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Experimental Section

Materials

Methacrylic anhydride, lipoic acid, triethanolamine (TEA), 1,4-butanediol (BDO)1,8-

octanediol, 4-dimethylaminopyridine (DMAP), N-(3-Dimethylaminopropyl)-N'-

ethylcarbodiimide hydrochloride (EDCI), sodium chloride (NaCl), sodium sulfate 

(Na2SO4), 2-hydroxyethyl methacrylate (HEMA), and poly (ethylene glycol) methyl 

ether acrylate (PEGA, ~480 g/mol) and 2,2-Azobis(2-methylpropionitrile) (AIBN) 

were purchased from Aldrich and used as received. HEMA and PEGA were passed a 

column of basic aluminum oxide to remove the inhibitor. N, N-dimethylformamide 

(DMF), dichloromethane (DCM), petroleum ether (PE), ethyl acetate (EA) and 

chloroform (CHCl3) were directly used. Tetrahydrofuran (THF) was refluxed over 

sodium/benzophenone and distilled under a nitrogen atmosphere just before use.

Characterization

The Fourier-transform infrared spectroscopy (FTIR) measurements were recorded on 

a spectrometer (Bruker Vertex 70, Germany). 1H NMR and 13C NMR were recorded 

on a spectrometer (Bruker Avance III 400 MHz, Germany) with CDCl3 and DMSO-d6 

as solvent and TMS as internal standard. The size exclusion chromatography (SEC) 

measurements were recorded on a spectrometer (Waters 1515) using N, N-

dimethylformamide (DMF) as the eluent with a flow rate of 0.3 mL/min at 35 ℃. The 

system was calibrated with linear polystyrene standards. The stress-strain curves of the 

hydrogel (length 25 mm × width 3 mm × thickness 0.3 mm) were recorded at room 

temperature using the tensile testing machine (Instron 5943, Instron, Norwood, MA, 

USA), using a 10 N load cell and loading rate of 10mm min-1 according to ASTM 

D638-14. All the samples were measured for at least three times, the tensile properties 

were denoted by average values with standard deviation. Error bars of the machanical 

property data represent the standard deviation of the mean (N = 3). UV-vis absorption 

spectra were recorded by Agilent Cary 5000 UV-Vis-NIR spectrophotometer using a 

standard quartz cuvette (10 mm) or thin-film quartz cell. The structures of the hydrogel 
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were recorded Raman spectroscopy (Thermo Fisher Scientific DXR2xi) with a laser 

wavelength of 532nm. The self-healing process of hydrogel was observed by optical 

microscopy (Nikon ECLIPSE Ni). Wide-angle X-ray diffraction (WAXD) patterns 

were collected on a Bruker AXS D8 ADVANCE X-ray diffractometer with Cu Kα 

radiation (λ = 1.5418 Å). The diffraction data were collected in the range of 2θ = 10-

60° with a scan step size of 1° min-1. Rheological behaviors of hydrogels were measured 

with an DHR-1 rheometer (TA Instruments, USA) equipped with either a 25 mm 

parallel plate fixture. The fracture surface morphologies of hydrogels were observed by 

scanning electron microscope on SU8010 (SEM, Japan Hitachi) at an acceleration of 2 

KV.

Calculations

Swelling ratio (SR, %) was performed by immersing the sample (around 100.00mg) 

in deionized water (100ml) at room temperature, 60 °C for 12h. The swelling ratio was 

calculated according to the following equation

𝑆𝑅(%) = (𝑚𝑏 ‒ 𝑚𝑎)/𝑚𝑎 × 100%

Where ma is the initial mass of the samples, and mb is the mass after swelling.

The sample was photographed with an optical microscope at the fracture before and 

after healing. The formula for calculating the self-healing efficiency of rubber is 

expressed as

𝑆𝑒𝑙𝑓 ‒ ℎ𝑒𝑎𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = [𝜎(ℎ𝑒𝑎𝑙𝑒𝑑)/𝜎(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)] × 100%

Where σ(original) and σ(healed) are the tensile strength before and after healing, respectively.

Synthesis of 4-Hydroxybutyl methacrylate 

Methacrylic anhydride (8.40 ml, 55.48 mmol) was slow added dropwise to a cooled 

solution of 1, 4-butanediol (5.00 ml, 55.48 mmol) and TEA (7.70 ml, 55.48 mmol) in 

chloroform (50.00 ml). The reaction was stirred at room temperature for 48 h, extracted 

with DCM and dried with sodium sulfate, and evaporated to an oil which was 
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chromatographed on silica gel using hexanes/ethyl acetate (4:1) to give 3.89 g (44% 

yield) of clear oil.
1 H NMR (400 MHz, CDCl3) δ 6.04 (s, 1H), 5.50 (s, 1H), 4.12 (t, J = 6.4 Hz, 2H), 3.61 

(t, J = 6.4 Hz, 2H), 2.80 (s, 1H), 1.88 (s, 3H), 1.84 - 1.72 (m, 2H), 1.72 - 1.59 (m, 2H). 
13 C NMR (100 MHz, CDCl3) δ 167.6, 136.3, 125.4, 64.5, 62.0, 29.0, 25.0, 18.2.

Synthesis of 8-Hydroxyoctyl methacrylate 

Methacrylic anhydride (5.20 ml, 34.20 mmol) was slow added dropwise to a cooled 

solution of 1,8-Octanediol (5.00 g, 34.20 mmol) and TEA (4.70 ml, 34.20 mmol) in 

DMF (50.00 ml). The reaction was stirred at 60 ℃ overnight, extract with EA and dried 

with sodium sulfate, and evaporated to an oil which was chromatographed on silica gel 

using hexanes/ethyl acetate (4:1) to give 3.0 g (41% yield) of clear oil.
1H NMR (400 MHz, CDCl3) δ 6.10 (s, 1H), 5.55 (s, 1H), 4.06 (t, J = 6.7 Hz, 2H), 3.54 

(t, J = 6.7 Hz, 2H), 2.51 (s, 1H), 1.87 (s, 3H), 1.64 - 1.56 (m, 2H), 1.52 - 1.45 (m, 2H), 

1.34 (s, 8H). 13C NMR (100 MHz, CDCl3) δ 167.6, 136.4, 125.2, 64.7, 62.6, 32.6, 29.2, 

29.1, 28.5, 25.8, 25.6, 18.2.

Synthesis of HEMA-CnD

In a typical procedure for the synthesis process, HEMA-C2D was prepared by the 

literature1 as shown in Scheme S1. Briefly, a solution of lipoic acid (2.0 g, 9.7 mmol) 

and 2-hydroxyethyl methacrylate (1.20 ml, 9.7 mmol) in a mixture of DCM (30 mL) 

and the DMAP (0.6 g, 4.8 mmol) and EDCI (2.79 g, 14.5 mmol) was added as solids 

and stirred at 0 ℃ for 30 min and then stirred overnight at room temperature. After 

washing with 1M HCl (30 ml × 3), NaHCO3 (30 ml × 3), and brine, the organic layer 

and dried over Na2SO4, and evaporated at reduced pressure to give the crude product. 

The residue was without further purified by column chromatography to afford 96% 

yield of HEMA-C2D (2.96 g) as light-yellow oil. Other monomers were synthesized 

with a similar process.
1H NMR (400 MHz, CDCl3): δ 6.03 (s, 1H), 5.51 (s, 1H), 4.24 (s, 4H), 3.50 - 3.34 (m, 

1H), 3.12 - 2.98 (m, 2H), 2.32 - 2.41 (m, 1H), 2.26 (m, 2H), 1.85 (s, 3H), 1.28-1.82 (m, 
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7H). 13C NMR (100 MHz, CDCl3): δ 173.1, 167.0, 135.8, 126.0, 62.4, 61.9, 56.2, 40.1, 

38.4, 34.5, 33.8, 28.6, 24.5, 18.2.

HEMA-C4D
1H NMR (400 MHz, CDCl3) δ 6.02 (s, 1H), 5.49 (s, 1H), 4.05 (m, 2H), 4.12 (m, 2H), 

3.54 - 3.46 (m, 1H), 3.14 - 3.00 (m, 2H), 2.43 - 2.35 (m, 1H), 2.25 (m, 2H), 1.87 (s, 

3H), 1.85 – 1.79 (m, 1H), 1.46 - 1.73 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 173.4, 

167.3, 136.3, 125.4, 64.1, 63.8, 56.3, 40.2, 38.5, 34.6, 34.0, 28.7, 25.3, 25.3, 24.6, 18.3. 

HEMA-C8D
1H NMR (400 MHz, CDCl3) δ 5.98 (s, 1H), 5.44 (s, 1H), 3.89 (m, 2H), 4.09 (m, 2H), 

3.50 - 3.38 (m, 1H), 3.10 - 2.95 (m, 2H), 2.40 - 2.30 (m, 1H), 2.23 - 2.17 (m, 2H), 1.83 

(s, 3H), 1.80 - 1.75 (m, 1H), 1.63 - 1.18 (m, 18H). 13C NMR (100 MHz, CDCl3) δ 173.5, 

167.4, 136.4, 125.1, 64.6, 64.3, 56.3, 40.2, 38.5, 34.6, 34.0, 29.1, 29.1 28.7, 28.5, 28.5, 

25.8, 25.8, 24.7, 18.3.

Scheme S1. Synthesis of 4-hydroxybutyl methacrylate, 8-hydroxyoctyl methacrylate, 
HEMA-C2D, HEMA-C4D, and HEMA-C8D.

Synthesis of polymer PHEMA-xCnD (Scheme S2)

In a typical procedure for the synthesis process, PHEMA-0.2C4D was synthesized by 

free radical copolymerization of HEMA (0.63 g) and HEMA-C4D (2.0 g), 1 mol % 
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azobisisobutyronitrile (AIBN) (0.01 g) in 150 ml THF. The mixture was degassed by 

three freeze-pump-thaw cycles. The polymerization was carried out at 60 ℃ for 24 h 

under an argon atmosphere. The obtained product was precipitated twice into ethyl 

acetate to remove the unreacted monomer and impurities and then was dried in vacuo 

at room temperature to yield PHEMA-0.2C4D as yellow solid. Other copolymers with 

different compositions were synthesized by a similar process.
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Scheme S2. Synthesis of polymer PHEMA-xCnD.

Synthesis of polymer PHEMA-co-PPGEA-0.1C2D (Scheme S3)

Step 1: PHEMA-co-PPGEA was synthesized by free radical copolymerization of 

HEMA (5.26 g) and PEGA (3.87 g) in 50 ml THF and 1 mol % of AIBN (0.08 g) was 

used as an initiator. The mixture was degassed by three freeze-pump-thaw cycles. The 

polymerization was carried out at 60 oC for 24 h under an argon atmosphere. The 

obtained product was precipitated twice into petroleum to remove the unreacted 

monomer and impurities and then was dried in vacuo at room temperature to yield 

PHEMA-co-PPGEA as a white solid. The molar ratio of the two monomers in the 

copolymer was 1:0.2.

Step 2: Lipoic acid (0.17 g), copolymer PHEMA-co-PPEGA (5.00 g), and DMAP 

(0.05 g) were added into a 100 mL flask. Then 50 mL THF was injected into the flask. 

The mixture was cooled to 0 °C, and EDCI (0.24 g) was added. Subsequently, the 

mixture was stirred at rt for 24 h. After the desired time, the reaction mixture was 
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precipitated twice into ethyl acetate to remove the unreacted monomer and impurities 

and then was dried in vacuo at room temperature to yield PHEMA-co-PPGEA-0.1C2D 

as a yellow solid.
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Scheme S3. Synthesis of polymer PHEMA-co-PPEGA-0.1C2D.

Preparation of hydrogel film 

In a typical process, the copolymer PHEMA-0.2C4D was dissolved in DMF to form a 

homogeneous solution with a concentration of 200 mg/mL. Then, the PHEMA-0.2C4D 

solution was poured into a horizontally placed PTFE mold. After the solvent gradually 

evaporated at 60 ℃, the sample was immersed in a large amount of deionized water to 

obtain hydrogel film. The film was peeled from the PTFE after several hours; however, 

the swelling process was continued overnight to achieve equilibrium. Different 

amounts of polymer solution were added to the mold to give the hydrogel films with 

different thicknesses.



8

Characterization Data
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Figure S1. (a) 1H NMR (CDCl3, 400 MHz, 25 ℃) and (b) 13C NMR (CDCl3, 100 MHz, 

25 ℃) spectra of 4-hydroxybutyl methacrylate.
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Table S1 Characteristics of the PHEMA-xCnD polymers.

Sample Mn (Da)a PDIa

PHEMA-0.05C4D 27000 1.23

PHEMA-0.1C4D 26700 1.26

PHEMA-0.2C4D 27000 1.23

PHEMA-0.2C2D 27700 1.23

PHEMA-0.2C8D 27000 1.29

a Mn, SEC and PDI was determined by SEC (DMF, 25 ℃, PS standards).
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Figure S14. The transmission spectra of the PHEMA-0.2C4D-G hydrogel before and 

after immersing in water with thickness of ~200 μm. (Insert: photographs showing the 

hydrogel before and after immersing in water)
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Figure S15. (a) Stress-strain curves of the PHMEA-0.05C4D-G hydrogel with 

different UV irradiation time; (b-c) Young's modulus, breaking strain, tensile 

stress, and toughness of the PHEMA-0.05C4D-G hydrogel with different UV 

irradiation time. Error bars represent the standard deviation of the mean (N = 3).
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Figure S16. (a) Stress-strain curves of the PHMEA-0.1C4D-G hydrogel with 

different UV irradiation time; (b-c) Young's modulus, breaking strain, tensile 

stress, and toughness of the PHEMA-0.1C4D-G hydrogel with different UV 

irradiation time. Error bars represent the standard deviation of the mean (N = 3).
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Figure S17. (a) Stress-strain curves of the PHMEA-0.2C2D-G hydrogel with 

different UV irradiation time; (b-c) Young's modulus, breaking strain, tensile 
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stress, and toughness of the PHEMA-0.2C2D-G hydrogel with different UV 

irradiation time. Error bars represent the standard deviation of the mean (N = 3).
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Figure S18. (a) Stress-strain curves of the PHMEA-0.2C8D-G hydrogel with 

different UV irradiation time; (b-c) Young’s modulus, breaking strain, tensile 

stress, and toughness of the PHEMA-0.2C8D-G hydrogel with different UV 

irradiation time; (d) Compared enhancement of PHEMA-0.2CnD-G hydrogel’s 

Young’s modulus (E/E0), tensile stress (σb/σb0), and toughness (W/W0). Error 

bars represent the standard deviation of the mean (N = 3).
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Figure S19. (a) Frequency sweep (at 0.1% strain) and (b) strain sweep (at 1 Hz 

frequency) of the PHEMA-0.05C4D-G hydrogel before and after UV irradiation. 
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Figure S20. (a) Frequency sweep (at 0.1% strain) and (b) strain sweep (at 1 Hz 

frequency) of the PHEMA-0.1C4D-G hydrogel before and after UV irradiation.
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Figure S21. (a) Frequency sweep (at 0.1% strain) and (b) strain sweep (at 1 Hz 

frequency) of the PHEMA-0.2C2D-G hydrogel before and after UV irradiation.
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Figure S22. (a) Frequency sweep (at 0.1% strain) and (b) strain sweep (at 1 Hz 

frequency) of the PHEMA-0.2C8D-G hydrogel before and after UV irradiation.
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Figure S23. SEM micrograph of PHEMA-0.2C4D-G hydrogel cross section with 

different thickness after 30 min UV irradiation. (a) 200 μm, (b) 400 μm. For the 

hydrogel with the thickness of 400 μm, the UV light cannot penetrate the hydrogel 

within 30 min irradiation and result in the asymmetric structure due to the short 

penetration property of UV light.

Figure S24. SEM micrographs of (a-b) PHEMA-0.05C4D-G, (c-d) PHEMA-0.1C4D-

G, (e-f) PHEMA-0.2C4D-G hydrogel cross sections before and after the UV irradiation.
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Figure S25. SEM micrographs of (a-b) PHEMA-0.2C2D-G, (c-d) PHEMA-
0.2C4D-G, (e-f) PHEMA-0.2C8D-G hydrogel cross sections before and after the 
UV irradiation.
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Figure S26. (a) Photographs showing the process of the solvent exchange for 

fabrication of PHEMA-0.2C4D-D hydrogel; (b) Stress-strain curves of the PHMEA-

0.2C4D-G and PHEMA-0.2C4D-D hydrogel; (c-d) Comparing Young's modulus, 

breaking strain, tensile stress, and toughness of the PHEMA-0.2C4D-G and PHEMA-

0.2C4D-D hydrogel. Error bars represent the standard deviation of the mean (N = 3).
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Figure S27. (a) XRD patterns for PHEMA-0.2C4D-G hydrogel before and after UV 

irradiation.

The formation of hydrophobic domains in the original PHEMA-0.2C4D-G hydrogel 

was further confirmed by X-ray diffraction (XRD) (black line in Figure S27). The 

hydrogels showed short-range order and the broad peak on the XRD pattern (high-

angle, 2θ = 18.6o) reflects the association of the hydrophobic side chains. As 

documented in the literature,2-3 the position of this peak can reflect side-chain spacing 

d between alkyl side chains in the hydrophobic domains. According to the Bragg 

equation (2dsinθ=0.154 nm, where 0.154 nm is the wavelength of X-ray used for XRD 

collection), it can be calculated that d exhibited a small spacing with the value of 0.47 

nm. On the other hand, there is no obvious peak at the low-angle area. All of these 

indicated that the nano-domains might employed as the crosslinking junctions in the 

hydrogels. The XRD pattern of the reinforced PHEMA-0.2C4D-G hydrogel was almost 

the same as that of the original PHEMA-0.2C4D-G hydrogel, indicating the 

hydrophobic aggregation state was rarely affected during the oligomerization process.
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Figure S28. Water contents of the PHEMA-xCnD-G hydrogels with (a) different 

contents of 1,2-dithiolane rings and (b) different spacer lengths before and after the UV 

irradiation.
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Figure S29. Water contents of PHEMA-co-PPEGA-0.1C2D-G hydrogel before and 

after the UV irradiation.
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