 mg, 92%, d.r. 1.2:1). **3i** (131 mg) and **3j** (110 mg). R_f = 0.58 (petrol ether/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.81 (d, J = 5.6 Hz, 1H, H1'), 4.37 (d, J = 9.0 Hz, 1H, -N<u>H</u>CHCH₂-), 4.13 – 4.08 (m, 1H, H2'), 3.91 – 3.81 (m, 1H, -NHC<u>H</u>CH₂-), 2.67 (dd, J = 18.9, 8.9 Hz, 1H, H4'), 2.49 – 2.42 (m, 1H, H3'), 2.35 – 2.25 (m, 2H, -NHCHC<u>H₂-), 2.21 – 2.12 (m, 1H, H4'), 1.81 – 1.63 (m, 2H, -NHCHCH₂C<u>H₂-), 1.44 (s, 9H, -CO₂C(C<u>H</u>₃)₃), 1.42 – 1.39 (m, 12H, -NHCO₂C(C<u>H</u>₃)₃), C<u>H</u>₃, acetonide), 1.32 (s, 3H, C<u>H</u>₃, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 213.0 (1C, <u>C</u>O), 172.5 (1C, -<u>CO₂C(CH₃)₃), 78.1 (1C, C2), 52.4 (1C, -NH<u>C</u>HCH₂-), 43.2 (1C, C3), 35.3 (1C, C4), 32.0 (1C, -NHCH<u>C</u>H₂CH₂-), 28.4 (1C, -NHCHCH₂<u>C</u>H₂-), 28.2 (3C, -CO₂C(C<u>H</u>₃)₃), 28.0 (3C, -NHCO₂C(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.6 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 413.23; found: 414.2339 [M+H]⁺.</u></u></u>

R_f = 0.33 (petrol ether/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.65 (dd, J = 5.8, 1.5 Hz, 1H, H1'), 4.55 – 4.45 (m, 1H, -NHC<u>H</u>CH₂-), 4.33 (d, J = 5.8 Hz, 1H, H2'), 3.65 – 3.53 (m, 1H, -NHC<u>H</u>CH₂-), 2.72 (dd, J = 18.5, 8.1 Hz, 1H, H4'), 2.40 – 2.24 (m, 4H, H3', H4', -NHCHC<u>H</u>₂-), 1.89 – 1.67 (m, 2H, -NHCHCH₂C<u>H</u>₂-), 1.44 (s, 9H, -CO₂C(C<u>H</u>₃)₃), 1.43 – 1.40 (m, 12H, -NHCO₂C(C<u>H</u>₃)₃, C<u>H</u>₃, acetonide), 1.32 (s, 3H, C<u>H</u>₃, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 212.3 (1C, <u>C</u>O), 172.9 (1C, -<u>C</u>O₂C(CH₃)₃), 156.1 (1C, -NH<u>C</u>O₂-), 112.2 (1C, -

O₂<u>C</u>(CH₃)₃), 81.1 (1C, -CO₂<u>C</u>(CH₃)₃), 80.1 (1C, -NHCO₂<u>C</u>(CH₃)₃), 78.8 (1C, C1), 78.7 (1C, C2), 52.9 (1C, -NH<u>C</u>HCH₂-), 44.0 (1C, C3), 39.1 (1C, C4), 32.1 (1C, -NHCH<u>C</u>H₂CH₂-), 28.5 (1C, -NHCHCH₂<u>C</u>H₂-), 28.4 (3C, -CO₂C(<u>C</u>H₃)₃), 28.2 (3C, -NHCO₂C(<u>C</u>H₃)₃), 26.9 (1C, <u>C</u>H₃, acetonide), 24.9 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 413.23; found: 414.2339 [M+H]⁺.

tert-butyl (1-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)-3-oxo-3-(tritylamino)propyl)carbamate (3k):

Following the general procedure for photoreductive β -aminoalkylation, compound **3k** was obtained starting from (3aR,6aR)-2,2-dimethyl-3a,6a-dihydro-4H-cyclopenta[d][1,3]dioxol-4-one (0.10 g, 0.62 mmol), Boc-Asn(Trt)-OH (0.89 g, 1.85 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 g, 0.02 mmol), and CsF (0.28 g, 1.85 mmol) in dry degassed DMSO (0.20 M, 3.10 mL) under blue LED irradiation afforded after column chromatography on silica (cyclohexane/EtOAc; 0-60%) the title compound as yellowish solid (300 mg, 83%, d.r. 1.4:1). R_f = 0.72 (petrol ether/EtOAc; 80%). Diastereomeric mixture: ¹H-NMR (400 MHz, CDCl₃) δ 7.33 – 7.15 (m, 30H, trityl), 5.65 (dd, J = 18.1, 8.7 Hz, 2H, -CONHC-), 4.66 (d, J = 4.7 Hz, 1H, H1), 4.60 (dd, J = 6.7, 2.6 Hz, 1H, H1), 4.34 – 4.25 (m, 2H, H2), 4.00 – 3.91 (m, 1H, -NHCH-), 3.77 – 3.66 (m, 1H, -NHCH-), 2.73 – 2.41 (m, 8H, H3', H4', -NHCHCH2-), 2.41 – 2.29 (m, 1H, H4'), 2.12 (ddd, J = 18.1, 5.4, 1.8 Hz, 1H, H4'), 1.40 (s, 3H, CH₃, acetonide), 1.39 (s, 9H, -NHCO2C(CH3)3), 1.37 (s, 9H, -NHCO2C(CH3)3), 1.32 - 1.30 (m, 6H, CH3, acetonide), 1.30 (s, 3H, CH3, acetonide). ¹³C NMR (101 MHz, CDCl₃) & 211.9 (1C, <u>C</u>O), 211.4 (1C, <u>C</u>O), 169.7 (2C, -CH₂<u>C</u>ONH-), 155.8 (1C, -NHCO₂-), 155.7 (1C, -NHCO₂-), 144.5 (2C, -CH₂CONHC(C)₃-), 144.4 (1C, -CH₂CONHC(C)₃-), 128.8 (*m*-C_{Ar}), 128.7 (*m*-<u>*C*Ar</u>), 128.2 (*m*-<u>*C*Ar</sub>), 128.2 (*m*-<u>*C*Ar</u>), 127.4 (3C, *p*-<u>*C*Ar</u>), 113.1 (1C, -O₂<u>*C*</u>(CH₃)₃), 112.6 (1C, -O₂<u>*C*</u>(CH₃)₃),</u> 80.8 (1C, C1), 80.0 (2C, NHCO2C(CH3)3), 79.3 (1C, C1), 78.9 (1C, C2), 78.6 (1C, C2), 71.0 (2C, -CH2CONHC(C)3-), 51.1 (1C, -NHCHCH2-), 50.8 (1C, -NHCHCH2-), 44.5 (1C, C3), 43.0 (1C, C3), 40.0 (2C, -NHCHCH2-), 39.6 (1C, C4), 38.9 (1C, C4), 28.4 (6C, -CO₂C(CH₃)₃), 27.0 (1C, CH₃, acetonide), 26.8 (1C, CH₃, acetonide), 25.0 (1C, CH₃, acetonide), 24.9 (1C, CH₃, acetonide). HRMS calc.: 584.29; found: 607.2775 [M+Na]⁺.

benzyl *tert*-butyl ((*S*)-1-((3aR,4R,6aR)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)pentane-1,5-diyl)dicarbamate (3l, structure assumed) & benzyl *tert*-butyl ((*R*)-1-((3aR,4R,6aR)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)pentane-1,5-diyl)dicarbamate (3m, structure assumed):

Following the general procedure for photoreductive β -aminoalkylation, compounds **31** and **3m** were obtained starting from (3aR, 6aR)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.25 g, 1.54 mmol), Boc-Lys(Z)-OH (1.78 g, 4.62 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.05 g, 0.05 mmol), and CsF (0.71 g, 4.62 mmol) in dry degassed DMSO (0.20 M, 7.70 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-50%) the title compounds as colorless oils (644 mg, 85%, d.r. 1.2:1). **3I** (337 mg) and **3m** (277 mg). $R_f = 0.45$ (petrol ether/EtOAc; 60%). ¹H-NMR (400 MHz, Chloroform-d) δ 7.39 - 7.31 (5H, Ar_(CBz)), 5.09 (d, J = 4.4 Hz, 2H, -OC<u>H2</u>Ph), 4.80 (d, J = 5.6 Hz, 2H, -CH₂N<u>H</u>CO₂-, H1'), 4.27 (d, J = 8.9 Hz, 1H, -CO₂N<u>H</u>CH-), 4.16 - 4.08 (m, 1H, H2'), 3.89 - 3.80 (m, 1H, -NHC<u>H</u>CH₂-), 3.26 - 3.10 (m, 2H, -NHCH2CH2-), 2.65 (dd, J = 18.6, 9.3 Hz, 1H, H4'), 2.48 – 2.41 (m, 1H, H3'), 2.16 – 2.07 (m, 1H, H4'), 1.57 - 1.36 (m, 18H, -CH(C<u>H2)3</u>CH2NH-, -NHCO2C(C<u>H3</u>)3, C<u>H3</u>, acetonide), 1.33 (s, 3H, C<u>H3</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) & 213.4 (1C, <u>CO</u>), 156.7 (1C, -NH<u>CO</u>₂CH₂Ph), 156.0 (1C, -O<u>C</u>ONH-), 136.6 (1C, -OCH2C(CH)2-), 128.7 (2C, m-Ar), 128.6 (1C, p-Ar), 128.3 (2C, o-Ar), 111.6 (1C, -O2C(CH3)2), 81.6 (1C, C1), 80.3 (1C, OC(CH3)3), 78.3 (1C, C2), 66.9 (1C, -CO2CH2Ph), 52.4 (1C, -HNCH(CH2)4-), 43.1 (1C, C3), 40.5 (1C, -NHCH2CH2-), 35.4 (1C, C4), 33.6 (1C, -NHCHCH2CH2-), 29.7 (1C, -NHCH2CH2-), 28.4 (3C, -O(CH3)3), 26.9 (1C, <u>CH</u>₃, acetonide), 24.8 (1C, <u>CH</u>₃, acetonide), 23.1 (1C, -NHCH₂CH₂<u>C</u>H₂-). HRMS calc.: 490.27; found: 513.2576 [M+Na]+.

 $R_{f} = 0.33 \text{ (petrol ether/EtOAc; 60\%). }^{1}\text{H-NMR} (400 \text{ MHz, Chloroform-}d) \delta 7.39 - 7.28 (5H, Ar_{(CBz)}), 5.09 (d, J = 5.5 \text{ Hz}, 2H, -OC\underline{H_2}\text{Ph}), 4.85 - 4.76 (m, 1H, -CH_2N\underline{H}\text{CO}_2-), 4.63 (d, J = 6.0 \text{ Hz}, 1H, H1'), 4.43 (d, J = 6.0 \text{ Hz}, 1H, -CO_2N\underline{H}\text{CH}-), 4.33 (d, J = 5.6 \text{ Hz}, 1H, H2'), 3.63 - 3.51 (m, 1H, -NHC\underline{H}\text{CH}_2-), 3.26 - 3.10 (m, 2H, -NHC\underline{H_2}\text{CH}_2-), 2.70 (dd, J = 18.5, 8.8 \text{ Hz}, 1H, H4'), 2.40 - 2.30 (m, 1H, H3'), 2.31 - 2.21 (m, 1H, H4'), 1.56 - 1.36 (m, 18H, CH(C\underline{H_2})_3\text{CH}_2\text{NH}-, -NHCO_2C(C\underline{H_3})_3, C\underline{H_3}, \text{acetonide}), 1.32 (s, 3H, C\underline{H_3}, \text{acetonide}). \\ ^{13}\text{C-NMR} (101 \text{ MHz}, \text{CDC}_3)$

δ 212.3 (1C, <u>C</u>O), 156.5 (1C, -NH<u>C</u>O₂CH₂Ph), 156.1 (1C, -O<u>C</u>ONH-), 136.4 (1C, -OCH₂<u>C</u>(CH)₂-), 128.5 (3C, *m,p*-Ar), 128.1 (2C, *o*-Ar), 112.0 (1C, -O<u>2</u>(CH₃)₂), 80.0 (1C, O<u>C</u>(CH₃)₃), 78.6 (1C, C1), 78.5 (1C, C2), 66.7 (1C, -CO₂<u>C</u>H₂Ph), 52.5 (1C, -HN<u>C</u>H(CH₂)₄-), 43.5 (1C, C3), 40.3 (1C, -NHC<u>H</u>₂CH₂-), 38.9 (1C, C4), 32.8 (1C, -NHCH<u>C</u>H₂CH₂-), 29.6 (1C, -NHCH₂<u>C</u>H₂-), 28.3 (3C, -O(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.7 (1C, <u>C</u>H₃, acetonide), 22.7 (1C, -NHCH₂CH₂-). HRMS calc.: 490.27; found: 513.2576 [M+Na]⁺.

tert-butyl 2-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)pyrrolidine-1-carboxylate (3n):

Following the general procedure for photoreductive β-aminoalkylation, compound **3n** was obtained starting from (3aR,6aR)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.25 g, 1.54 mmol), Boc-Pro-OH (1.01 g, 4.62 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.05 g, 0.05 mmol), and CsF (0.71 g, 4.62 mmol) in dry degassed DMSO (0.20 M, 7.70 mL) under blue LED irradiation afforded after column chromatography on silica (cyclohexane/EtOAc; 0-30%) the title compound as colorless resin (425 mg, 85%, d.r. 1.3:1). $R_f = 0.51$ (cyclohexane/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.95 – 4.80 (m, 1H, H1'), 4.70 (d, J = 5.2Hz, 1H, H1'), 4.47 – 4.38 (m, 1H, H2'), 4.34 – 4.23 (m, 1H, H2'), 4.08 – 3.97 (m, 1H, -CH₂CH₂CH₂CH-), 3.74 – 3.66 (m, 1H, -CH₂CH₂CH-), 3.57 – 3.39 (m, 2H, -NC<u>H₂</u>CH₂CH₂-), 3.38 – 3.28 (m, 1H, -NC<u>H₂</u>CH₂CH₂-), 3.24 - 3.09 (m, 1H, -NCH2CH2CH2-), 2.75 - 2.67 (m, 1H, H4'), 2.67 - 2.59 (m, 1H, H4'), 2.54 - 2.43 (m, 2H, H3'), 2.30 - 2.18 (m, 1H, H4'), 2.15 - 2.05 (m, 1H, H4'), 1.97 - 1.78 (m, 5H, -NCH₂C<u>H₂-), 1.72 - 1.56 (m, 2H, -</u> NCH₂C<u>H</u>₂C<u>H</u>₂-), 1.46 (s, 9H, -NCO₂C(C<u>H</u>₃)₃), 1.45 - 1.41 (m, 12H, -NHCO₂C(C<u>H</u>₃)₃), C<u>H</u>₃, acetonide), 1.41 (s, 3H, CH₃, acetonide), 1.35 - 1.33 (m, 3H, CH₃, acetonide), 1.32 (s, 3H, CH₃, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 213.0 (1C, <u>C</u>O), 156.0 (1C, -N<u>C</u>O₂-), 111.8 (1C, -O₂<u>C</u>(CH₃)₃), 82.1 (1C, C1), 79.6 (1C, C1), 78.8 (2C, C2), 59.0 (2C, -CH₂CH₂CHCH-), 48.0 (1C, -N<u>C</u>H₂CH₂CH₂-), 47.2 (1C, -N<u>C</u>H₂CH₂CH₂-), 44.4 (1C, C3), 41.8 (1C, C3), 38.6 (1C, C4), 36.6 (1C, C4), 31.3 (1C, -NCH₂CH₂CH₂-), 29.8 (3C, 3C, -NHCO₂C(<u>C</u>H₃)₃), 29.5 (1C, -NCH₂CH₂CH₂-), 28.5 (3C, 3C, -NHCO₂C(<u>C</u>H₃)₃), 27.0 (1C, <u>C</u>H₃, acetonide), 25.0 (1C, <u>C</u>H₃, acetonide), 24.3 (1C, -NCH2CH2CH2-), 23.6 (1C, -NCH2CH2CH2-). HRMS calc.: 325.19; found: 348.1941 [M+Na]+.

tert-butyl 2-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)piperidine-1carboxylate (30):

Following the general procedure for photoreductive β -aminoalkylation, compound **30** was obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.25 g, 1.54 mmol), Boc-Pip-OH (1.07 g, 4.62 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.05 g, 0.05 mmol), and CsF (0.71 g, 4.62 mmol) in dry degassed DMSO (0.20 M, 7.70 mL) under blue LED irradiation afforded after column chromatography on silica (cyclohexane/EtOAc; 0-30%) the title compound as colorless resin (435 mg, 94%, d.r. 2.3:1). R_f = 0.54 (petrol

ether/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.53 – 4.47 (m, 2H, H1'), 4.43 – 4.30 (m, 2H, H2'), 4.10 – 3.91 (m, 2H, -CH₂CH₂CH₂CH), 2.98 – 2.67 (m, 2H, H3'), 2.64 – 2.46 (m, 2H, H4', -NCHC<u>H</u>₂-), 2.27 – 2.07 (m, 2H, H4'), 1.95 – 1.83 (m, 2H, -NC<u>H</u>₂C<u>H</u>₂-), 1.75 – 1.54 (m, 12H, -NC<u>H</u>₂C<u>H</u>₂CH₂-), 1.46 (s, -NHCO₂C(C<u>H</u>₃)₃), 1.45 (s, 3H, C<u>H₃</u>, acetonide), 1.43 (s, 3H, C<u>H₃</u>, acetonide), 1.41 (s, -NHCO₂C(C<u>H</u>₃)₃), 1.35 (s, 3H, C<u>H₃</u>, acetonide), 1.30 (s, 3H, C<u>H₃</u>, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 212.9 (1C, <u>C</u>O), 212.3 (1C, <u>C</u>O), 154.8 (1C, -N<u>C</u>O₂-), 112.7 (1C, -O₂<u>C</u>(CH₃)₃), 112.1 (1C, -O₂<u>C</u>(CH₃)₃), 80.5 (1C, C1), 80.1 (1C, C2), 79.0 (1C, C1), 78.6 (1C, C2), 51.9 (2C, -N<u>C</u>H-), 39.0 (2C, C4), 37.7 (2C, C3), 28.4 (3C, -CO₂C(<u>C</u>H₃)₃), 28.2 (-CO₂C(<u>C</u>H₃)₃), 27.0 (1C, <u>C</u>H₃, acetonide), 26.8 (1C, <u>C</u>H₃, acetonide), 26.3 (1C, -N<u>C</u>H₂CH₂-), 26.1 (1C, -N<u>C</u>H₂CH₂-), 25.1 (1C, <u>C</u>H₃, acetonide), 24.7 (2C, -NCH₂<u>C</u>H₂-), 18.9 (2C, -NCH₂CH₂<u>C</u>H₂-), 18.6 (2C, -NCH₂CH₂<u>C</u>H₂<u>C</u>H₂-). HRMS calc.: 339.20; found: 378.1890 [M+Na]⁺.

tert-butyl (1-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)-2-(1*H*-imidazol-4-yl)ethyl)carbamate (3p):

Following the general procedure for photoreductive β-aminoalkylation, compound **3p** was obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.10 g, 0.62 mmol), Boc-His-OH (0.50 g, 1.85 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 g, 0.02 mmol), and CsF (0.28 g, 1.85 mmol) in dry degassed DMSO (0.20 M, 3.10 mL) under blue LED irradiation afforded after column chromatography on silica (CH₂Cl₂, MeOH; 0-10%) the title compound as yellowish solid (165 mg, 73%, d.r. 1.3:1). R_f = 0.16 (CH₂Cl₂, MeOH; 10%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H, H2 imidazole), 7.73 (s, 1H, H2 imidazole), 6.88 (s, 1H, H5 imidazole), 6.86 (s, 1H, H5 imidazole), 4.80 (d, *J* = 5.6 Hz, 1H, H1'), 4.70 (d, *J* = 5.2 Hz, 1H, H1'), 4.38 (d, *J* = 5.3 Hz, 1H, H2'), 4.25 (d, *J* = 4.1 Hz, 1H, H2'), 4.05 – 3.86 (m, 2H, -NHC<u>H</u>-), 3.05 – 2.88 (m, 2H, -NHCHC<u>H</u>₂-), 2.76 – 2.63 (m, 2H, -NHCHC<u>H</u>₂-), 2.61 – 2.46 (m, 3H, H3', H4'), 2.10 – 1.96 (m, 3H, H4'), 1.50 (s, 3H, C<u>H</u>₃, acetonide), 1.47 (s, 3H, C<u>H</u>₃, acetonide), 1.42 (s, 9H, NHCO₂C(C(<u>H</u>₃)₃), 1.41 (s, 9H, NHCO₂C(C(<u>H</u>₃)₃), 1.36 (s, 6H, C<u>H</u>₃, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 214.7 (2C, CO), 155.4 (1C, -N<u>C</u>O₂-), 155.3 (1C, -N<u>C</u>O₂-), 135.4 (2C, -CH₂<u>C</u>-), 134.8 (2C, C2 imidazole), 112.2 (1C, C5 imidazole), 111.9 (1C, C5 imidazole), 81.4 (2C, C1'), 79.9 (1C, C2'), 79.8 (1C, C2'), 51.6 (2C, -NH<u>C</u>HCH₂-), 42.5 (2C, C3'), 38.5 (2C, C4'), 28.3 (2C, -NHCH<u>C</u>H₂-), 28.3 (3C, -CO₂C(<u>C</u>H₃)₃), 28.3 (3C, -CO₂C(<u>C</u>H₃)₃), 26.5 (1C, <u>C</u>H₃, acetonide), 26.3 (1C, <u>C</u>H₃, acetonide), 24.5 (1C, <u>C</u>H₃, acetonide), 24.4 (1C, <u>C</u>H₃, acetonide). APCI calc.: 365.2; found: 366.0 [M+H]⁺.

tert-butyl ((S)-1-((3aR,4R,6aR)-2,2-dimethyl-6-oxotetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-2phenylethyl)carbamate (3q, structure assumed) & tert-butyl ((R)-1-((3aR,4R,6aR)-2,2-dimethyl-6oxotetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-2-phenylethyl)carbamate (3r structure assumed):

Following the general procedure for photoreductive β-aminoalkylation, compound **3q** and **3r** was obtained starting from (3*aR*,6*aR*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.25 g, 1.54 mmol), Boc-Phe-OH (1.24 g, 4.62 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.05 g, 0.05 mmol), and CsF (0.71 g, 4.62 mmol) in dry degassed DMSO (0.20 M, 7.70 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-30%) the title compounds (547 mg, 95%, d.r. 1.1:1). **3q** as white solid (289 mg) and **3r** as yellow solid (257 mg). R_f = 0.29 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.26 (m, 2H, *m*-Ar), 7.28 – 7.19 (m, 1H, *p*-Ar), 7.19 – 7.13 (m, 2H, *o*-Ar), 4.81 (d, *J* = 5.0 Hz, 1H, H1'), 4.26 – 4.18 (m, 1H, -NHC<u>H</u>CH₂-), 4.18 – 4.08 (m, 2H, NH, H2'), 2.76 (t, *J* = 7.6 Hz, 2H, -PhC<u>H₂</u>CH-), 2.68 (dd, *J* = 18.5, 9.0 Hz, 1H, H4'), 2.50 – 2.44 (m, 1H, H3'), 2.24 – 2.10 (m, 1H, H4'), 1.40 (s, 3H, C<u>H₃</u>, acetonide), 1.35 (s, 9H, -NHCO₂C(C(<u>H₃)₃</u>), 1.32 (s, 3H, C<u>H₃</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) δ 213.1 (1C, <u>C</u>O), 155.5 (1C, O<u>C</u>ONH-), 129.0 (2C, *o*-Ar), 128.7 (2C, *m*-Ar), 126.9 (1C, *p*-Ar), 111.3 (1C, -O<u>2</u>(CH₃)₂), 81.7 (1C, C1), 80.2 (1C, -O<u>C</u>(CH₃)₃), 78.1 (1C, C2), 53.3 (1C, -HN<u>C</u>HCH₂Ph-), 41.2 (1C, C3), 40.2 (1C, -CH<u>C</u>H₂Ph-), 35.0 (1C, C4), 28.1 (3C, -O(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.6 (1C, <u>C</u>H₃, acetonide).). HRMS calc.: 375.20; found: 398.1948 [M+Na]⁺.

R_f = 0.24 (petrol ether/EtOAc; 30%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.18 (m, 2H, *m*-Ar), 7.23 – 7.13 (m, 1H, *p*-Ar), 7.14 – 7.06 (m, 1H, *o*-Ar), 4.62 (d, J = 5.9 Hz, 1H, H1'), 4.32 – 4.23 (m, 1H, H2'), 3.88 – 3.76 (m, 1H, -NHC<u>*H*</u>CH₂-), 2.89 (dd, J = 14.2, 5.5 Hz, 1H, -PhC<u>*H*</u>₂CH-), 2.74 – 2.63 (m, 2H, PhC<u>*H*</u>₂CH-, H4'), 2.37 – 2.20 (m, 2H, H3', H4'), 1.35 (s, 3H, C<u>*H*</u>₃, acetonide), 1.28 (s, 9H, -NHCO₂C(C<u>*H*</u>₃)₃), 1.27 (s, 3H, C<u>*H*</u>₃, acetonide). ¹³C-NMR (101 MHz, CDCl₃) δ 212.1, (1C, <u>C</u>O), 155.7 (1C, -O<u>C</u>ONH-), 136.6 (1C, -OCH₂<u>C</u>(CH)₂-), 129.2 (2C, *o*-Ar), 128.6 (2C, *m*-Ar), 126.8 (2C, *p*-Ar), 112.1 (1C, -O₂<u>C</u>(CH₃)₂), 80.0 (1C, -O<u>C</u>(CH₃)₃), 78.6 (1C, C1), 78.5 (1C, C2), 53.4 (1C, -HN<u>C</u>HCH₂Ph-), 42.2 (1C, C3), 39.3 (2C, -CH<u>C</u>H₂Ph-, C4), 28.2 (3C, -O(<u>C</u>H₃)₃), 26.7 (1C, <u>C</u>H₃, acetonide), 24.7 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 375.20; found: 398.1948 [M+Na]⁺.

tert-butyl ((*S*)-2-(4-(*tert*-butoxy)phenyl)-1-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*cyclopenta[*d*][1,3]dioxol-4-yl)ethyl)carbamate (3s, structure assumed) & *tert*-butyl ((*R*)-2-(4-(*tert*butoxy)phenyl)-1-((3a*R*,4*R*,6a*R*)-2,2-dimethyl-6-oxotetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)ethyl)carbamate (3t, structure assumed):

Following the general procedure for photoreductive β-aminoalkylation, compound **3s** and **3t** were obtained starting from (3a*R*,6a*R*)-2,2-dimethyl-3a,6a-dihydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-one (0.10 g, 0.62 mmol), Boc-Tyr('Bu)-OH (0.63 g, 1.85 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (0.02 g, 0.02 mmol), and CsF (0.28 g, 1.85 mmol) in dry degassed DMSO (0.20 M, 3.10 mL) under blue LED irradiation afforded after column chromatography on silica (petrol ether/EtOAc; 0-30%) the title compound as yellowish resin (240 mg, 87%, d.r. 1.2:1). **3s** (129 mg) and **3t** (111 mg). R_f = 0.70 (petrol ether/EtOAc; 30%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 – 7.02 (m, 2H, *o*-Ar), 6.95 – 6.90 (m, 2H, *m*-Ar), 4.82 (d, *J* = 5.3 Hz, 1H, H1'), 4.23 – 4.09 (m, 3H, -N<u>H</u>CHCH₂-, H2', - NHC<u>H</u>CH₂-), 2.73 – 2.68 (m, 2H, -NHCHC<u>H₂-), 2.67 – 2.63 (m, 1H, H4'), 2.52 – 2.46 (m, 1H, H3'), 2.22 – 2.13 (m, 1H, H4'), 1.40 (s, 3H, C<u>H₂</u>, acetonide), 1.35 (s, 9H, -OC(C<u>H₃</u>)₃), 1.33 – 1.32 (m, 12H, -NHCO₂C(C<u>H₃</u>)₃), 213.3 (1C, <u>C</u>O), 155.7 (1C, -NH<u>C</u>O₂-), 154.4 (1C, -O<u>C</u>(CH₃)₃), 31.7 (1C, -CH₂<u>C</u>-), 129.6 (2C, *o*-Ar), 124.5 (2C, *m*-Ar), 111.6 (1C, -O<u>2</u>(C(H₃)₂), 81.9 (1C, -O<u>C</u>(CH₃)₃), 80.3 (1C, -NHCO₂<u>C</u>(CH₃)₃), 78.6 (1C, C1), 78.3 (1C, C2), 53.5 (1C, -NH<u>C</u>HCH₂-), 41.7 (1C, C3), 39.8 (1C, -NHCH<u>C</u>H₂-), 35.2 (1C, C4), 29.0 (3C, NHCO₂C(C<u>H₃</u>)₃), 28.4 (3C, -OC(<u>C</u>H₃)₃), 26.9 (1C, <u>C</u>H₃, acetonide), 24.8 (1C, <u>C</u>H₃, acetonide).). HRMS calc.: 447.26; found: 448.2546 [M+H]⁺.</u>

 $\begin{aligned} R_{f} &= 0.58 \text{ (petrol ether/EtOAc; 30\%).} ^{1}\text{H NMR (400 MHz, CDCl_{3})} \delta 7.09 - 7.03 \text{ (m, 2H,$ *o*-Ar), 6.96 - 6.90 (m, 2H,*m*-Ar), 4.69 (d, <math>J &= 5.7 Hz, 1H, H1'), 4.37 - 4.30 (m, 2H, -N<u>H</u>CHCH₂-, H2'), 3.93 - 3.79 (m, 1H, -NHC<u>H</u>CH₂-), 2.92 (dd, J &= 14.3, 5.4 Hz, 1H, -NHCHC<u>H₂-), 2.81 - 2.66 (m, 2H, -NHCHCH₂-, H3'), 2.46 - 2.27 (m, 2H, H4'), 1.42 (s, 3H, C<u>H₃</u>, acetonide), 1.36 (s, 9H, -OC(C<u>H</u>₃)₃), 1.34 (s, 3H, C<u>H₃</u>, acetonide), 1.33 (s, 9H, -NHCO₂C(C<u>H</u>₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 212.3 (1C, <u>C</u>O), 155.9 (1C, -NH<u>C</u>O₂-), 154.4 (1C, -O<u>C</u>(CH₃)₃), 131.6 (1C, -CH₂<u>C</u>-), 129.8 (2C, *o*-Ar), 124.5 (2C, *m*-Ar), 124.4 (1C, -<u>C</u>OC(CH₃)₃), 112.3 (1C, -O<u>2</u>(CH₃)₃), 80.1 (1C, -O<u>C</u>(CH₃)₃), 78.8 (1C, C1), 78.7 (1C, C2), 78.6 (1C, -NHCO₂<u>C</u>(CH₃)₃), 53.6 (1C, -NH<u>C</u>HCH₂-), 42.5 (1C, C3), 39.4 (1C, C4), 38.8 (1C, -NHCH<u>C</u>H₂-), 29.0 (3C, NHCO₂C(<u>C</u>H₃)₃), 28.4 (3C, -OC(<u>C</u>H₃)₃)), 27.0 (1C, <u>C</u>H₃, acetonide), 24.9 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 447.26; found: 448.2546 [M+H]⁺.</u>

Ketone reduction

To an ice-bath cooled solution of compounds 3a, 3b, and 3n (1.24 – 1.80 mmol, 1.00 eq.) in dry MeOH (6.20 – 9.00 mL, 0.20 M), NaBH₄ (1.86 – 2.70 mmol, 1.50 eq.) was added portion wise over 5 min. After complete addition, the reaction was stirred for 1 h at 0 °C. TLC (cyclohexane/EtOAc, 40%) was used to monitor the reaction progress. Cold water was added once the starting material was fully consumed. The aqueous phase was extracted with DCM (4x 25 mL). The combined organic layers were dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified over silica gel chromatography to obtain the reduced products.

tert-butyl ((((3a*R*,4*R*,6*S*,6a*S*)-6-hydroxy-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)methyl)carbamate (4a):

Gradient (cyclohexane/EtOAc; 0-50%) afforded the target molecule as colorless solid (464 mg, 90%). $R_f = 0.32$ (petrol ether/EtOAc; 50%). ¹H-NMR (400 MHz, Chloroform-*d*) δ 4.63 – 4.55 (m, 1H, -N<u>H</u>CH₂-), 4.51 (t, J = 5.7 Hz, 1H, H2'), 4.40 (dd, J = 6.2, 1.7 Hz, 1H, H3'), 4.11 – 4.05 (m, 1H, H1'), 3.10 – 2.97 (m, 2H, -NHC<u>H</u>₂-), 2.42 (d, J = 7.3 Hz, 1H, -CHO<u>H</u>), 2.23 – 2.13 (m, 1H, H4'), 1.89 (dt, J = 13.3, 7.4 Hz, 1H, H5'), 1.69 (dt, J = 13.2, 5.2 Hz, 1H, H5'), 1.50 (s, 3H, C<u>H₃</u>, acetonide), 1.44 (s, 9H, -NHCO₂C(C<u>H</u>₃)₃), 1.34 (s, 3H, C<u>H₃</u>, acetonide). ¹³C-NMR (101 MHz, CDCl₃) δ 156.2 (1C, -NH<u>C</u>O₂-), 112.2 (1C, -O₂C(CH₃)₂), 82.9 (1C, C2), 79.7 (1C, -NHCO₂C(CH₃)₃), 79.5 (1C, C3), 71.1 (1C, C1), 43.0 (1C, -NHC<u>H</u>₂-), 42.4 (1C, C4), 35.4 (1C, C5), 28.5 (3C, -CO₂C(<u>C</u>H₃)₃), 26.3 (1C, <u>C</u>H₃, acetonide), 24.5 (1C, <u>C</u>H₃, acetonide). HRMS calc.: 287.17; found: 310.1846 [M+Na]⁺.

tert-butyl (2-((3a*R*,4*R*,6*S*,6a*S*)-6-hydroxy-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)propan-2-yl)carbamate (4b):

Gradient (cyclohexane/EtOAc; 0-40%) afforded the desired compound as colorless oil (500 mg, 84%). $R_f = 0.25$ (petrol ether/EtOAc; 40%). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.61 – 4.57 (m, 1H, -N<u>H</u>CH-), 4.56 (s, 1H, H3'), 4.47 (dd, J = 7.3, 5.0 Hz, 1H, H2'), 4.08 (br q, J = 4.2 Hz, 1H, H1'), 2.60 (s, 1H, H4'), 2.52 – 2.43 (m, 1H, -CHO<u>H</u>), 2.02 (ddd, J = 13.7, 7.2, 2.9 Hz, 1H, H5'), 1.71 – 1.56 (m, 1H, H5'), 1.53 (s, 3H, C<u>H3</u>, acetonide), 1.43 (s, 9H, -NHCO₂C(C<u>H3</u>)₃), 1.36 (s, 3H, C<u>H3</u>, acetonide), 1.34 (s, 3H, -NHC(C<u>H3</u>)₂-), 1.29 (s, 3H, -NHC(C<u>H3</u>)₂-). ¹³C NMR (101 MHz, CDCl3) δ 114.0 (1C, -O₂C(CH3)₂), 81.3 (1C, C3), 80.8 (1C, C2), 69.9 (1C, C1), 53.3 (1C, -NHC(CH3)₂-), 53.1 (1C, C4), 34.8 (1C, C5), 28.6 (3C, -CO₂C(CH3)₃), 26.6 (1C, <u>C</u>H3, acetonide), 26.0 (1C, -NHC(<u>C</u>H3)₂-), 25.0 (1C, <u>C</u>H3, acetonide), 24.8 (1C, -NHC(<u>C</u>H3)₂-). HRMS calc.: 315.20; found: 338.1937 [M+Na]⁺.

tert-butyl 2-((3a*R*,4*R*,6*S*,6a*S*)-6-hydroxy-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4yl)pyrrolidine-1-carboxylate (4c):

Gradient (cyclohexane/EtOAc; 0-40%) afforded the desired compound as colorless resin (diastereomeric mixture, 320 mg, 79%). Rf = 0.15 (petrol ether/EtOAc; 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.66 – 4.30 (m, 4H, H2', H3'), 4.21 – 4.03 (m, 2H, H1'), 3.86 – 3.59 (m, 2H, -NC<u>H</u>-), 3.58 – 3.28 (m, 3H, -NC<u>H</u>₂CH₂CH₂-), 3.25 (ddd, *J* = 11.7, 8.0, 3.7 Hz, 1H, -NC<u>H</u>₂CH₂CH₂-), 2.41 (s, 2H, -O<u>H</u>), 2.20 – 2.09 (m, 1H, H4'), 2.03 – 1.60 (m, 13H, H4', H5', -NCH₂C<u>H</u>₂C<u>H</u>₂-), 1.49 (s, 3H, C<u>H₃</u>, acetonide), 1.49 – 1.42 (m, 21H, -NCO₂C(C<u>H</u>₃)₃, C<u>H</u>₃, acetonide), 1.34 (s, 3H, C<u>H₃</u>, acetonide), 1.32 (s, 3H, C<u>H₃</u>, acetonide). ¹³C NMR (101 MHz, CDCl₃) δ 156.0 (1C, -NH<u>C</u>O₂-), 155.6 (1C, -NH<u>C</u>O₂-), 112.4 (1C, -O₂C(CH₃)₂), 111.0 (1C, -O₂C(CH₃)₂), 84.1 (1C, C2), 83.1 (1C, -NHCO₂C(CH₃)₃), 82.3 (1C, C3), 82.0 (1C, -NHCO₂C(CH₃)₃), 80.2 (1C, C2), 79.3 (1C, C3), 70.9 (2C, C1), 58.7 (1C, -N<u>C</u>H-), 58.3 (1C, -N<u>C</u>H-), 48.0 (1C, C4), 46.9 (1C, C4), 46.5 (1C, -N<u>C</u>H₂CH₂CH₂-), 46.3 (1C, -N<u>C</u>H₂CH₂CH₂-) 35.4 (2C, C5), 30.2 (1C, -NCH₂C<u>H</u>₂CH₂-), 29.9 (1C, -NCH₂C<u>H</u>₂CH₂-), 28.6 (3C, -NCO₂C(<u>C</u>H₃)₃), 28.5 (3C, -NCO₂C(<u>C</u>H₃)₃), 26.4 (1C, <u>C</u>H₃, acetonide), 26.2 (1C, <u>C</u>H₃, acetonide), 24.6 (1C, <u>C</u>H₃, acetonide), 23.6 (1C, -NCH₂CH₂CH₂-), 23.4 (1C, -NCH₂CH₂CH₂-). HRMS calc.: 327.20; found: 350.1852 [M+Na]⁺.

Mitsunobu-type glycosylation

A heat-dried three-necked round bottom flash equipped with an air condenser, thermometer, and stirring bar was charged with 6-chlorodeazapurine (0.62 - 1.29 mmol, 1.00 eq.), PPh₃ (1.24 - 2.58 mmol, 2.00 eq.), and compound **4a-4c** (0.93 - 1.93 mmol, 1.50 eq.). Then, dry toluene (0.25 M, 3.10 - 5.20 mL) was added, and the resulted solution was cooled down to 0 °C. A solution of DBAD (1.24 - 2.58 mmol, 2.00 eq.) in dry toluene (1.10 M, 1.10 - 2.30 mL) was added dropwise. After complete addition, the reaction mixture was stirred for 10 min at 0 °C before the reaction was stirred at 60 °C for 17 h. The reaction progress was monitored by TLC. Then, the reaction solution was concentrated to complete dryness and the obtained residue was purified by flash chromatography.

tert-butyl ((((3a*R*,4*R*,6*R*,6a*S*)-6-(4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)methyl)carbamate (5a):

The crude product was first purified by flash chromatography using gradient (cyclohexane/EtOAc; 0-40%). The obtained residue contained an azo-dicarboxylate byproduct which was separated by flash chromatography using gradient (CH₂Cl₂/MeOH; 0-2%). This purification afforded the pure product as white foam (245 mg, 45%). R_f = 0.30 (petrol ether/EtOAc; 40%). ¹H NMR (400 MHz, DMSO) δ 8.65 (s, 1H, H2), 7.97 (d, *J* = 3.7 Hz, 1H, H6), 7.01 (t, *J* = 5.9 Hz, 1H, -N<u>H</u>CH₂-), 6.73 (d, *J* = 3.7 Hz, 1H, H5), 5.06 (dt, *J* = 12.7, 6.5 Hz, 1H, H1'), 4.93 (dd, *J* = 7.4, 6.2 Hz, 1H, H2'), 4.51 (dd, *J* = 7.4, 4.8 Hz, 1H, H3'), 3.20 – 3.00 (m, 2H, -NHC<u>H</u>₂-), 2.32 – 2.19 (m, 2H, H4', H5'), 2.12 – 2.01 (m, 1H, H5'), 1.47 (s, 3H, C<u>H</u>₃, acetonide), 1.37 (s, 9H, -NHCO₂C(C<u>H</u>₃)₃), 1.20 (s, 3H, 2H, 2H, 2H, 2H).

C<u>*H*₃</u>, acetonide). ¹³C NMR (101 MHz, DMSO) δ 155.9 (1C, -NH<u>C</u>O₂-), 150.9 (1C, -N<u>C</u>N-), 150.6 (1C, -<u>C</u>Cl), 150.3 (1C, C2), 129.4 (1C, C6), 117.0 (1C, -CH<u>C</u>CCl-), 112.7 (1C, -O₂<u>C</u>(CH₃)₂), 99.2 (1C, C5), 83.5 (1C, C2'), 81.4 (1C, C3'), 77.7 (1C, -NHCO₂<u>C</u>(CH₃)₃), 60.4 (1C, C1'), 43.6 (1C, C4'), 42.2 (1C, -NH<u>C</u>H₂-), 35.1 (1C, C5'), 28.2 (3C, -CO₂C(<u>C</u>H₃)₃), 27.4 (1C, <u>C</u>H₃, acetonide), 25.1 (1C, <u>C</u>H₃, acetonide). APCI calc.: 422.17; found: 422.9/424.9 [M+H]⁺.

tert-butyl (2-((3a*R*,4*R*,6*R*,6a*S*)-6-(4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)propan-2-yl)carbamate (5b):

The crude product was purified over silica gel chromatography using the elution system (petrol ether/THF; 0-30%) which afforded the title compound as white foam (150 mg, 0.33 mmol). The eluted product contained still some azo-dicarboxylate by-product which was separated in the next step. $R_f = 0.57$ (petrol ether/THF; 30%). ¹H NMR (400 MHz, DMSO) δ 8.63 (s, 1H, H2), 7.99 (d, J = 3.7 Hz, 1H, H6), 6.72 (d, J = 3.7 Hz, 1H, H5), 5.02 (dt, J = 12.0, 6.8 Hz, 1H, H1'), 4.95 – 4.87 (m, 1H, H2'), 4.63 (dd, J = 7.6, 5.7 Hz, 1H, H3'), 2.74 – 2.64 (m, 1H, H4'), 2.26 – 2.07 (m, 2H, H5'), 1.46 (s, 3H, C<u>H3</u>, acetonide), 1.39 – 1.35 (m, 9H, -NHCO2C(C<u>H3</u>)3), 1.27 (s, 3H, -NHC(C<u>H3</u>)2-), 1.26 (s, 3H, -NHC(C<u>H3</u>)2-), 1.21 (s, 3H, C<u>H3</u>, acetonide). ¹³C NMR (101 MHz, DMSO) δ 155.6 (1C, -NH<u>C</u>O2-), 150.8 (1C, -N<u>C</u>N-), 150.6 (1C, -<u>C</u>Cl), 150.2 (1C, C2), 129.6 (1C, C6), 117.1 (1C, -CH<u>C</u>CCl-), 112.7 (1C, -O2<u>C</u>(CH3)2), 99.1 (1C, C5), 83.2 (1C, C2'), 79.2 (1C, C3'), 78.9 (1C, -NHCO2<u>C</u>(CH3)3), 60.6 (1C, C1'), 52.4 (1C, -NH<u>C</u>(CH3)2-), 50.7 (1C, C4'), 32.8 (1C, C5'), 28.3 (3C, -CO2C(<u>C</u>H3)3), 27.5 (1C, <u>C</u>H3, acetonide), 25.0 (1C, -NHC(<u>C</u>H3)2-), 24.7 (1C, -NHC(<u>C</u>H3)2-). APCI calc.: 450.20; found: 451.20/453.20 [M+H]⁺.

tert-butyl 2-((3a*R*,4*R*,6*R*,6a*S*)-6-(4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)pyrrolidine-1-carboxylate (5c):

Gradient (petrol ether/THF; 0-30%) afforded the desired compound as white foam (diastereomeric mix, 182 mg, 64%, d.r. 1.5:1). $R_f = 0.24$ (petrol ether/THF; 30%). ¹H NMR (400 MHz, DMSO-*d*6) δ 8.65 (s, 2H, H2), 8.03 (d, J = 3.7 Hz, 1H, H6), 7.96 (bs, 1H, H6), 6.74 (d, J = 3.6 Hz, 2H, H5), 5.10 – 4.90 (m, 3H, H1', H2'), 4.89 – 4.66 (m, 1H, H3'), 4.60 – 4.52 (m, 1H, H3'), 4.47 – 4.16 (m, 1H, H2'), 4.06 – 3.96 (m, 1H, -NC<u>H</u>-), 3.96 – 3.89 (m, 1H, -NC<u>H</u>-), 3.41 – 3.12 (m, 4H, -NC<u>H</u>₂CH₂CH₂-), 2.47 – 2.05 (m, 6H, H4', H5'), 2.03 – 1.66 (m, 8H, -NCH₂C<u>H₂CH₂-), 1.47 (s, 3H, CH₃, acetonide), 1.48 – 1.36 (m, 15H, -NCO₂C(C<u>H</u>₃)₃, C<u>H₃, acetonide), 1.34 (s, 9H, -NCO₂C(C<u>H</u>₃)₃), 1.23 (s, 3H, C<u>H₃, acetonide). ¹³C NMR (101 MHz, DMSO) δ 154.2 (1C, -N<u>C</u>O₂-), 153.8 (1C, -N<u>C</u>O₂-), 150.8 (1C, -N<u>C</u>N-), 150.6 (1C, -<u>C</u>Cl), 150.5 (1C, -<u>C</u>Cl), 150.2 (2C, C2), 129.7 (1C, C6), 129.5 (1C, C6), 117.1 (2C, (-CH<u>C</u>CCl-), 113.0 (2C, -O<u>2</u>C(CH₃)₂), 99.1 (1C, C5), 99.1 (1C, C5), 83.3 (1C, -</u></u></u>

C2'), 81.0 (1C, C3'), 80.8 (1C, C3'), 80.5 (1C, C2'), 78.5 (1C, -NCO₂<u>C</u>(CH₃)₃), 78.2 (1C, -NHCO₂<u>C</u>(CH₃)₃), 60.3 (1C, C1'), 60.1 (1C, C1'), 58.9 (1C, -N<u>C</u>H-), 58.0 (1C, -N<u>C</u>H-), 47.8 (1C, C4'), 47.3 (1C, C4'), 46.1 (2C, -N<u>C</u>H₂CH₂CH₂CH₂-), 35.6 (1C, C5'), 34.1 (1C, C5'), 28.1 (3C, -NCO₂C(<u>C</u>H₃)₃), 28.1 (-NCO₂C(<u>C</u>H₃)₃), 27.8 (1C, <u>C</u>H₃, acetonide), 27.4 (1C, <u>C</u>H₃, acetonide), 27.4 (1C, <u>C</u>H₃, acetonide), 25.1 (1C, <u>C</u>H₃, acetonide), 23.2 (2C, -NCH₂<u>C</u>H₂CH₂-), 22.4 (2C, -NCH₂<u>C</u>H₂CH₂-). APCI calc.: 462.20; found: 463.00/465.00 [M+H]⁺.

Aromatic substitution with ammonia

In a sealed pressure flask compounds **5a**, **5b**, and **5c** (0.33 - 0.49 mmol, 1.00 eq) was suspendend in mixture of 1,4 dioxane and aqueous ammonia (1:2, 0.10 M, 3.30 - 4.90 mL). The reaction mixture was heated to 100 °C and stirred for 17 h. The reaction mixture was allowed to coole down to rt and concentrated to complete dryness. The crude product was purified over silica gel chromatography to obtain the target compounds.

tert-butyl ((((3a*R*,4*R*,6a*S*)-6-(4-amino-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)methyl)carbamate (6a):

Gradient (CH₂Cl₂/MeOH; 0-10%) afforded the target molecule as colorless foam (145 mg, 73%). $R_f = 0.53$ (CH₂Cl₂/MeOH; 10%). ¹H NMR (400 MHz, DMSO) δ 8.04 (s, 1H, H2), 7.30 (d, J = 3.5 Hz, 1H, H6), 6.99 – 6.92 (m, 3H, -CN<u>H</u>₂, -N<u>H</u>CH₂-), 6.56 (d, J = 3.5 Hz, 1H, H5), 4.92 – 4.84 (m, 2H, H1', H2'), 4.47 (dd, J = 6.5, 4.7 Hz, 1H, H3'), 3.19 – 2.98 (m, 2H, -NHC<u>H</u>₂-), 2.27 – 2.11 (m, 2H, H4', H5'), 2.06 – 1.88 (m, 1H, H4'), 1.45 (s, 3H, C<u>H</u>₃, acetonide), 1.37 (s, 9H, -NHCO₂C(C<u>H</u>₃)₃), 1.20 (s, 3H, C<u>H</u>₃, acetonide). ¹³C NMR (101 MHz, DMSO) δ 157.5 (1C, -<u>C</u>NH₂), 155.8 (1C, -NH<u>C</u>O₂-), 151.5 (1C, -N<u>C</u>HN-), 149.6 (1C, -N<u>C</u>N-), 122.1 (1C, C6), 112.4 (1C, -<u>C</u>CNH₂-), 102.7 (1C, -O₂<u>C</u>(CH₃)₂), 99.0 (1C, C5), 83.5 (1C, C2'), 81.4 (1C, C3'), 77.6 (1C, NHCO₂<u>C</u>(CH₃)₃), 59.7 (1C, C1'), 43.7 (1C, -NH<u>C</u>H₂-), 42.3 (1C, C4'), 35.5 (1C, C5'), 28.2 (3C, -NHCO₂C(<u>C</u>H₃)₃), 27.4 (1C, <u>C</u>H₃, acetonide), 25.1 (1C, CH₃, acetonide). APCI calc.: 403.22; found: 403.90 [M+H]⁺.

tert-butyl (2-((3a*R*,4*R*,6*R*,6a*S*)-6-(4-amino-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*-cyclopenta[*d*][1,3]dioxol-4-yl)propan-2-yl)carbamate (6b):

Gradient (CH₂Cl₂/MeOH; 0-5%) afforded the target compound as colorless foam (100 mg, 77%). $R_f = 0.64$ (CH₂Cl₂/MeOH; 10%). ¹H NMR (400 MHz, DMSO) δ 8.04 (s, 1H, H2), 7.32 (d, J = 3.5 Hz, 1H, H6), 6.97 (s, 2H, -CN<u>H</u>₂), 6.55 (d, J = 3.5 Hz, 1H, H5), 6.52 (bs, 1H, -N<u>H</u>C(CH₃)₂-), 4.90 – 4.81 (m, 2H, H1', H2'), 4.62 (t, J = 6.3 Hz, 1H, H3'), 2.67 – 2.56 (m, 1H, H4'), 2.17 – 2.00 (m, 2H, H5'), 1.44 (s, 3H, C<u>H₃</u>, acetonide), 1.37 (s, 9H, -NHCO₂C(C<u>H₃</u>)₃), 1.28 – 1.23 (m, 6H, -NC(C<u>H₃</u>)₂-), 1.21 (s, 3H, C<u>H₃</u>, acetonide). ¹³C NMR (101 MHz, DMSO) δ 157.5 (1C, -<u>C</u>NH₂), 154.4 (1C, -NH<u>C</u>O₂-), 151.5 (1C, -N<u>C</u>HN-), 149.6 (1C, -N<u>C</u>N-), 122.3 (1C, -CH<u>C</u>HN-), 112.3 (1C, -O₂<u>C</u>(CH₃)₂), 102.8 (1C, -<u>C</u>CNH₂-), 98.9 (1C, -<u>C</u>HCHN-), 83.4 (1C, C2'), 79.3 (1C, C3'), 59.8 (1C, C1'), 52.5 (1C, -NH<u>C</u>(CH₃)₂-), 51.1 (1C, C4'), 33.2 (1C, C5'), 28.3 (1C, <u>C</u>H₃, acetonide), 27.5 (3C, -CO₂C(<u>C</u>H₃)₃), 25.2

(1C, <u>C</u>H₃, acetonide), 25.0 (1C, -NHC(<u>C</u>H₃)₂-), 24.8 (1C, -NHC(<u>C</u>H₃)₂-). APCI calc.: 431.25; found: 431.90 [M+H]⁺.

tert-butyl 2-((3a*R*,4*R*,6*R*,6a*S*)-6-(4-amino-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-2,2-dimethyltetrahydro-4*H*cyclopenta[*d*][1,3]dioxol-4-yl)pyrrolidine-1-carboxylate (6c):

Gradient (CH₂Cl₂/MeOH; 0-10%) afforded the desired product as white foam (101 mg, 67%, diastereomeric mixture; d.r. 1.5:1). $R_f = 0.68$ (CH₂Cl₂/MeOH; 10%). ¹H NMR (400 MHz, DMSO) δ 8.04 (s, 2H, H2), 7.34 (d, J = 3.5 Hz, 1H, H6), 7.31 – 7.25 (m, 1H, H6), 6.98 (bs, 2H, 2H, -CN<u>H</u>₂), 6.57 – 6.54 (m, 2H, H5), 4.96 – 4.75 (m, 4H, H1', H2'), 4.55 – 4.47 (m, 2H, H3'), 4.01 – 3.93 (m, 1H, -CH₂CH₂CH₂CH-), 3.93 – 3.85 (m, 1H, -CH₂CH₂C<u>H</u>CH-), 3.50 – 3.37 (m, 1H, -NC<u>H₂CH₂CH₂CH₂-), 3.26 – 3.11 (m, 1H, -NC<u>H₂CH₂CH₂-), 2.40 – 2.26 (m, 2H, H4', H5'), 2.25 – 2.14 (m, 2H, H4', H5'), 2.12 – 2.00 (m, 2H, H5'), 1.95 – 1.71 (m, 8H, -NCH₂C<u>H₂CH₂-), 1.44 (s, 6H, C<u>H₃</u>, acetonide), 1.42 (s, 9H, -NHCO₂C(C(<u>H</u>₃)₃), 1.33 (s, 9H, -NHCO₂C(C(<u>H</u>₃)₃), 1.21 (s, 6H, C<u>H₃</u>, acetonide). ¹³C NMR (101 MHz, DMSO) δ 157.5 (1C, -<u>C</u>NH₂), 154.0 (1C, -N<u>C</u>O₂-), 151.5 (1C, -N<u>C</u>HN-), 149.6 (1C, -N<u>C</u>N-), 122.3 (1C, -CH<u>C</u>HN-), 112.7 (1C, -O₂C(CH₃)₂), 102.7 (1C, -<u>C</u>CNH₂-), 99.0 (1C, -<u>C</u>HCHN-), 83.4 (2C, C2'), 81.0 (2C, C3'), 78.5 (2C, NHCO₂C(CH₃)₃), 59.7 (2C, C1'), 59.0 (1C, -N<u>C</u>H-), 58.0 (1C, -N<u>C</u>H-), 47.8 (1C, C4'), 47.6 (1C, C4'), 46.1 (2C, N<u>C</u>H₂CH₂CH₂-), 36.3 (1C, C5'), 36.0 (1C, C5'), 29.0 (2C, -NCH₂<u>C</u>H₂CH₂-), 28.1 (3C, -NCO₂C(<u>C</u>H₃)₃), 27.5 (1C, <u>C</u>H₃, acetonide), 27.4 (1C, <u>C</u>H₃, acetonide), 23.2 (2C, -NCH₂CH₂<u>C</u>H₂-). APCI cale.: 443.25; found: 444.30 [M+H]⁺.</u></u></u>

Deprotection

The protected nucleosides **6a**, **6b**, and **6c** (0.18 - 0.32 mmol, 1.00 eq) were suspended in a mixture of TFA and water (4:1, 0.05 M, 3.60 - 6.40 mL). The solution was stirred for 3 h at ambient temperature. The reaction mixture was concentrated under reduced pressure and the obtained residue was purified by preparative HPLC (water/MeCN; 0.05% TFA) to obtain the desired nucleosides **7a**, **7b**, **7c**, and **7d** as TFA salts.

(1R,2S,3R,5R)-3-(4-amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(aminomethyl)cyclopentane-1,2-diol (7a):

Purification by preparative HPLC using method C (water/MeCN; 0.05% TFA) afforded the desired compound as white foam (97.3 mg, 81%, TFA salt). $R_t = 2.912$ min. ¹H NMR (400 MHz, DMSO) δ 8.38 (s, 1H, H2), 7.88 (bs, 3H, -NH₃⁺), 7.66 (d, J = 3.5 Hz, 1H, H6), 6.96 (d, J = 3.5 Hz, 1H, H5), 4.95 (dt, J = 10.6, 7.9 Hz, 1H, H1'), 4.18 (dd, J = 7.9, 5.8 Hz, 1H, H2'), 3.87 (t, J = 5.3 Hz, 1H, H3'), 3.13 – 2.84 (m, 2H, -NH₃⁺C<u>H</u>₂-), 2.35 – 2.25 (m, 1H, H5'), 2.24 – 2.14 (m, 1H, H4'), 1.57 (dt, J = 12.7, 9.9 Hz, 1H, H5'). ¹³C NMR (101 MHz, DMSO) δ 158.3 (1C, -<u>C</u>NH₂), 151.1 (1C, -N<u>C</u>HN-), 147.1 (1C, -N<u>C</u>N-), 125.5 (1C, -CH<u>C</u>HN-), 101.9 (1C, -<u>C</u>HCHN-), 101.5 (1C, -CNH₂<u>C</u>-), 74.9 (1C, C2'), 72.2 (1C, C3'), 59.4 (1C, C1'), 41.9 (1C, -NH₃⁺<u>C</u>H₂-), 41.3 (1C, C4'), 31.0 (1C, C5'). APCI calc.: 264.14; found: 264.4 [M+H]⁺. Using method A: UV-purity at 210 nm 97.7%. (1*R*,2*S*,3*R*,5*R*)-3-(4-amino-7*H*-pyrrolo[2,3-*d*]pyrimidin-7-yl)-5-(2-aminopropan-2-yl)cyclopentane-1,2-diol (7b):

Purification over preparative HPLC with method C (water/MeCN; 0.05% TFA) afforded the target molecule as white foam (71.6 mg, 97%, TFA salt). $R_t = 6.946$ min. ¹H NMR (400 MHz, DMSO) δ 9.33 – 8.78 (m, 3H, -NH₃⁺), 8.40 (s, 1H, H2), 7.93 (s, 2H, -CN<u>H</u>₂), 7.71 (d, J = 3.7 Hz, 1H, H6), 6.97 (d, J = 3.6 Hz, 1H, H5), 4.89 (ddd, J = 11.4, 8.9, 6.9 Hz, 1H, H1'), 4.10 (dd, J = 9.1, 6.4 Hz, 1H, H2'), 3.99 (dd, J = 6.5, 4.3 Hz, 1H, H3'), 2.21 – 2.13 (m, 1H, H5'), 2.11 – 2.01 (m, 1H, H5'), 1.79 – 1.68 (m, 1H, H4'), 1.31 (s, 3H, -NC(C<u>H</u>₃)₂-), 1.26 (s, 3H, -NC(C<u>H</u>₃)₂-). ¹³C NMR (101 MHz, DMSO) δ 151.1 (1C, -<u>C</u>NH₂), 147.2 (1C, -N<u>C</u>HN-), 142.2 (1C, -N<u>C</u>N-), 125.6 (1C, -CH<u>C</u>HN-), 101.9 (1C, -<u>C</u>HCHN-), 101.6 (1C, -CNH₂<u>C</u>-), 74.8 (1C, C2'), 68.9 (1C, C3'), 59.2 (1C, C1'), 54.8 (1C, -NH₃⁺<u>C</u>(CH₃)₂-), 51.6 (1C, C4'), 27.9 (1C, C5'), 23.5 (1C, -NH₃⁺C(<u>C</u>H₃)₂-), 23.2 (1C, -NH₃⁺C(<u>C</u>H₃)₂-). Using method B: UV-purity at 210 nm: 98.9%. APCI calc.: 291.17; found: 291.90 [M+H]⁺.

(1R,2S,3R,5R)-3-(4-amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-((R)-pyrrolidin-2-yl)cyclopentane-1,2-diol (7c) & (1R,2S,3R,5R)-3-(4-amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-((S)-pyrrolidin-2-yl)cyclopentane-1,2-diol (7d):

Following the general procedure for deprotection, compounds x & y were obtained starting from compound y (0.09 g, 0.19 mmol) in a mixture of water and TFA (0.05 M, 3.80 mL, 1:1) after preparative HPLC using method C (water/MeCN; 0.05% TFA) as white foams (1 TFA salt, 64.66 mg, 82%).

7c: 37.78 mg. R_t = 6.030 min. ¹H NMR (400 MHz, DMSO) δ 9.33 – 9.19 (m, 1H, NH₂⁺), 8.58 – 8.47 (m, 1H, NH₂⁺), 8.36 (s, 1H, H2), 7.62 (d, *J* = 3.5 Hz, 1H, H6), 6.94 (d, *J* = 3.5 Hz, 1H, H5), 4.91 (dt, *J* = 10.8, 7.9 Hz, 1H, H1'), 4.20 (dd, *J* = 8.2, 6.1 Hz, 1H, H2'), 3.88 – 3.83 (m, 1H, H3'), 3.57 – 3.44 (m, 1H, -NH₂⁺CH₂CH₂CH₂CH₂-), 3.26 – 3.09 (m, 2H, -NH₂⁺C<u>H</u>₂CH₂CH₂CH), 2.35 – 2.20 (m, 2H, H5', -NH₂⁺CH₂CH₂-), 2.20 – 2.10 (m, 1H, H4'), 2.04 – 1.81 (m, 2H, -NH₂⁺CH₂C<u>H₂CH₂-), 1.80 – 1.63 (m, 2H, H5', -NH₂⁺CH₂CH₂CH₂-). ¹³C NMR (101 MHz, DMSO) δ 158.8 (1C, CF₃<u>C</u>OO⁻), 158.5 (1C, -CNH₂), 151.6 (1C, -N<u>C</u>HN-), 142.9 (1C, C2), 125.2 (1C, -CH<u>C</u>HN-), 118.5 (1C, <u>C</u>F₃COO⁻), 101.7 (1C, -<u>C</u>HCHN-), 101.7 (1C, -CNH₂<u>C</u>-), 74.8 (1C, C2'), 72.1 (1C, C3'), 63.1 (1C, -NH₂⁺CH-), 59.5 (1C, C1'), 45.6 (1C, C4'), 44.5 (1C, -NH₂⁺CH₂CH₂CH₂-), 31.1 (1C, C5'), 28.8 (1C, -NH₂⁺CH₂CH₂CH₂-), 23.2 (1C, -NH₂⁺CH₂CH₂CH₂-). APCI calc.: 304.17; found: 304.4 [M+H]⁺. Using method B: UV-purity at 210 nm 99.3%.</u>

7d: 26.88 mg. $R_t = 6.941$ min. ¹H NMR (400 MHz, DMSO) δ 9.28 – 9.18 (m, 1H, -NH₂⁺), 8.49 – 8.40 (m, 1H, -NH₂⁺), 8.38 (s, 1H, H2), 7.67 (d, J = 3.6 Hz, 1H, H6), 6.96 (d, J = 3.6 Hz, 1H, H5), 4.94 (dt, J = 10.9, 7.5 Hz, 1H, H1'), 4.18 (dd, J = 7.5, 6.0 Hz, 1H, H2'), 3.98 (t, J = 5.5 Hz, 1H, H3'), 3.56 – 3.43 (m, 1H, -NH₂⁺CH₂CH₂CH₂CH₂CH₂-), 3.28 – 3.12 (m, 2H, -NH₂⁺C<u>H</u>₂CH₂CH₂CH₂CH-), 2.30 – 2.14 (m, 2H, H4', H5'), 2.12 – 2.01 (m, 1H, -

NH₂⁺CH₂CH₂-), 1.99 – 1.78 (m, 1H, -NH₂⁺CH₂CH₂CH₂CH-), 1.70 – 1.50 (m, 2H, H5', -NH₂⁺CH₂C<u>H</u>₂CH-). ¹³C NMR (101 MHz, DMSO) δ 158.6 (1C, CF₃<u>C</u>OO⁻), 158.3 (1C, -CNH₂), 151.1 (1C, -N<u>C</u>HN-), 142.3 (1C, -N<u>C</u>N-), 125.7 (1C, -CH<u>C</u>HN-), 118.1 (1C, <u>C</u>F₃COO⁻), 101.9 (1C, -<u>C</u>HCHN-), 101.6 (1C, -CNH₂<u>C</u>-), 75.0 (1C, C2'), 72.8 (1C, C3'), 62.5 (1C, -NH₂⁺<u>C</u>H-), 59.7 (1C, C1'), 45.0 (1C, C4'), 45.0 (1C, -NH₂⁺<u>C</u>H₂CH₂CH₂CH₂-), 30.2 (1C, C5'), 28.5 (1C, -NH₂⁺CH₂<u>C</u>H₂CH₂-), 22.7 (1C, -NH₂⁺CH₂CH₂CH₂-). UV-purity at 210 nm: 100%. APCI calc.: 304.17; found: 304.40 [M+H]⁺. Using method B: UV-purity at 210 nm 100%.

¹H-NMR-spectra

Compound 3a

Compound 3b

Compound 3d

4465 4465 4465 4438 4334 4334 4336 3.69 3.69 3.69 3.69 3.66 -19000 -18000 Boc `N H 17000 =0 -16000 -15000 1 11 1 / 11 -14000 1 11 1 1 11 -13000 -12000 -11000 B (m) 4.39 F (m) 2.32 -10000 E (dd) G (m) 2.71 2.23 A (d) 4.65 D (m) 3.68 -9000 -8000 C (d) 4.33 -7000 -6000 -5000 -4000 -3000 -2000 -1000 **M** Å W -0 13.59 -29.79-3.45 -4.65 -2.86 -3.86 -1.36 1.20 ±00 141 -1000 0.97 1.12 1.01 0.94 5.0 f1 (ppm) 2.5 1.5 0.5 0.0 .0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.0 1.0

Compound 3f

Compound 3g

Compound 3h

Compound 3i

Compound 3j

Compound 3k

Compound 31

26

Compound 3n

Compound 3o

Compound 3p

Compound 3q

Compound 3r

Compound 3s

29

Compound 3t

5.0 f1 (ppm) 1.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Compound 4b

Compound 5a

Compound 5b

Compound 5c

Compound 6a

Compound 6b

Compound 6c

Compound 7a

Compound 7b

Compound 7c

¹³C-Spectra

Compound 3a

Compound 3b

Compound 3c

Compound 3d

Compound 3e

Compound 3g

Compound 3i

Compound 3j

Compound 3k

Compound 31

Compound 3m

Compound 3n

Compound 3o

Compound 3p

Compound 3q

Compound 3r

Compound 3s

Compound 3t

Compound 4a

Compound 4c

Compound 5a

Compound 5b

Compound 5c

Compound 6a

Compound 6b

Compound 6c

Compound 7a

Compound 7b

Compound 7c

Compound 7d

2D-NOESY experiment of compound 3e

Figure 3 NOESY correlations of compound 3e. Experiments showed no to very weak correlation between -NHCH- and H2' thus we postulate the S-isomer.

2D-NOESY experiment of compound 3f

Figure 4 NOESY correlations of compound 3f. Experiments showed clear correlation between -NHCH- and H2' and H1' thus we postulate the R-isomer.

Chromatograms of compound 7a-7d

Compound 7a

RT [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area%
2.453	0.0664	93.68536	23.50908	0.3876
2.912	0.1479	2.33785e4	2633.78540	97.7271
3.323	0.1120	424.21182	63.14731	1.7552
4.094	0.1316	273.15063	34.59356	1.1301

Compound 7b

RT [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area%
6.946	0.0522	4853.6846	1548.7003	98.9118
7.195	0.0512	53.3984	17.3923	1.0882

Compound 7c

RT [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area%
6.030	0.0930	1.51428e4	2714.24829	99.3324
6.404	0.0662	101.77538	25.60650	0.6676

Compound 7d

RT [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area%
6.941	0.1141	1.85841e4	2685.35181	100.0000

Negative control experiments

Analytical method: XBridge® Shield RP18 5 μ m XB-C18 100 Å 150 x 4.6 mm column and eluent A was H₂O containing 0.05 % trifluoracetic acid (TFA) and eluent B was CH₃CN containing 0.05 % TFA. Linear gradient conditions were as follows: 0–4 min: 90:10 (A/B); 4–19 min: 90:0 \rightarrow 100 (A/B); 19–21 min: 0:100; (A/B); 21–31.5 min: 90:10 (A/B); 31.5–25 min: 90:10 (A/B) with a flowrate of 1.00 mL.min⁻¹.

Reference chromatogram of (-)-(3aR,6aR)-3a,6a-dihydro-2,2-dimethyl-4H-cyclopenta-1,3-dioxol-4-one: (1)

Reference chromatogram of Boc-Phe-OH (21):

Reference chromatogram of the mixture of products 3q and 3r:

Chromatogram of the reaction mixture with photocatalyst but without irradiation after 17 h: no 3g/3r

Chromatogram of the reaction mixture without photocatalyst but with irradiation after 17 h: no 3g/3r

