Electronic Supplementary Information

Structural characterization and reactivity studies of the aluminum

analogue of Piers' borane [HAl(C₆F₅)₂]₃

Jingjie Tan,^a Chaopeng Hu,^b Xin Yang,^a Shaoying Ju,^a Levy L. Cao,^c Yile Wu, ^{*a} Liu Leo Liu^{*b} and Douglas W. Stephan^{*ac}

- ^a Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China, <u>wuyile@nbu.edu.cn</u>
- ^b Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China, <u>liuleoliu@sustech.edu.cn</u>
- ^c Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada, <u>dstephan@chem.utoronto.ca</u>

General Information	4
Experimental Section	5
Synthesis of 1 and 1-d	5
Synthesis of 2	6
Synthesis of 3	7
Synthesis of 4	8
Synthesis of 5	9
General Catalytic Procedures for the Hydrosilylation of Alkynes and Alkenes	10
Table S1. Optimization of the hydrosilylation conditions	11
Spectral Data for $7a - 7g$	12
X-ray Crystallography	15
Table S2. Crystal data and structure refinement details for compounds 1-3	15
Table S3. Crystal data and structure refinement details for compounds 4 and 5	16
Figure S1. Thermal ellipsoid plot for 1 with the anisotropic displacement parameters depicte	d at
the 30% probability level	17
Figure S2. Thermal ellipsoid plot for 1B with the anisotropic displacement parameters depict	ted
at the 30% probability level.	17
Figure S3. Thermal ellipsoid plot for 2 with the anisotropic displacement parameters depicte	d at
the 30% probability level. Hydrogen atoms except that linked to Al are omitted for clarity	18
Figure S4. Thermal ellipsoid plot for 3 with the anisotropic displacement parameters depicte	d at
the 30% probability level. Hydrogen atoms are omitted for clarity	18
Figure S5. Thermal ellipsoid plot for 4 with the anisotropic displacement parameters depicte	d at
the 30% probability level. Disorders and hydrogen atoms are omitted for clarity	19
Figure S6. Thermal ellipsoid plot for 5 with the anisotropic displacement parameters depicte	d at
the 30% probability level. Hydrogen atoms are omitted for clarity	19
NMR Spectra	20
Figure S7. ¹ H NMR spectrum of 1 in C ₆ D ₆	20
Figure S8. ¹³ C NMR spectrum of 1 in C_6D_6	20
Figure S9. ¹⁹ F NMR spectrum of 1 in C ₆ D ₆	21
Figure S10. ¹ H NMR spectrum of 2 in C_6D_6	21
Figure S11. ¹³ C NMR spectrum of 2 in C_6D_6	22
Figure S12. ¹⁹ F NMR spectrum of 2 in C ₆ D ₆	22
Figure S13. ¹ H NMR spectrum of 3 in C ₆ D ₆	23
Figure S14. ¹³ C NMR spectrum of 3 in C_6D_6	23
Figure S15. ¹⁹ F NMR spectrum of 3 in C ₆ D ₆	24
Figure S16. ¹ H NMR spectrum of 4 in C ₆ D ₆	24
Figure S17. ¹³ C NMR spectrum of 4 in C_6D_6	25
Figure S18. ¹⁹ F NMR spectrum of 4 in C ₆ D ₆	25
Figure S19. ¹ H NMR spectrum of 5 in C ₆ D ₆	26
Figure S20. ¹³ C NMR spectrum of 5 in C_6D_6	26
Figure S21. ¹⁹ F NMR spectrum of 5 in C ₆ D ₆	27
Figure S22. ${}^{31}P{}^{1}H{}^{33}$ NMR spectrum of the reaction mixture of 1 and Et ₃ PO in C ₆ D ₆	27

Contents

Figure S23 ¹ H NMR spectrum of 1-d in C ₆ D ₆	28
Figure S24 ¹⁹ F NMR spectra of 1-d (top) and 1 (bottom) in C ₆ D ₆	28
Figure S25 ¹ H NMR spectrum of 7a in CDCl ₃	29
Figure S26 ¹³ C NMR spectrum of 7a in CDCl ₃	29
Figure S27 ¹ H NMR spectrum of 7b in CDCl ₃	30
Figure S28 ¹³ C NMR spectrum of 7b in CDCl ₃	30
Figure S29 ¹ H NMR spectrum of 7c in C ₆ D ₆	31
Figure S30 ¹³ C NMR spectrum of 7 c in C ₆ D ₆	31
Figure S31. ¹ H NMR spectrum of 7d in C ₆ D ₆	32
Figure S32. ¹³ C NMR spectrum of 7d in C ₆ D ₆	32
Figure S33. ¹ H NMR spectrum of 7e in C ₆ D ₆	33
Figure S34. ¹³ C NMR spectrum of 7e in C ₆ D ₆	33
Figure S35. ¹ H NMR spectrum of 7f in C ₆ D ₆	34
Figure S36. ¹³ C NMR spectrum of 7f in C_6D_6	34
Figure S37. ¹ H NMR spectrum of 7g in C ₆ D ₆	35
Figure S38. ¹³ C NMR spectrum of 8g in C ₆ D ₆	35
Figure S39. ¹ H NMR spectrum of 7h in C ₆ D ₆	36
Figure S40. ¹³ C NMR spectrum of 7h in C ₆ D ₆	36
Computational Details	.37
Table S4 . Energy of Intermediates for the trimerization of $HAl(C_6F_5)_2$ and $HB(C_6F_5)_2$	38
Figure S41. The energies for di- and trimerization of the monomers HAl(C ₆ F ₅) ₂ and HB(C ₆ F ₅	5)2.
	38
Table S5 . Enthalpy of Intermediates for the FIA of $HAl(C_6F_5)_2$ and $HB(C_6F_5)_2$	39
Table S6. The selected NBO charges of HAl(C6F5)2	39
Table S7. The selected NBO charges of HB(C ₆ F ₅) ₂	39
Cartesian coordinates	.40
Reference	.47

General Information

All manipulations were carried out on a Schlenk line or in an argon atmosphere glovebox. Solvents were dried using a MBraun solvent purification system, and stored over 3 Å sieves. Unless otherwise stated, commercial reagents were used without further purification. $[ClAl(C_6F_5)_2]_2^{[1]}$ and $[(2,6-P_72C_6H_3)N=C(CH_3)]_2^{[2]}$ were synthesized according to the literature methods. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on a Bruker Ascend 500M or a Bruker Ascend 600M spectrometer. HRMS were recorded on a Thermo Scientific TM Q-Exactive PlusTM mass spectrometer. Single-crystal X-ray diffraction data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $\mu K\alpha = 12.894 \text{ mm}^{-1}$) micro-focus X-ray sources. Using Olex2,^[3] the structure was solved with the XT^[4] structure solution program using Intrinsic Phasing and refined with the XL^[5] refinement package using Least Squares minimisation.

Experimental Section

A mixture of $[ClAl(C_6F_5)_2]_2$ (2 mmol, 1586 mg) and LiAlH₄ (4 mmol, 151 mg) in 15 mL fluorobenzene was stirred at room temperature until the in situ ¹⁹F NMR indicates a completely transformation of starting materials. The mixture was filtrated and the solvent was removed under vacuum. The residues were wash with hexane to give white powders of the product (1015 mg 70 % yield). Colorless crystals were obtained by storage a solution of the product in hexane/toluene (1) or chlorobenzene (**1B**). Compound **1-d** was obtained from the analogue reaction of $[ClAl(C_6F_5)_2]_2$ and LiAlD₄ with an isolated yield of 63 %. ¹H NMR (500 MHz, C₆D₆, ppm): δ 4.38 (br, 3 H, Al*H*). ¹³C {¹H} NMR (125 MHz, C₆D₆, ppm): δ 151.3-149.3 (m, *o*-C₆F₅), 144.0-142.0 (m, *p*-C₆F₅), 138.6-136.2 (m, *m*-C₆F₅), 109.4 (br, *i*-C₆F₅). ¹⁹F {¹H} NMR (470 MHz, C₆D₆, ppm) δ -124.1 (br, 12F, *o*-C₆F₅), -148.6 (br, 6F, *p*-C₆F₅), -159.6 (br, 12F, *m*-C₆F₅). IR (Nujol mull, cm⁻¹): \tilde{v} 1738.8 (Al-H), 1642.7, 1533.8, 1511.4, 1453.7, 1354.5, 1267.9, 1066.2, 950.9. HRMS (*m*/z): [¹/₃M + MeCN + Na]⁺ Calcd. for C₁₄H₄AlF₁₀NNa⁺: 425.9892; Found: 425.9897.

Synthesis of **2**:

A mixture of **1** (25.9 mg, 0.0715 mmol) and DMAP (17.5 mg, 0.143 mmol) was stirred in 5 mL of toluene for 2 h. The solvent was removed under vacuum, and the resulting white solid was washed with 3 x 2 mL pentane and dried *in vacuo* to yield crude product of **2** (32 mg, 74 % yield). Crystals suitable for X-ray study were grow from a saturate **2** solution in C₆H₅Cl layered with a saturated pentane solution of DMAP at -35 °C overnight. ¹H NMR (400 MHz, C₆D₆, 298K): δ 8.37 (s, br, 4H, *o*-NC₅H₄), 5.83 (s, br, 4H, *m*-NC₅H₄), 2.08 (s, 12H, N(CH₃)₂). ¹³C{¹H} NMR (101 MHz, C₆D₆, 298K): δ 154.5 (s, *p*-NC₅H₄), 148.0 (s, *o*-NC₅H₄), 106.4 (s, *p*-NC₅H₄), 38.0 (s, N(CH₃)₂). ¹⁹F{¹H} NMR (377 MHz, C₆D₆, 298K): δ -121.7 (m, 4F, *o*-C₆F₅), -158.1 (t, *J* = 20 Hz, 2F, *p*-C₆F₅), -162.7 (p, *J* = 13 Hz, 4F, *m*-C₆F₅). ²⁷Al{¹H} NMR (104 MHz, C₆D₆, 298K): δ 114.9 (s, br). IR (Nujol mull, cm⁻¹): \tilde{v} 1804.7, 1637.6, 1601.6, 1587.2, 1509.4, 1452.2, 1375.1, 1270.9, 1072.9, 956.5, 772.1. HRMS (*m*/*z*): [M + Na]⁺ Calcd. for C₂₆H₂₁AlF₁₀N₄Na⁺: 629.1314; Found: 629.1325.

Synthesis of **3**:

At -30 °C, a solution of **1** (72 mg, 0.067 mmol) in toluene (2 mL) was added slowly to a stirring solution of 'BuOH (15 mg, 0.2 mmol) in toluene (2 mL). Gas evolution was observed immediately. The mixture was stirred for 15 minutes and then concentrated to about 1 mL. Hexane (0.5 mL) was added in and colorless crystals of **3** (118 mg 68% yield) were obtained after storing the mixture at -30°C overnight. ¹H NMR (500 MHz, C₆D₆, ppm): δ 1.13 (s, 18 H, CH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 150.9-149.0 (m, *o*-C₆F₅), 143.6-141.5 (m, *p*-C₆F₅), 138.3-136.3 (m, *m*-C₆F₅), 112.5 (br, *i*-C₆F₅), 83.3 (CMe₃), 30.0 (CMe₃). ¹⁹F{¹H} NMR (470 MHz, CDCl₃, ppm): δ -119.4 (d, *J* = 14.5 Hz, 8F, *o*-C₆F₅), -149.0 (t, *J* = 20.3 Hz, 4F, *p*-C₆F₅), -160.3 (t, *J* = 17.6 Hz, 8F, *m*-C₆F₅). IR (Nujol mull, cm⁻¹): \tilde{v} 1636.3, 1514.6, 1460.1, 1373.7, 1271.2, 1069.4, 957.3. HRMS (*m*/*z*): [½M + MeCN + Na]⁺ Calcd. for C₁₈H₁₂AlF₁₀NNaO⁺, 498.0467; Found: 498.0450.

Synthesis of **4**:

At -30 °C, a solution of 1 (72 mg, 0.067 mmol) in toluene (2 mL) was added slowly to a stirring solution of 4-bromophenylacetylene (43mg, 0.2 mmol) in toluene (2 mL). The reaction mixture became violet after stirring for 2 hours at room temperature. Then the toluene was concentrated to about 1 mL and hexane (0.5 mL) was added. Colorless crystals of **4** (30% yield) were obtained after storing the mixture at -30°C overnight. **4** slowly decomposed to brown oil in vacuum at ambient temperature. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.23 (d, *J* = 8.4 Hz, 4 H, Ar*H*), 6.82 (d, *J* = 8.4 Hz, 4 H, Ar*H*). ¹³C {¹H} NMR (125 MHz, C₆D₆, ppm): δ 151.1-149.3 (m, *o*-C₆F₅), 144.0-141.4 (m, *p*-C₆F₅), 138.4-136.2 (m, *m*-C₆F₅), 136.8, 133.1, 131.7, 115.2 (Ar), 110.9 (br, *i*-C₆F₅), 85.5 (*C*=CAl), 78.8 (C=CAl). ¹⁹F {¹H} NMR (470 MHz, C₆D₆, ppm) δ -122.4 (d, *J* = 17.7 Hz, 8F, *o*-C₆F₅), -149.1 (t, *J* = 19.5 Hz, 4F, *p*-C₆F₅), -159.8 - -159.9 (m, 8F, *m*-C₆F₅). IR (Nujol mull, cm⁻¹): \tilde{v} 2724.1, 2164.8, 2061.2, 1642.7, 1581.7, 1460.1, 1370.5, 1275.8, 1072.6, 723.5. HRMS (*m*/z): [½M + Na]⁺ Calcd. for C₂₀H₄AlBrF₁₀Na⁺: 562.9044; Found: 562.9051.

Synthesis of **5**:

A solution of **1** (72 mg, 0.066 mmol) in in toluene (2 mL) was added slowly into a stirring solution of 2-naphthaldehyde (0.034 g, 0.2 mmol) in toluene (2 mL) at -30 °C. The reaction mixture was warmed to room temperature slowly and the solution became yellow. The resulting reaction mixture was concentrated to 1 mL. The pale-yellow precipitates were isolated and washed with pentane (0.5 mL). Colorless crystals (75 mg, 70.4% yield) were obtained after storing the chlorobenzene solution of **5** at -30 °C overnight. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.54, (s, 1 H, Ar*H*), 7.31-7.28 (m, 2 H, Ar*H*), 7.23 (d, *J* = 8.4 Hz, 1 H, Ar*H*), 7.12-7.07 (m, 3 H, Ar*H*), 4.99 (s, 2 H, C*H*₂). ¹³C {¹H} NMR (125 MHz, C₆D₆, ppm): δ 149.7-147.8 (m, *o*-C₆F₅), 142.5-140.5 (m, *p*-C₆F₅), 137.1-134.9 (m, *m*-C₆F₅), 132.9, 132.0, 130.8, 129.0, 128.6, 128.3, 126.5, 126.3, 125.0, 124.6 (Ar), 108.9 (br, *i*-C₆F₅), 68.4 (CH₂). ¹⁹F {¹H} NMR (470 MHz, C₆D₆, ppm) δ -122.8 (dd, *J* = 26.2, 9.9 Hz, 8F, *o*-C₆F₅), -149.9 (t, *J* = 19.7 Hz, 4F, *o*-C₆F₅), -160.2 - 160.3 (m, 8F, *p*-C₆F₅). IR (Nujol mull, cm⁻¹): \tilde{v} 1636.7, 1512.8, 1460.4, 1377.8, 1072.1, 956.4, 719.5. HRMS (*m*/z): [½M + Cl]⁻Calcd. for C₂₃H₉AlClF₁₀O⁻, 553.0003; Found: 553.0007.

General Catalytic Procedures for the Hydrosilylation of Alkynes and Alkenes:

In an argon atmosphere glovebox, alkyne (0.5 mmol), silane (0.55 mmol), solvent (0.6 mL) and catalytical amount of **1** were loaded in a J-Young NMR tube. The tube was sealed securely before being brought outside of the glove box, shaken and monitored by NMR spectroscopy. The solution was filtrated and the products were isolated by removing volatiles under vacuum for more than 6 hours.

Br	н + 6b	H−SiEt ₃ <u>1 cat.</u> solvent	→ Br	H SiEt ₃ 7b
entry	catalyst loading (mol%)	solvent	time (h)	yield (%)
1	0.5	toluene	40	92
2	0.5	fluorobenzene	40	96
3	0.5	chlorobenzene	40	94
4	0.5	C_6D_6	40	99
5	1	C_6D_6	40	99
6	0.3	C_6D_6	40	90
7	0.5	C_6D_6	0.25	54
8	0.5	C_6D_6	3	76
9	0.5	C_6D_6	8	93
10	0.5	C_6D_6	24	95

 Table S1. Optimization of the hydrosilylation conditions^a

^a Reaction conditions: alkyne or alkene (0.50 mmol), hydrosilane (0.55 mmol), solvent (0.60

mL), room temperature.

Spectral Data for 7a - 7g

7a (*Z*)-1-triethylsilyl-2-phenylethene ^[6] (*CAS:* 75645-33-9): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.51 (d, *J* = 15.3 Hz, 1H, C*H*=CHSi), 7.36-7.29 (m, 5H, Ar*H*), 5.82 (d, *J* = 15.2 Hz, 1H, CH=CHSi), 0.92 (t, *J* = 7.9 Hz, 9H, SiCH₂CH₃), 0.60 (q, *J* = 7.9 Hz, 6H, SiCH₂CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 147.8 (*C*H=CHSi), 140.5, 129.5 (*Ar*), 127.9 (*Ar*; overlapped), 127.9 (*Ar*; overlapped), 127.3 (CH=CHSi), 7.5, 4.8 (Si*Et*₃). HRMS (*m/z*): [M+H]⁺ Calcd. for C₁₄H₂₃Si⁺:219.1564; Found: 219.1561.

7b (*Z*)-1-triethylsilyl-2-(4-bromophenyl)ethene^[6] (*CAS: 2243131-75-9*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.35 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.27 (d, *J* = 15.3 Hz, 1H, CH=CHSi), 7.06 (d, *J* = 8.4 Hz, 2H, Ar*H*), 5.72 (d, *J* = 15.3 Hz, 1H, CH=CHSi), 0.80 (t, *J* = 7.9 Hz, 9H, SiCH₂CH₃), 0.47 (q, *J* = 7.9 Hz, 6H, SiCH₂CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 146.3 (*C*H=CHSi), 139.1, 131.0 (*Ar*), 130.5 (CH=CHSi), 129.4, 121.3 (*Ar*), 7.4, 4.7 (Si*Et*₃). HRMS (*m/z*): [M+MeCN+H]⁺ Calcd. for C₁₆H₂₅BrSiN⁺:338.0934; Found: 338.0927.

7c (*Z*)-1-triethylsilyl-2-(2-methylphenyl)ethene (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.45 (d, *J* = 15.1 Hz, 1H, C*H*=CHSi), 7.26 (d, *J* = 7.0 Hz, 1H, Ar*H*), 7.08-7.01 (m, 2H, Ar*H*), 6.98 (d, *J* = 7.5 Hz, 1H, Ar*H*), 5.82 (d, *J* = 15.1 Hz, 1H, CH=CHSi), 2.13 (s, 3H, ArC*H*₃), 0.90 (t, *J* = 8.0 Hz, 9H, SiCH₂C*H*₃), 0.51 (q, *J* = 7.9 Hz,6H, SiC*H*₂CH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 148.0 (*C*H=CH), 140.6, 135.7, 129.7, 129.6, 128.7, 128.0 (*Ar*), 125.6 (CH=*C*H), 19.8 (Ar*Me*), 7.7, 5.0 (Si*Et*₃). HRMS (*m*/*z*): [M+H]⁺ Calcd. for C₁₅H₂₅Si⁺: 233.1720; Found: 233.1720. **7d** (Z)-1-triethylsilyl-2-(2-naphthyl)ethene *(New Compound)*: ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.75 (s, 1H, Ar*H*), 7.60-7.56 (m, 3H, Ar*H* and C*H*=CHSi), 7.42 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.26-7.20 (m, 2H, Ar*H*), 5.88 (d, *J* = 15.2 Hz, CH=C*H*Si), 0.93 (t, *J* = 7.9 Hz, 9H, SiCH₂C*H*₃), 0.64 (q, *J* = 7.9 Hz, 6H, SiC*H*₂CH₃). ¹³C {¹H} NMR (125 MHz, C₆D₆, ppm): δ 148.4 (*C*H=CH), 138.3, 133.7, 133.3, 129.8, 128.3, 128.0, 127.2, 126.5, 126.4, 126.2 (*Ar*), 7.8, 5.3 (Si*Et*₃). HRMS (*m*/*z*): [M+MeCN+H]⁺ Calcd. for C₂₀H₂₈SiN⁺: 310.1986; Found: 310.1984.

7e (*Z*)-1-triethylsilyl-1-hexene^[6] (*CAS: 62621-38-9*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 6.41 (dt, *J* = 14.4, 7.2 Hz, 1H, CH₂C*H*=CH), 5.51 (d, *J* = 14.1 Hz, 1H, CH=C*H*Si), 2.11 (q, *J* = 7.0 Hz, 2H, C*H*₂CH=CH), 1.36-1.26 (m, 4H, C*H*₂C*H*₂CH₃), 1.02 (t, *J* = 8.0 Hz, 9H, SiCH₂C*H*₃), 0.87 (t, *J* = 7.1 Hz, 3H, CH₂CH₂CH₃), 0.67 (q, *J* = 7.9 Hz, 6H, SiC*H*₂CH₃). ¹³C {¹H}NMR (125 MHz, C₆D₆, ppm): δ 150.7, 125.2 (*C*H=*C*H), 34.3, 32.4, 22.9, 14.3 (*C*H₂CH₂CH₂CH₃), 7.9, 5.2 (Si*Et*₃).HRMS (*m*/*z*): [M+MeCN+H]⁺ Calcd. for C₁₂H₂₆SiN⁺: 212.1829; Found: 212.1825.

7f (*Z*)-1-ethyldimethylsilyl-1,2-diphenylethene (*New Compound*): ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.46-7.37 (m, 8H, Ar*H* and C*H*=CHSi), 7.32-7.29 (m, 3H, Ar*H*), 0.87 (t, *J* = 7.9 Hz, 3H, SiCH₂C*H*₃), 0.51 (q, *J* = 7.9 Hz, 2H, SiC*H*₂CH₃), 0.01 (s, 6H, Si(CH₃)₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 147.3, 146.5 (*C*=*C*), 145.4, 140.0, 128.5, 127.9, 127.8, 127.2, 127.1, 125.7 (*Ar*), 8.3, 7.3 (Si*Et*), -1.6 (Si*Me*₂). HRMS (*m*/*z*): [M+MeCN+H]⁺ Calcd. for C₂₀H₂₈SiN⁺: 310.1986; Found: 310.1984. HRMS (*m*/*z*): [M+H]⁺ Calcd. for C₂₀H₂₇Si⁺:295.1877; Found: 295.1873.

7g triethyl(phenethyl)silane^[7] (*CAS: 14355-62-5*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.40 (t, *J* = 7.5 Hz, 2H, Ar*H*), 7.34 (d, *J* = 7.3 Hz, 2H, Ar*H*), 7.29 (t, *J* = 7.2 Hz, 1H, Ar*H*), 2.78-2.74 (m, 2H, CH₂CH₂Si), 1.11 (t, *J* = 8.0 Hz, 9H, SiCH₂CH₃), 1.06-1.02 (m, 2H, CH₂CH₂Si),

13

0.70 (q, J = 8.0 Hz, 6H, SiC H_2 CH₃). ¹³C{¹H}NMR (125 MHz, CDCl₃, ppm): δ 145.7, 128.4, 127.8, 125.6 (*Ar*), 30.2 (CH₂CH₂Si), 13.8 (CH₂CH₂Si), 7.5, 3.4 (Si*Et*₃). HRMS (*m/z*): [M+MeCN+H]⁺Calcd. for C₁₆H₂₈SiN⁺:262.1986; Found: 262.1984.

7h 2-(triethylsilyl)bicyclo[2.2.1]heptane^[8] (*CAS: 164859-22-7*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 2.21 (br, 1H, norbornane*H*), 2.14 (br, 1H, norbornane*H*), 1.53-1.51 (m, 2H, norbornane*H*), 1.40-1.31 (m, 2H, norbornane*H*), 1.21-1.17 (m, 3H, norbornane*H*), 1.10-1.08 (m, 1H, norbornane*H*), 0.96 (t, *J* = 7.9 Hz, 3H, SiCH₂CH₃), 0.52-0.47 (m, 1H, norbornane*H*, overlapped), 0.47 (q, *J* = 7.8 Hz, 2H, SiCH₂CH₃), -0.05 (d, *J* = 10.2 Hz, 6H, Si*Me*₂). ¹³C {¹H} NMR (125 MHz, CDCl₃, ppm): δ 38.3, 38.2, 37.3, 34.6, 32.8, 28.3, 28.2 (norbornane*C*), 7.8, 6.4 (Si*Et*), -4.7, -4.9 (Si*Me*₂). HRMS (*m*/*z*): [M+MeCN+Na]⁺ Calcd. for C₁₃H₂₅SiNNa⁺: 246.1648; Found: 246.1642.

X-ray Crystallography

	1	2	3
CCDC	2164047	2175593	2177643
Empirical formula	C36H3Al3F30	$C_{26}H_{21}AlF_{10}N_4$	$C_{32}H_{18}Al_2F_{20}O_2$
Formula weight	1086.32	606.45	868.42
Temperature, K	100	150.15	150.0
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /c	<i>P</i> -1
a, Å	10.9346(10)	11.6102(5)	12.0639(4)
b, Å	11.6435(11)	25.9241(10)	18.5498(6)
c, Å	15.7246(14)	11.8202(5)	24.2232(8)
α, deg	94.033(5)	90	84.238(2)
β, deg	104.990(5)	113.3690(2)	76.575(2)
γ, deg	99.074(5)	90	72.095(2)
V, Å ³	1896.7(3)	3265.9(2)	5014.8(3)
Z	2	4	6
$D_{calcd}, g/cm^3$	1.902	1.233	1.725
µ/mm ⁻¹	2.619	0.319	2.141
F(000)	1056.0	1232.0	2592.0
$ heta$ range, $^\circ$	2.929 - 71.641	2.035 - 28.283	3.082 - 68.232
Index ranges	$\text{-13} \le h \le \text{13}$	$\text{-}15 \leq h \leq 15$	$-14 \leq h \leq 14$
	$-14 \leq k \leq 14$	$-34 \le k \le 34$	$-22 \leq k \leq 22$
	$-19 \le l \le 19$	$-15 \le l \le 15$	$-29 \le l \le 29$
Reflections collected	66190	73711	95193
Independent reflections	7317	8095	18346
	$R_{\text{int}} = 0.0984$	$R_{\text{int}} = 0.1038$	$R_{\text{int}}=0.0684$
	$R_{sigma} = 0.0574$	$R_{\text{sigma}}=0.0669$	$R_{\text{sigma}} = 0.0484$
Data/restraints/parameters	7317/0/634	8095/0/373	18346/0/1531
Goodness-of-fit on F ²	1.065	1.004	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0654$	$R_1 = 0.0595$	$R_1 = 0.0946$
	$wR_2 = 0.2023$	$wR_2 = 0.1546$	$wR_2 = 0.2705$
Final R indexes [all data]	$R_1 = 0.0935$	$R_1 = 0.1146$	$R_1 = 0.1074$
	$wR_2 = 0.2196$	$wR_2 = 0.1810$	$wR_2 = 0.2814$
Largest diff. peak/hole, e/Å-3	0.66/-0.47	0.70/-0.28	1.17/-0.56

 Table S2. Crystal data and structure refinement details for compounds 1-3

	4	5
CCDC	2164050	2175577
Empirical formula	$C_{40}H_8Al_2Br_2F_{20}$	C29H14AlClF10O
Formula weight	1082.24	630.83
Temperature, K	100.00	150.00
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a, Å	10.8687(4)	11.3773(5)
b, Å	11.0798(5)	11.6740(5)
c, Å	11.7308(5)	11.8396(5)
α, deg	86.250(2)	110.793(2)
β, deg	63.214(2)	104.745(2)
γ, deg	61.222(2)	107.462(2)
V, Å ³	1084.39(8)	1282.28(10)
Z	1	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.657	1.634
µ/mm ⁻¹	3.836	2.552
F(000)	524.0	632.0
heta range, °	4.303 - 70.315	4.368 - 70.132
Index ranges	$\text{-13} \le h \le \text{13}$	$\text{-13} \le h \le 13$
	$-13 \le k \le 13$	$\text{-}14 \leq k \leq 14$
	$-14 \le l \le 14$	$-13 \le l \le 14$
Reflections collected	38344	17723
Independent reflections	4129	4860
	$R_{int}=0.0431$	$R_{int} = 0.0421$
	$R_{sigma} = 0.0191 $	$R_{sigma} = 0.0341$
Data/restraints/parameters	4129/1/299	4860/1/379
Goodness-of-fit on F ²	1.071	1.052
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0298$	$R_1 = 0.0469$
	$wR_2 = 0.0839$	$wR_2 = 0.1376$
Final R indexes [all data]	$R_1 = 0.0311$	$R_1 = 0.0496$
	$wR_2 = 0.0854$	$wR_2 = 0.1395$
Largest diff. peak/hole, e/Å-3	0.41/-0.39	1.18/-0.69

Table S3. Crystal data and structure refinement details for compounds 4 and 5

Figure S1. Thermal ellipsoid plot for **1** with the anisotropic displacement parameters depicted at the 30% probability level.

Figure S2. Thermal ellipsoid plot for **1B** with the anisotropic displacement parameters depicted at the 30% probability level.

Figure S3. Thermal ellipsoid plot for **2** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms except that linked to Al are omitted for clarity.

Figure S4. Thermal ellipsoid plot for **3** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

Figure S5. Thermal ellipsoid plot for **4** with the anisotropic displacement parameters depicted at the 30% probability level. Disorders and hydrogen atoms are omitted for clarity.

Figure S6. Thermal ellipsoid plot for **5** with the anisotropic displacement parameters depicted at the 30% probability level. Hydrogen atoms are omitted for clarity.

NMR Spectra

Figure S7. ¹H NMR spectrum of 1 in C₆D₆

Figure S8. ¹³C NMR spectrum of 1 in C₆D₆

Figure S9. ¹⁹F NMR spectrum of 1 in C_6D_6

Figure S10. ¹H NMR spectrum of 2 in C_6D_6

040000004	000000000000000000000000000000000000000
\circ	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
L @ @ U U @ L L L	000000000000000000000000000000000000000
000000000000000000000000000000000000000	

Figure S12. ¹⁹F NMR spectrum of 2 in C_6D_6

Figure S13. ¹H NMR spectrum of 3 in C₆D₆

Figure S14. ¹³C NMR spectrum of 3 in C₆D₆

Figure S15. ¹⁹F NMR spectrum of **3** in C_6D_6

Figure S16. ¹H NMR spectrum of 4 in C₆D₆

Figure S17. 13 C NMR spectrum of 4 in C₆D₆

40	008 112 90 90
222	000000
Υ	$\vee \lor$

Figure S18. ¹⁹F NMR spectrum of 4 in C_6D_6

Figure S19. ¹H NMR spectrum of 5 in C₆D₆

Figure S20. ¹³C NMR spectrum of 5 in C_6D_6

Figure S21. ¹⁹F NMR spectrum of 5 in C₆D₆

Figure S22. ${}^{31}P{}^{1}H{}^{33}$ NMR spectrum of the reaction mixture of 1 and Et₃PO in C₆D₆

Figure S23 ¹H NMR spectrum of 1-d in C_6D_6

Figure S24 19 F NMR spectra of 1-d (top) and 1 (bottom) in C₆D₆

Figure S25 ¹H NMR spectrum of 7a in CDCl₃

Figure S26¹³C NMR spectrum of 7a in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Figure S28 ¹³C NMR spectrum of 7b in CDCl₃

Figure S29 ¹H NMR spectrum of 7c in C_6D_6

Figure S30 13 C NMR spectrum of 7c in C₆D₆

Figure S31. ¹H NMR spectrum of 7d in C_6D_6

Figure S32. ¹³C NMR spectrum of 7d in C_6D_6

Figure S33. ¹H NMR spectrum of 7e in C₆D₆

Figure S34. ¹³C NMR spectrum of 7e in C_6D_6

Figure S35. ¹H NMR spectrum of 7f in C₆D₆

Figure S36. ¹³C NMR spectrum of 7f in C_6D_6

Figure S37. ¹H NMR spectrum of 7g in C₆D₆

Figure S38. ¹³C NMR spectrum of 8g in C_6D_6

Figure S39. ¹H NMR spectrum of 7h in C₆D₆

Figure S40. ¹³C NMR spectrum of 7h in C_6D_6

Computational Details

Density functional theory (DFT) calculations were carried out using the Gaussian 16 package^[9]. Geometry optimizations were performed with the hybrid B3LYP density functional augmented with the D3BJ version of Grimme's empirical dispersion correction^[10]. The Def2-SVP basis set was employed for all the atoms^[11]. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum) and provide the thermal corrections of Gibbs free energy. The single-point energy calculations were performed at the B3LYP(D3BJ)/def2-TZVP level of theory for solution-phase (fluorobenzene). The gas-phase geometry was used for all the solution phase calculations. The SMD method was used with the corresponding solvent^[12], while Bondi radii^[13] were chosen as the atomic radii to define the molecular cavity. The corrections of Gibbs free energy or enthalpy from frequency calculations were added to the singlepoint energies to obtain the Gibbs free energy or enthalpy in solution, respectively. The FIA calculations were performed at the B3LYP/def2-TZVP level of theory.

Natural bond orbital (NBO) calculations were carried out using NBO 7.0 program at the B3LYP/def2-TZVP level of theory^[14]. Quantum theory of atoms in molecules (QTAIM) analysis^[15] was carried out using Amsterdam Modeling Suite (ADF/2019.304)^[16] at the B3LYP/TZP level of theory using the B3LYP/def2-TZVP optimized geometries. Optimized structures were visualized by IBOview program.^[17] Intrinsic bond orbitals (IBOs) were carried out using ORCA program at the B3LYP/def2-SVP level of theory.^[18]

Species	Thermal Corrections of Gibbs	Solvation Energies (Hartree)
	Free Energies (Hartree)	SMD (fluorobenzene)
HAl(C ₆ F ₅) ₂	0.054944	-1699.300517
1	0.218765	-5097.953121
HB(C ₆ F ₅) ₂	0.064859	-1481.680492
1-B-trimer	0.245402	-4445.005072
1-Al-dimer	0.136728	-3398.63002
1-B-dimer	0.154919	-2963.373925

Table S4. Energy of Intermediates for the trimerization of $HAl(C_6F_5)_2$ and $HB(C_6F_5)_2$.

Figure S41. The energies for di- and trimerization of the monomers $HAl(C_6F_5)_2$ and $HB(C_6F_5)_2$.

Species	Sum of electronic and	△H (H:	riangle H for the	The isodesmic
	thermal Enthalpies	Enthalpy,	TMS-system	FIA value
	(Hartree)	kJ/mol)	(CCDC(T)/CBS,	
			kJ/mol)	
HB(C ₆ F ₅) ₂	-1481.553765			
HAI(C ₆ F ₅) ₂	-1699.167165			
HAl(C ₆ F ₅) ₂ F ⁻	-1799.242686	445.2	952.5	507.3
HB(C ₆ F ₅) ₂ F ⁻	-1581.591727	543.8	952.2	408.7
Me ₃ SiF	-509.189459			
Me ₃ Si ⁺	-408.944369			

Table S5. Enthalpy of Intermediates for the FIA of $HAl(C_6F_5)_2$ and $HB(C_6F_5)_2$.

Table S6. The selected NBO charges of $HAl(C_6F_5)_2$

Atom	No	Charge	Core	Valence	Rydberg	Total
Al	1	1.549910	9.999940	1.434850	0.015300	11.450090
Н	24	-0.375410	0.000000	1.371620	0.003790	1.375410

Table S7. The selected NBO charges of $HB(C_6F_5)_2$

Atom	No	Charge	Core	Valence	Rydberg	Total
Н	23	-0.03482	0.00000	1.03253	0.00229	1.03482
В	24	0.57015	1.99997	2.41841	0.01147	4.42985

Cartesian coordinates

1:

Al	-0.15293600	1.60866500	-0.98487200
Al	0.00004300	-0.00129400	1.80654700
Al	0.15254100	-1.60693000	-0.98747700
F	-2.75842200	-0.84124900	-0.31652700
F	-3.35791300	-2.79779600	4.73394600
F	2.75819700	0.84190900	-0.31587100
F	-2.50414600	1.95318400	2.22866400
F	4.79500900	-1.55140100	3.59323300
F	0.45960900	4.30519900	-2.55549200
F	2.80779600	5.50119700	-3.10766800
F	1.05815600	2.38639500	3.35799500
F	5.22818100	0.81775400	4.84688000
F	-5.22603500	-0.82623500	4.84884600
F	4.05356700	-5.08757700	-0.49183200
F	2.50196900	-1.95830500	2.22758800
F	-4.79613300	1.54349000	3.59514200
F	-1.05476300	-2.38988900	3.35821000
F	1.61970700	-4.03073300	0.07912800
F	-5.11194000	-2.04557600	-0.87957000
F	5.13631800	4.38189400	-2.27473200
F	3.36233900	2.79151700	4.73280400
F	5.11156400	2.04718700	-0.87744000
F	-1.62052500	4.03057500	0.08574000
F	-2.37179700	0.60850200	-3.07030000
F	5.63636800	-3.89468600	-2.35122500
F	2.37161800	-0.60360300	-3.07125800
F	-0.46042700	-4.30056600	-2.56288100
F	-4.05449800	5.08796400	-0.48354500
F	-2.80873500	-5.49561600	-3.11651800
F	-5.13705400	-4.37780500	-2.28095200
F	-5.63707500	3.89789800	-2.34495000
F	-4.79367300	1.66049500	-3.63355300
F	4.79335000	-1.65504500	-3.63616800
С	1.70806800	0.20470400	2.75168800
С	4.09855000	0.62218000	4.17497600
С	2.74592800	2.00475100	-1.01023200
С	-1.70745800	-0.20893100	2.75230300
С	-1.52842700	-2.52999500	-1.41352700

С	-3.87414200	0.58274700	3.53421500
С	-1.92637500	2.28588300	-1.46419900
С	-2.68858100	0.76711900	2.83907400
С	-2.39869100	3.42856500	-0.83580000
С	-2.74634100	-2.00287900	-1.01291700
С	3.63458800	-3.98759400	-1.11583200
С	3.87411700	-0.58958300	3.53271700
С	-3.14037800	-1.63602100	4.11730900
С	2.68806800	-0.77251400	2.83803900
С	-4.09690400	-0.62930000	4.17651100
С	-1.97335700	-1.40087000	3.40909600
С	1.97561400	1.39629600	3.40842700
С	1.52791100	2.53257500	-1.40958300
С	1.59097700	3.72353400	-2.12202900
С	3.14319300	1.63003100	4.11619500
С	1.92591300	-2.28354000	-1.46791500
С	4.44523700	-3.37884300	-2.06683700
С	-3.96695400	-2.59436500	-1.28633000
С	2.78733600	4.35918200	-2.42162400
С	-1.59166600	-3.71968200	-2.12806700
С	-2.76549200	1.71737200	-2.40906600
С	3.96648000	2.59670900	-1.28293500
С	2.39802900	-3.42733500	-0.84139000
С	-4.44587800	3.38178100	-2.06138500
С	3.98100800	3.78888400	-1.99724900
С	-3.98167000	-3.78528800	-2.00274500
С	-2.78811200	-4.35481300	-2.42845300
С	-4.01217700	2.23715400	-2.71941200
С	2.76512700	-1.71359300	-2.41182700
С	-3.63533700	3.98907100	-1.10936700
С	4.01174200	-2.23307300	-2.72299300
Н	0.13992000	-1.25248900	0.67346700
Н	-0.14047700	1.25180400	0.67562000
Н	-0.00004700	0.00132000	-1.50590600

1-B:

F	2.64959800	-1.12407100	-0.64075700
F	4.78441900	2.33083100	-2.12155900
F	-2.64741100	0.91476700	0.66153300
F	1.98731500	1.80955200	2.48934700
F	-1.23439300	5.76865600	-1.50662300
F	-1.15378800	-3.25948600	2.35351100

F	-3.60537700	-3.77856800	3.17916700
F	-1.05878800	2.17322100	2.55577700
F	-2.44903400	6.31096000	0.86823900
F	6.01273100	2.71711300	0.27611600
F	-4.43838400	1.21385900	-3.26069400
F	0.08182800	3.45348500	-1.84608700
F	4.58996500	2.44310500	2.58334600
F	2.20548700	1.66823000	-2.22855300
F	-1.90012900	1.58951500	-2.47620300
F	4.47843100	-2.12796900	-2.28452500
F	-5.61468000	-1.98780400	2.78465000
F	-2.34032300	4.49729900	2.89228300
F	-5.09218800	0.36244400	1.50942100
F	0.48182100	-0.03185900	3.73429700
F	1.34694400	-3.19959600	0.35119100
F	-5.59223700	-1.23782400	-3.02987300
F	-1.62693100	-2.94359200	-1.19946700
F	-0.45733900	-1.00347000	-4.22446500
F	2.38747200	-1.15139800	5.26665000
F	1.39159600	-1.98674800	-5.83489200
F	3.87836700	-2.57138800	-4.90380600
F	3.78895400	-3.29345900	4.34359800
F	3.25055600	-4.30872000	1.87914500
F	-4.17234600	-3.31601300	-1.99177300
С	-0.46651600	2.70177800	0.32434100
С	-1.81152200	5.15818400	0.69448300
С	-2.82181400	-0.24715400	1.30505400
С	1.99399000	1.65278400	0.13501000
С	0.98049400	-1.05485200	-2.32010400
С	4.00194800	2.23868400	1.40539700
С	0.92864900	-1.49360700	1.93588700
С	2.66158800	1.89330400	1.33381400
С	1.19678800	-1.04385300	3.22712100
С	2.28112200	-1.35501800	-1.90931800
С	-3.74797700	0.19840200	-2.74507200
С	-1.19426600	4.87776100	-0.51644000
С	4.09828000	2.18536400	-0.98807700
С	-0.53098400	3.67139600	-0.67473800
С	4.72795700	2.38345100	0.23204300
С	2.75725100	1.83416800	-1.01704700
С	-1.08655300	3.03214600	1.52747700
С	-1.74134500	-1.10871200	1.50280000
С	-2.07455900	-2.31261300	2.14253300
С	-1.75385100	4.23084100	1.72526200

С	-1.67897200	-0.65452200	-1.77794600
С	-4.33881000	-1.05298700	-2.63133600
С	3.25696000	-1.86505400	-2.74618400
С	-3.35604200	-2.61773600	2.57698200
С	0.73330400	-1.28213300	-3.68063000
С	1.63227200	-2.62351000	1.52862400
С	-4.11291100	-0.51402200	1.72975500
С	-2.43914200	0.37304700	-2.32409500
С	2.86783500	-2.72049700	3.57659400
С	-4.38436600	-1.71016400	2.37578900
С	2.95661200	-2.08793500	-4.08243700
С	1.68711500	-1.78958500	-4.55143100
С	2.59722700	-3.23144300	2.31402700
С	-2.30666400	-1.89451500	-1.69323500
С	2.15673900	-1.62366400	4.04252900
С	-3.61271000	-2.11120100	-2.10202100
Н	0.08336300	0.77835100	-1.01891400
Н	0.02669400	0.51205100	1.05774100
Н	-0.00183800	-1.16509800	-0.19040300
В	0.42370800	1.40265300	0.12135700
В	-0.16041800	-0.52373200	-1.35553300
В	-0.23132500	-0.82375100	1.09180300

HAI(C₆F₅)₂:

Al	0.00174100	-1.71025100	-0.00270900
F	2.68265100	-2.08017400	1.51336800
F	-3.19448700	2.07337900	1.94759700
F	-0.85193900	0.72679600	1.80120200
F	5.02616600	-0.73133600	1.36027200
F	-5.27159700	1.35297000	0.35361500
F	-2.66462900	-2.05506800	-1.54950100
F	0.83730200	0.76181900	-1.76898300
F	3.17677000	2.11295500	-1.91103400
F	5.26879900	1.36518600	-0.34951900
F	-5.01137800	-0.71120800	-1.39267300
С	1.68648400	-0.70308800	-0.12292900
С	2.78526500	-1.04926100	0.65042500
С	-3.05545600	1.06007000	1.09160000
С	-1.68539000	-0.70743000	0.12084200
С	-4.12095700	0.69150400	0.27872100
С	3.99398000	-0.37376600	0.59524800
С	1.85831100	0.37676500	-0.97686800
С	-1.86587200	0.35600400	0.99315200

С	4.11949400	0.70125900	-0.27662800
С	3.04637200	1.08376500	-1.07284100
С	-2.77659100	-1.04021200	-0.66860900
С	-3.98651000	-0.36699800	-0.61186300
Н	0.00364800	-3.27628800	-0.00537200

HAI(C₆F₅)₂F⁻:

F	2.74959700	-2.36222200	0.36170100
F	-2.88916200	0.25224700	2.95107200
F	-0.74821600	-0.87606500	1.77687400
F	4.86891200	-0.91284700	1.13416000
F	-4.96521400	1.15238600	1.43436300
F	-2.75308300	-0.21413900	-2.46698100
F	0.75507000	1.54273700	-1.43418200
F	2.89226300	2.98104900	-0.65062400
F	4.96202800	1.76160500	0.63828600
F	-4.87729200	0.90942600	-1.27595000
С	1.64490300	-0.47502700	-0.56678500
С	2.72637000	-1.04124300	0.08930200
С	-2.83784700	0.12948400	1.61136500
С	-1.64479300	-0.59696200	-0.40019400
С	-3.89697100	0.58976800	0.84494000
С	3.84015700	-0.31847500	0.50008800
С	1.75359600	0.88678200	-0.79368100
С	-1.74884600	-0.44814700	0.97334300
С	3.89458000	1.04337200	0.25047400
С	2.83977700	1.65807300	-0.40548600
С	-2.72960700	-0.12182100	-1.11866100
С	-3.84555700	0.46389400	-0.53378700
Η	-0.02385000	-1.44352100	-2.84005700
Al	-0.00287000	-1.50035000	-1.24561500
F	0.01471700	-3.08641200	-0.65454900

HB(C₆F₅)₂:

F	-2.36679900	2.46174200	1.08520400
F	3.10089200	-2.33067400	1.35514100
F	0.63873100	-1.29016900	1.23313500
F	-4.82318000	1.39278700	0.95632400
F	5.19806500	-1.00405500	0.26039200
F	2.36688700	2.46176100	-1.08516400
F	-0.63874600	-1.29026900	-1.23304700
F	-3.10087300	-2.33065800	-1.35518400

F	-5.19810500	-1.00397000	-0.26048700
F	4.82312700	1.39281500	-0.95639200
С	-1.38523200	0.62284700	-0.04294000
С	-2.50791600	1.27936200	0.47854900
С	2.90211600	-1.16186800	0.74586100
С	1.38521900	0.62289100	0.04305100
С	3.98026400	-0.48145200	0.19311400
С	-3.78504000	0.74650800	0.42588800
С	-1.63574100	-0.60955200	-0.65745700
С	1.63576300	-0.60954100	0.65757000
С	-3.98025700	-0.48145900	-0.19314900
С	-2.90212600	-1.16187000	-0.74585400
С	2.50791000	1.27939200	-0.47848700
С	3.78505600	0.74650700	-0.42589300
Н	-0.00005300	2.50724700	-0.00042000
В	-0.00000600	1.32167500	-0.00008000

HB(C₆F₅)₂F⁻:

F	2.79348300	-2.45048000	0.37681500
F	-3.59210000	1.26073600	2.18073500
F	-1.14491600	0.17431400	2.23947000
F	5.06227100	-1.05760400	0.15133500
F	-5.16012500	1.00486100	-0.03542600
F	-1.80408900	-1.48395600	-2.15887800
F	0.31222800	1.51607000	-0.45479200
F	2.58840000	2.86861600	-0.68989700
F	4.99377300	1.61540900	-0.38870400
F	-4.23180400	-0.37472600	-2.19777900
С	1.42267500	-0.54676200	-0.00010800
С	2.68113900	-1.13183200	0.13322200
С	-3.13745000	0.56630900	1.11953200
С	-1.35804600	-0.74201900	0.05977200
С	-3.93736000	0.44460700	-0.00554900
С	3.87520500	-0.43586000	0.01232700
С	1.45433600	0.81209300	-0.28377700
С	-1.87927200	-0.01817600	1.12703600
С	3.84816900	0.92144600	-0.26537700
С	2.62579700	1.54978700	-0.41776700
С	-2.19388800	-0.82717600	-1.04566600
С	-3.46005500	-0.25578700	-1.09921300
Н	0.15037300	-2.33644200	-0.75523500
F	0.15486800	-2.18822000	1.42019200
В	0.09084100	-1.52970500	0.15220300

SiMe₃F:

Si	0.000019	-0.000013	0.025181
С	0.375703	1.746070	-0.522899
Η	0.392067	1.821151	-1.613304
Н	-0.376823	2.445576	-0.152054
Η	1.349143	2.074357	-0.151722
С	-1.700069	-0.547623	-0.522812
Н	-1.773447	-0.570881	-1.613215
Η	-1.929596	-1.549119	-0.152059
Н	-2.471035	0.131243	-0.151485
С	1.324255	-1.198422	-0.522962
Η	2.306388	-0.896395	-0.152381
Н	1.121926	-2.205541	-0.151607
Η	1.380822	-1.250253	-1.613372
F	0.000107	-0.000010	1.645633

SiMe₃⁺:

Si	-0.000043	-0.000073	0.000051
С	1.414981	-1.159797	0.000510
Н	2.058091	-0.955040	0.864157
Н	1.109937	-2.205368	0.017681
Н	2.033857	-0.979348	-0.886480
С	-1.712000	-0.645336	-0.000338
Н	-1.864204	-1.277022	0.882786
Н	-2.464668	0.142025	-0.012158
Н	-1.857725	-1.299120	-0.868048
С	0.297069	1.805201	-0.000210
Н	1.355325	2.063379	-0.004122
Н	-0.189254	2.256894	-0.872627
Η	-0.181057	2.254207	0.878329

Reference

- [1] S. Styra, M. Radius, E. Moos, A. Bihlmeier and F. Breher, Chem. Euro. J., 2016, 22, 9508-9512.
- [2] H. Gao, H. Hu, F. Zhu and Q. Wu, Chem. Commun., 2012, 48, 3312-3314.
- [3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- [4] G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
- [5] G. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- [6] X. Zhao, D. Yang, Y. Zhang, B. Wang and J. Qu, Org. Lett., 2018, 20, 5357-5361.
- [7] N. Sarkar, R. K. Sahoo, S. Mukhopadhyay and S. Nembenna, Eur. J. Inorg. Chem., 2022, 2022, e202101030.
- [8] D. Roth, J. Stirn, D. W. Stephan and L. Greb, J. Am. Chem. Soc., 2021, 143, 15845-15851.
- [9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09, Revision E.01.*; Gaussian Inc., : Wallingford CT, 2016.
- [10] (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- [11] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- [12] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- [13] A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
- [14] J. K. B. E. D. Glendening, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and C. R. L. P. Karafiloglou, F. Weinhold, NBO 7.0, University of Wisconsin: Madison, WI. 2018.
- [15] (a) R. F. W. Bader, Monatsh. Chem., 2005, 136, 819-854; (b) R. F. W. Bader, Chem. Rev., 1991, 91, 893-928.
- [16] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967
- [17] (a) E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437; (b) G. Knizia and J. E. M. N. Klein, Angew. Chem. Int. Ed., 2015, 54, 5518-5522.
- [18] F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.