Synthesis of Spirocyclic 1,2-Diamines by Dearomatising Intramolecular Diamination of Phenols

Anthony Aimon, Mark J =. Dow, Abigail R. Hanby, Ephraim A. Okolo, Christopher M. Pask, Adam Nelson* and Stephen P. Marsden*

Supporting Information

Contents

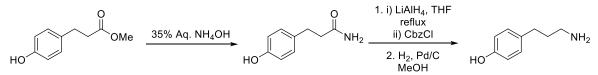
- 1 Table of contents
- 2 General experimental
- 3 Preparation of cyclisation precursors: compounds **1a-s**
- 21 Oxidative cyclisations: products **2a-s** (Tables 1 and 2)
- 30 Preparation and cyclisation of alternative cyclisation precursors (Scheme 1)
- 35 Functional group transformations on spirocyclic diamines (Scheme 2)
- 40 References
- 41 X-ray crystal structures
- 46 ¹H and ¹³C NMR spectra

General Experimental

All non-aqueous reactions were performed under an atmosphere of nitrogen unless otherwise stated. Water-sensitive reactions were performed in oven-dried glassware, cooled under nitrogen before use. Solvents were removed *in vacuo* using a Büchi rotary evaporator and a Vacuubrand PC2001 Vario diaphragm pump. A Genevac EZ-2 Elite centrifugal evaporator was used for the removal of MeOH–H₂O after Mass-Directed purification. Tetrahydrofuran (THF), CH₂Cl₂, toluene and CH₃CN were dried and purified by means of a Pure Solv MD solvent purification system (Innovative Technology Inc.). Anhydrous *N*,*N*-dimethylacetamide (DMA), *N*,*N*-dimethylformamide (DMF) and 1,4-dioxane was obtained in SureSeal bottles from Sigma-Aldrich. All other solvents used were of chromatography or analytical grade. Petrol refers to petroleum spirit (b.p. 40-60 °C). Commercially available starting materials were obtained from Sigma-Aldrich, Fluka, Acros or Alfa-Aesar and were used without purification unless stated.

Thin layer chromatography (TLC) was carried out on aluminium backed silica (Merck silica gel 60 F_{254}) plates supplied by Merck. Visualisation of the plates was achieved using an ultraviolet lamp ($\lambda_{max} = 254$ nm), KMnO₄, anisaldehyde or ninhydrin. LCMS analysis was generally carried out on an Agilent 1200 series LC system comprising a Bruker HCT Ultra ion trap mass spectrometer. The solvent system used was CH₃CN/H₂O + 0.1% formic acid with a Phenomenex Luna C18 50 × 2 mm 5 micron column.

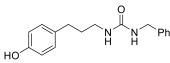
Flash chromatography was carried out using silica gel 60 (60-63 μ m particles) supplied by Merck or using Biotage silica or ISOLUTE C₁₈ pre-packed cartridges on a Flashmaster II or CombiFlash Companion. Strong cation exchange solid phase extraction (SCX-SPE) was carried out using pre-packed Discovery DSC-SCX cartridges supplied by Supleco. Mass-directed HPLC purification was carried out using an Agilent 1260 Infinity HPLC system comprising an Agilent 6120 Quadrupole LC/MS and Agilent G1968D active splitter.


Optical rotation measurements were carried out at the sodium D-line (589 nm) on a Schmidt and Haensch H532 or an Optical Activity AA-1000 polarimeter instrument; concentrations are g/100 mL, temperatures given in °C, optical rotations are given in 10^{-1} degcm²g⁻¹ (units are omitted). Infrared spectra were recorded on a Perkin-Elmer One FT-IR spectrometer with absorption reported in wavenumbers (cm⁻¹). Chiral HPLC was carried out on either an Agilent 1100 or an Agilent Infinity 1290 series HPLC system. Racemic standards were obtained by preparing samples of both enantiomers and then combining in an approx. 1:1 ratio.

High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics micrOTOF or Bruker MaXis Impact spectrometer with electrospray ionisation (ESI) source. Where EI ionisation was required, a Waters/Micromass GCT Premier spectrometer was used.

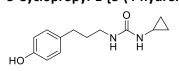
Proton (¹H) and carbon (¹³C) NMR spectral data were collected on a Bruker Advance 400, 500 or 600, Bruker DPX500 or DPX300 spectrometers. All ¹³C spectra are proton decoupled. Chemical shifts (δ) are quoted in parts per million (ppm) and referenced to the residual solvent peak. Coupling constants (J =) are quoted in Hertz (Hz) and splitting patterns reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Assignments were made with the aid of COSY, DEPT-135, HMQC, HMBC and NOESY experiments.

Preparation of cyclisation precursors 1a-s, 3 and 5



Methyl 3-(4-hydroxyphenyl)propionate (90.0 g, 500 mmol) was dissolved in 35% ammonium hydroxide (250 mL) and stirred vigorously overnight at rt. The reaction slurry was carefully poured into ice and conc. HCl (250 mL). Additional conc. HCl was then carefully added (until pH 4-6). The solution was extracted with EtOAc (3 × 300 mL), dried (Na₂SO₄) and concentrated *in vacuo* to give a thick oil that solidified upon standing. Recrystallization from EtOAc gave the primary amide **S1** as pale yellow cuboids (71 g, 430 mmol, 86%); mp (EtOAc): 118.9-119.6 °C, {Lit.¹ 119-121 °C}; IR (v_{max} /cm⁻¹) 3390, 3178, 3036, 2956, 1649, 1624, 1513, 1449, 1422, 1408, 1372, 1235, 1112; ¹H NMR (500 MHz; MeOD) δ = 7.07 (2H, d, *J* = 8.5), 6.73 (2H, d, *J* = 8.5), 2.84 (2H, t, *J* = 7.5), 2.48 (2H, t, *J* = 7.5); *13C NMR* (126 MHz; MeOD) δ = 178.4, 156.7, 132.9, 130.3, 116.1, 38.7, 31.9; HRMS (ESI⁺): Calculated for C₉H₁₂NO₂([M+H]⁺): 166.0862. Found: 166.0859.

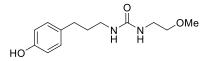
To a suspension of lithium aluminum hydride (17.1 g, 450 mmol) in THF (225 mL) was added a solution of the primary amide (50.0 g, 300 mmol) in THF (150 mL) at 0 °C. The reaction mixture was warmed to rt and then refluxed for 48 h. The reaction mixture was cooled to 0 °C and the reaction was quenched drop-wise with water until effervescence ceased. Aqueous 2M NaOH (50 mL) was added followed by benzyl chloroformate (43 mL, 300 mmol). Upon consumption of the amine the reaction mixture was concentrated in vacuo and acidified with conc. HCl (until pH 6-7). The aqueous phase was extracted with EtOAc (3 × 250 mL), dried and concentrated in vacuo. The carbamate was passed through a short silica gel column eluting with EtOAc-hexanes (50:50), concentrated in vacuo, dissolved in MeOH (250 mL), Pd/C (2 g, 10% w/w) was added and H_2 was bubbled through using a balloon for 2 h. The solution was filtered and concentrated in vacuo. Dry-flash column chromatography, eluting with CH₂Cl₂/EtOH/NH₄OH (50:8:1), gave the amine S2 (22.3 g, 147 mmol, 49%) as a pale yellow oil which solidifies upon standing. mp (CH₂Cl₂–EtOH): 91.1-91.7 °C {Lit.² 102 °C}; IR (v_{max} /cm⁻¹) 3328, 3279, 2850, 2500, 2206, 1600, 1483, 1247, 1230, 1169; ¹H NMR (500 MHz; MeOD) δ = 6.96 (2H, d, J = 8.5), 6.66 (2H, d, J = 8.5), 2.58 (2H, t, J = 7.3), 2.50 (2H, t, J = 7.3), 1.68 (2H, app quint, J = 7.4); ¹³C NMR (126 MHz; MeOD) $\delta = 156.8$, 133.8, 130.3, 130.2, 116.3, 116.2, 42.0, 35.8, 33.3; HRMS (ESI⁺): Calculated for C₉H₁₄NO ([M+H]⁺): 152.1069. Found: 152.1069.


1-Benzyl-3-[3-(4-hydroxyphenyl)propyl]urea 1a

Benzyl isocyanate (1.3 mL, 10.9 mmol, 1.1 eq) was added in one portion to the above amine **S2** (1.5 g, 9.9 mmol) in MeCN (40 mL). The reaction mixture was stirred at rt. After 16 h, the

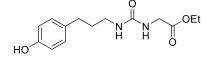
precipitate was collected and recrystallized from MeCN to give the urea as a colourless solid (2.2 g, 7.8 mmol, 79%); mp (MeCN) 104.9-106.7 °C; IR (v_{max} /cm⁻¹) 3427, 3337, 3032, 2924, 2479, 1608, 1558, 1514, 1491, 1440, 1429, 1360, 1254; ¹H NMR (500 MHz; MeOD) δ = 7.37 – 7.27 (4H, m), 7.27 – 7.18 (1H, m), 7.01 (2H, d, *J* = 8.5), 6.71 (2H, d, *J* = 8.5), 4.33 (2H, s), 3.16 (2H, t, *J* = 7.0), 2.56 (2H, t, *J* = 7.7 Hz), 1.76 (2H, app quint, *J* = 7.3); ¹³C NMR (126 MHz; MeOD) δ = 181.7, 161.2, 156.4, 141.3, 133.9, 130.2, 130.3, 129.4, 128.2, 128.1, 127.9, 116.1, 44.7, 40.6, 33.4, 33.2; HRMS (ESI⁺): Calculated for C₁₇H₂₁N₂O₂ ([M+H]⁺): 285.1597. Found: 285.1593.

3-Cyclopropyl-1-[3-(4-hydroxyphenyl)propyl]urea 1b

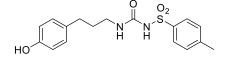


Cyclopropyl isocyanate (606 mg, 7.30 mmol, 1.1 eq) was added in one portion to the amine **S2** (1.0 g, 6.6 mmol) in MeCN (25 mL). Sodium hydroxide 2M (20 mL) was added and the reaction mixture was heated to reflux for 1 h. After concentration *in vacuo*, the reaction mixture was neutralized using aqueous hydrochloric acid (2M). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 20 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated *in vacuo*. Flash column chromatography, eluting with EtOAc gave the urea as a colourless oil (1.3 g, 5.4 mmol, 83%); IR (v_{max} /cm⁻¹) 3327, 3011, 2929, 2856, 1639, 1554, 1514, 1453, 1231; ¹H NMR (400 MHz; MeOD) δ = 7.03 (2H, d, *J* = 8.5), 6.72 (2H, d, *J* = 8.5), 3.17 (2H, t, *J* = 7.0), 2.55 (2H, t, *J* = 7.4), 2.44 (1H, tt, *J* = 6.9, 3.8), 1.78 (2H, app quint, *J* = 7.4), 0.70 (2H, td, *J* = 6.9, 5.0), 0.50 – 0.43 (2H, m); ¹³C NMR (101 MHz; MeOD) δ = 162.1, 156.4, 133.9, 130.3, 116.1, 40.6, 33.4, 33.3, 23.1, 7.5; HRMS (ESI⁺): Calculated for C₁₃H₁₉N₂O₂ ([M+H]⁺): 235.1441. Found: 235.1439.

1-[3-(4-Hydroxyphenyl)propyl]-3-isopropylurea 1c

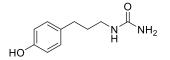

Isopropyl isocyanate (1.64 mL, 16.7 mmol, 1.01 eq.) was added to a solution of the amine **S2** (2.50 g, 16.6 mmol, 1.0 eq.) in anhydrous THF and the mixture was refluxed for 1 h. The reaction mixture was evaporated *in vacuo*. Flash chromatography with 50 – 100% EtOAc in hexane afforded the product as a colourless oil (3.24 g, 13.6 mmol, 83% yield); **R**_f = 0.55 (100% EtOAc). IR v_{max (}neat)/cm⁻¹: 3334, 3014, 2969, 2931, 2872, 1558, 1514, 1455, 1240. ¹H NMR (500 MHz, MeOD) δ = 7.02 (2H, d, *J* = 8.4), 6.74 (2H, d, *J* = 8.4), 3.82 (1H, hept, *J* = 6.5), 3.13 (2H, t, *J* = 7.0), 2.53 (2H, t, *J* = 7.5), 1.76 (2H, quint, *J* = 7.5), 1.14 (6H, d, *J* = 6.6). ¹³C NMR (125 MHz, MeOD): δ = 160.7, 156.5, 134.0, 130.4, 116.3, 43.0, 40.6, 33.6, 33.3, 23.7. HRMS (ESI): C₁₃H₂₁N₂O₂ [M + H⁺]: calculated 237.1598, found 237.1592.

1-[3-(4-Hydroxyphenyl)propyl]-3-(2-methoxyethyl)urea 1d

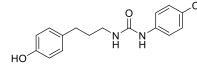

Following a procedure adapted from Padiya *et al.*,¹ to a solution of 2-methoxyethylamine (90 mg, 1.2 mmol) in water (10 mL) at 0 °C was added CDI (194 mg, 1.20 mmol, 1.0 eq). After 10 min 4-(3-aminopropyl)phenol **S2** (150 mg, 1.00 mmol) was added in a MeCN–H₂O mixture (2 mL, 50:50). The reaction mixture was stirred for 6 h then EtOAc (20 mL) was added and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 10 mL). Flash column chromatography, eluting with EtOAc gave the urea (78 mg, 0.31 mmol, 31%) as a colourless oil. IR (v_{max} /cm⁻¹) 3336, 2929, 2865, 1627, 1613, 1557, 1512, 1449, 1363, 1233, 1108, 1090; ¹H NMR (500 MHz; MeOD) δ = 6.95 (2H, d, *J* = 8.4), 6.69 (2H, d, *J* = 8.4), 3.40 (2H, t, *J* = 5.0), 3.30 (3H, s), 3.25 (2H, t, *J* = 5.0), 3.08 (2H, t, *J* = 7.0), 2.99 (1H, br s), 2.94 (1H, br s), 2.50 (2H, t, *J* = 7.6), 1.70 (2H, app quint, *J* = 7.2); ¹³C NMR (126 MHz; MeOD) δ = 156.5, 147.7, 133.9, 130.3, 116.1, 73.1, 58.9, 40.8, 40.5, 33.4, 33.2; HRMS (ESI⁺): Calculated for C₁₃H₂₁N₂O₃ ([M+H]⁺): 253.1546. Found: 253.1546.

Ethyl 2-({[3-(4-hydroxyphenyl)propyl]carbamoyl}amino)acetate 1e

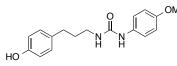
Ethyl isocyanatoacetate (462 mg, 3.6 mmol, 1.1 eq) was added in one portion to the amine **S2** (500 mg, 3.3 mmol) in MeCN (14 mL). The reaction mixture was stirred 5 h at rt. The reaction was concentrated *in vacuo*, water (10 mL) was added and the reaction was extraction with EtOAc (3 × 25 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Column chromatography, eluting with CH₂Cl₂—MeOH (99/1 \rightarrow 95/5) have the urea as a colourless oil (610 mg, 2.17 mmol, 66%); IR (v_{max} /cm⁻¹) 2921, 1741, 1613, 1532, 1514, 1263, 1217, 731, 703; ¹H NMR (300 MHz; MeOD) δ = 7.04 (2H, d, *J* = 8.5), 6.72 (2H, d, *J* = 8.5), 4.20 (2H, q, *J* = 7.1), 3.89 (2H, s), 3.15 (2H, t, *J* = 7.9), 2.57 (2H, t, *J* = 6.7), 1.77 (2H, tt, *J* = 7.5, 6.5), 1.29 (3H, t, *J* = 7.1); ¹³C NMR (75 MHz, MeOD) δ = 172.8, 161.1, 156.4, 133.9, 130.3, 116.1, 62.1, 42.8, 40.6, 33.4, 33.2, 14.5; HRMS (ESI⁺): Calculated for C₁₄H₂₀N₂NaO₄ ([M+Na]⁺): 303.1315. Found: 303.1309.


3-[3-(4-Hydroxyphenyl)propyl]-1-(4-methylbenzenesulfonyl)urea 1f

Tosyl isocyanate (1.44 g, 7.3 mmol, 1.1 eq) was added in one portion to the amine **S2** (1.00 g, 6.6 mmol) in MeCN (33 mL). The reaction mixture was stirred 5 h at rt. Water (5 mL) was added and the reaction was concentrated *in vacuo*, extracted with EtOAc (3 × 25 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Column chromatography, eluting with EtOAc—hexanes (50:50) gave the sulfonyl urea as a pale yellow oil (2.04 g, 5.9 mmol, 89%); IR (v_{max} /cm⁻¹) 3436, 3333, 3099, 2921, 1667, 1614, 1595, 1548, 1515, 1451, 1439, 1327, 1154, 1086; ¹H NMR δ (400 MHz, MeOD) δ = 7.87 – 7.83 (2H, d, *J* = 8.4), 7.37 (2H, d, *J* = 8.4), 6.90 (2H, d, *J* = 8.5), 6.66 (2H, d, *J* = 8.5), 3.08 (2H, t, *J* = 6.9), 2.42 – 2.37 (5H, m (includes 3H, s at 2.40)), 1.70 – 1.60 (2H, m); ¹³C NMR (101 MHz, MeOD) δ = 156.4, 153.8, 145.7, 138.6, 133.5, 130.6,

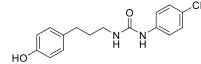

130.2, 128.5, 116.1, 40.3, 32.9, 32.6, 21.5; HRMS (ESI⁺): Calculated for C₁₇H₂₁N₂O₄S ([M+H]⁺): 349.1216. Found: 349.1212.

[3-(4-Hydroxyphenyl)propyl]urea 1g

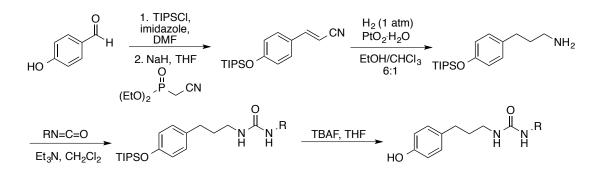

Potassium cyanate (324 mg, 4 mmol) was added to a solution of the phenol **S2** (500 mg, 3.3 mmol) in HCl 2M (5 mL), the reaction was stirred for 16h. The reaction was extracted with EtOAc (3 × 25 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Column chromatography, eluting with CH₂Cl₂—MeOH (95/5) gave the urea as a colourless solid (582 mg, 2.99 mmol, 90%); IR (v_{max} /cm⁻¹) 3198, 1651, 1591, 1545, 1509, 1451, 1374, 1348; *1H* ¹H NMR δ (400 MHz, MeOD) δ = 7.00 (2H, d, *J* = 8.5), 6.69 (2H, d, *J* = 8.5), 3.09 (2H, t, *J* = 7.0), 2.54 (2H, t, *J* = 7.7), 1.78 – 1.69 (2H, m); ¹³C NMR (101 MHz, MeOD) δ = 162.3, 156.4, 133.8, 130.2, 116.1, 40.5, 33.3, 33.1; HRMS (ESI⁺): Calculated for C₁₀H₁₅N₂O₂ ([M+H]⁺): 195.1128. Found: 195.1123.

1-(4-Chlorophenyl)-3-[3-(4-hydroxyphenyl)propyl]urea 1h

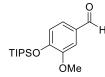
4-Chlorophenyl isocyanate (447 mg, 2.91 mmol, 1.1 eq) was added in one portion to the amine **S2** (400 mg, 2.64 mmol) in MeCN (14 mL). The reaction mixture was stirred 5 h at rt. The precipitated solid was filtered using vacuum filtration and washed with MeCN. The solid was dried under vacuum to give the urea as a colourless solid (412 mg, 1.35 mmol, 51%). m.p. (MeCN) 140.8–141.6 °C; IR (v_{max} /cm⁻¹) 3321, 2941, 2865, 2466, 1617, 1513, 1495, 1469, 1245, 1089; ¹H NMR (400 MHz; MeOD) δ = 7.33 (2H, d, *J* = 8.9), 7.21 (2H, d, *J* = 8.9), 7.00 (2H, d, *J* = 8.5), 6.70 (2H, d, *J* = 8.5), 3.17 (2H, t, *J* = 7.0), 2.56 (2H, app t, *J* = 7.7), 1.77 (2H, app quint, *J* = 7.3); ¹³C NMR (101 MHz; MeOD) δ = 158.0, 156.4, 139.9, 133.7, 130.2, 129.6, 128.0, 121.2, 116.1, 40.3, 33.2 (2 signals); HRMS (ESI⁺): Calculated for C₁₆H₁₈³⁵ClN₂O₂ ([M+H]⁺): 305.1051. Found: 305.1053.


1-(3-(4-Hydroxyphenyl)propyl)-3-(4-methoxyphenyl)urea 1i

4-Methoxyphenyl isocyanate (0.30 mL, 2.30 mmol, 1.01 eq.) was added to a solution of the amine **S2** (345 mg, 2.28 mmol, 1.0 eq.) in anhydrous THF and the mixture was refluxed for 1 h. The reaction mixture was evaporated *in vacuo*. Flash chromatography with 50 – 100% EtOAc in hexane afforded the title compound as a brown oil (497 mg, 1.66 mmol, 73% yield); $R_f = 0.41$ (70% EtOAc in hexane). IR v_{max} (neat)/cm⁻¹: 3308, 3053, 2935, 2837, 1647, 1554,

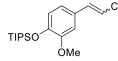

1509, 1441, 1228. ¹H NMR δ (300 MHz, MeOD) δ = 7.10 (2H, d, *J* = 9.0), 6.90 (2H, d, *J* = 8.4), 6.72 (2H, d, *J* = 9.0), 6.59 (2H, d, *J* = 8.7), 3.63 (3H, s), 3.07 (2H, t, *J* = 6.9), 2.45 (2H, t, *J* = 7.2), 1.67 (2H, quint, *J* = 7.3). ¹³C NMR (75 MHz, MeOD) δ = 158.8, 157.0, 156.4, 133.8, 133.6, 130.2, 122.8, 116.1, 115.0, 55.8, 40.4, 33.3, 33.2. HRMS (ESI): $C_{17}H_{21}N_2O_3$ [M + H⁺]: calculated 301.1547, found 301.1543.

3-[3-(4-Hydroxyphenyl)propyl]-1-[4-(trifluoromethyl)phenyl]urea 1j

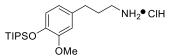


4-(Trifluoromethyl)phenyl isocyanate (1.44 g, 7.30 mmol, 1.1 eq) was added in one portion to the amine **S2** (1.0 g, 6.6 mmol) in MeCN (33 mL). The reaction mixture was stirred overnight at rt and concentrated *in vacuo* to give the crude sulfonyl urea. Flash column chromatography, eluting with EtOAc gave the urea as a colourless oil (1.8 g, 5.2 mmol, 78%); IR (v_{max} /cm⁻¹) 3336, 2937, 1657, 1600, 1546, 1512, 1409, 1318, 1231, 1161, 1107, 1065, 1014; ¹H NMR δ (400 MHz; MeOD) 7.57 – 7.51 (4H, m), 7.04 (2H, d, *J* = 8.5), 6.72 (2H, d, *J* = 8.5), 3.22 (2H, t, *J* = 7.0), 2.60 (2H, app t, *J* = 7.0), 1.22 (2H, app quint, *J* = 7.0); ¹³C NMR (101 MHz; MeOD) δ = 157.7, 156.4, 144.7, 133.7, 130.3, 126.9 (q, *J* = 4), 125.9 (q, *J* = 270), 124.5 (q, *J* = 32), 119.1, 116.2, 40.3, 33.2, 33.1; HRMS (ESI⁺): Calculated for C₁₇H₁₈F₃N₂O₂ ([M+H]⁺): 339.1310. Found: 339.1314.

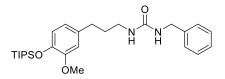
Preparation of 2-methoxy-substituted substrates 1k-n


3-Methoxy-4-{[tris(propan-2-yl)silyl]oxy}benzaldehyde S3

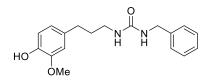
Vanillin (10.0 g, 65.7 mmol) was dissolved in DMF (35 mL). Triisopropylsilyl chloride (17 mL, 79.4 mmol, 1.21 eq) was added and the reaction mixture was cooled down to 0 °C before the addition of imidazole (5.37 g, 78.9 mmol, 1.20 eq). The reaction mixture was warmed to rt and stirred overnight. EtOAc (250 mL) and H₂O (100 mL) were added. The phases were separated and the organic phase was successively washed with H₂O (2 × 100 mL), aqueous HCl (1M, 100 mL), aqueous saturated NaHCO₃ (100 mL) and brine (100 mL). The organic


phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 95:5) gave the title compound (19.5 g, 63.2 mmol, 96%) as a colourless oil. IR (v_{max} /cm⁻¹) 2943, 2866, 1696, 1591, 1505, 1462, 1284, 1192, 1123, 1070; ¹H NMR (400 MHz, CDCl₃) δ = 9.83 (1H, d, *J* = 0.6), 7.39 (1H, d, *J* = 1.8), 7.35 (1H, ddd, *J* = 8.0, 1.8, 0.6), 6.97 (1H, d, *J* = 8.0), 3.86 (3H, s), 1.34 – 1.20 (3H, m), 1.09 (18H, d, *J* = 7.5); ¹³C NMR (101 MHz, CDCl₃) δ = 191.1, 151.9, 151.7, 130.7, 126.3, 120.2, 110.2, 55.5, 17.9, 13.0; HRMS (ESI⁺): Calculated for C₁₇H₂₉O₃Si ([M+H]⁺): 309.1880. Found: 309.1880.

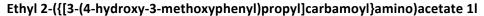
(2E/Z)-3-(3-Methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)prop-2-enenitrile S4

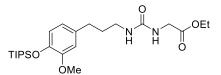

Following a procedure adapted from Pouységu et al.,² to a solution of THF (150 mL) at 0 °C was added NaH (60% in mineral oil, 2.90 g, 72.5 mmol, 1.15 eq) portionwise and the suspension was stirred for 10 min. Diethylcyanophosphonate (11.8 mL, 72.9 mmol, 1.16 eq) was added dropwise at at 0 °C and the reaction mixture was stirred 10 min before the addition of the above aldehyde S3 (19.4 g, 62.9 mmol) in THF (46 mL). The reaction mixture was stirred for 2 h at 0 °C, and MTBE was added (300 mL) before filtration of the reaction mixture directly over a pad of silica washed with MTBE. The nitrile (20.5 g, 61.8 mmol, 98%) was taken to the next step without further purification required. Alternatively the nitriles could be purified by flash column chromatography (SiO₂, hexane-EtOAc; 95:5). IR (v_{max} /cm⁻¹) 2940, 2864, 2208, 1593, 1509, 1464, 1280, 1163; **Major E isomer** ¹H NMR (400 MHz, CDCl₃) δ = 7.30 (1H, d, J = 16.6, propene 3-H), 6.93 (1H, dd, J = 8.1, 2.1, Ar 6-H), 6.90 (1H, d, J = 2.1, Ar 2-H), 6.86 (1H, d, J = 8.1, Ar 5-H), 5.70 (1H, d, J = 16.5, propene 2-H), 3.83 (3H, s, OMe), 1.30 – 1.20 (3H, m, 3 × TIPS-H), 1.09 (18H, d, J = 7.3, 6 × TIPS-H₃); ¹³C NMR (101 MHz, $CDCl_3$) δ = 151.3, 150.4, 148.9, 127.1, 121.5, 120.6, 118.7, 110.1, 93.4, 55.5, 17.8, 12.9; **Minor** *E* isomer (400 MHz, CDCl₃) δ = 7.58 (1H, d, *J* = 2.2), 7.14 (1H, dd, *J* = 8.2, 2.2), 7.00 (1H, d, J = 12.1), 6.95 - 6.85 (1H, m (massif with maJ =or isomer)), 5.26 (1H, d, J = 12.1), 3.86 (3H, s), 1.33 – 1.20 (3H, m), 1.09 (18H, d, J = 7.2); 13 C NMR (101 MHz, CDCl₃) δ = (1 peak missing, most probably hidden behind carbon peak of the major isomer) 151.0, 148.5, 127.3, 123.9, 120.3, 118.2, 111.3, 91.5, 17.7, 12.3; HRMS (ESI⁺): Calculated for C₁₉H₃₀NO₂Si ([M+H]⁺): 332.2040. Found: 332.2038.

Amine salt S5

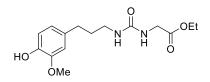


Following a procedure adapted from Pouységu *et al.*,² to a mixture of $EtOH-CHCl_3$ (6:1, 56 mL) was added the above unsaturated nitrile(3.89 g, 11.8 mmol). $PtO_2.H_2O$ (187 mg, 0.823 mmol, 0.07 eq) was added and the reaction mixture was stirred under an atmosphere (balloon) of H₂ overnight. MeOH (100 mL) was added and the stirring was stopped. After 30 min the reaction mixture was removed from the reaction flask without the solid platinum residue. After concentration *in vacuo* the amine salt was used directly without further purification.


1-Benzyl-3-[3-(4-hydroxy-3-methoxyphenyl)propyl]urea 1k

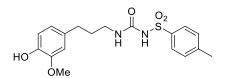


To a solution of the crude amine salt **S5** (1.79 g, ≤4.80 mmol) in CH₂Cl₂ (20 mL) at 0 °C was successively added Et₃N (940 µL, 6.74 mmol, ≥1.40 eq) and benzyl isocyanate (600 µL, 4.86 mmol, ≥1.01 eq). The reaction mixture was stirred for 30 min at rt. Saturated aqueous NH₄Cl (20 mL) and H₂O (20 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 30 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 8:2 to 6:4) afforded the desired urea **S6** as a colourless oil (1.37 g, 2.90 mmol, 60% over two steps). IR (v_{max} /cm⁻¹) 3331, 2942, 2865, 1625, 1580, 1513, 1453, 1316, 1272, 1156; ¹H NMR (400 MHz; CDCl₃) δ = 7.32 – 7.17 (5H, m), 6.75 (1H, d, *J* = 8.0), 6.60 (1H, d, *J* = 8.0, 1.6), 5.31 – 5.05 (1H, m), 5.01 – 4.74 (1H, m), 4.27 – 4.24 (2H, m), 3.74 (3H, s), 3.15 – 3.06 (2H, m), 2.54 – 2.45 (2H, m), 1.76 – 1.65 (2H, m), 1.30 – 1.18 (3H, m), 1.08 (18H, d, *J* = 7.2); ¹³C NMR (101 MHz; CDCl₃) δ = 158.7, 150.8, 143.7, 139.5, 134.8, 128.6, 127.4, 127.2, 120.3 120.3, 112.6, 55.6, 44.4, 40.2, 32.9, 32.1, 18.0, 14.3; HRMS (ESI⁺): Calculated for C₂₇H₄₃N₂O₃Si ([M+H]⁺): 471.3037. Found: 471.3036.

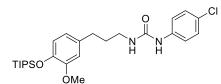


To a solution of the above urea (1.22 g, 2.58 mmol) in THF (5 mL) at 0 °C was added *n*Bu₄NF (1M in THF, 2.8 mL, 2.8 mmol, 1.1 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 98:2 to 96:4) to afford the desired phenol as a colourless solid (803 mg, 2.55 mmol, 99%). m.p. (CH₂Cl₂) 93.2–93.9 °C; IR (v_{max} /cm⁻¹) 3506, 3305, 3030, 2928, 2858, 1621, 1570, 1515, 1437, 1311, 1231, 1275, 1231, 1120, 1026; ¹H NMR (400 MHz; CDCl₃) δ = 7.31–7.18 (5H, m), 6.80 (1H, d, *J* = 8.0), 6.62 (1H, d, *J* = 1.7), 6.58 (1H, dd, *J* = 8.0, 1.7), 5.88 (1H, s), 5.42 (1H, br. s), 5.14 (1H, br. s), 4.26 (2H, d, *J* = 5.8), 3.81 (3H, s), 3.11 (2H, app q, *J* = 6.7), 2.49 (2H, t, *J* = 7.7), 1.70 (2H, app tt, *J* = 7.4, 7.4); ¹³C NMR (101 MHz; CDCl₃) δ = 158.9, 146.6, 143.9, 139.5, 133.6, 128.6, 127.3, 127.3, 120.9, 114.4, 111.2, 55.9, 44.3, 40.0, 32.9, 32.1; HRMS (ESI⁺): Calculated for C₁₈H₂₃N₂O₃ ([M+H]⁺): 315.1703. Found: 315.1699.

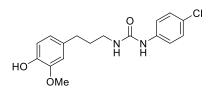
To a solution of the crude amine salt **S5** (840 mg, ≤ 2.25 mmol) in CH₂Cl₂ (15 mL) at 0 °C was successively added Et₃N (470 µL, 3.37 mmol, ≥ 1.50 eq) and ethyl isocyanatoacetate (275 µL, 2.45 mmol, ≥ 1.09 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (15 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 7:3 to 5:5) afforded the desired urea **S7** as a colourless oil (627 mg, 1.40 mmol, 62% over two steps). IR (v_{max} /cm⁻¹) 3368, 2941, 2865, 1741, 1625, 1574, 1511, 1416, 1278, 1191, 1156, 1030; ¹H NMR (400 MHz; CDCl₃) δ = 6.76 (1H, d, *J* = 8.0), 6.65 (1H, d, *J* = 1.9), 6.58 (1H, dd, *J* = 8.0 and 1.9), 4.97 (1H, t, *J* = 5.2), 4.72 (1H, t, *J* = 5.5), 4.18 (2H, q, *J* = 7.1), 3.97 (2H, d, *J* = 5.4), 3.77 (3H, s), 3.19 (2H, td, *J* = 6.8, 5.5), 2.56 (2H, t, *J* = 7.7), 1.84 – 1.75 (2H, m), 1.31 – 1.19 (6H, m), 1.08 (18H, d, *J* = 7.2); ¹³C NMR (101 MHz; CDCl₃) δ = 171.5, 157.9, 150.8, 143.7, 134.7, 120.3, 120.3, 112.6, 61.4, 55.6, 42.3, 40.3, 32.9, 32.0, 18.0, 14.3, 13.0; HRMS (ESI⁺): Calculated for C₂₄H₄₃N₂O₄Si ([M+H]⁺): 467.2935. Found: 467.2934.


To a solution of the above urea (627 mg, 1.40 mmol) in THF (2 mL) at 0 °C was added nBu_4NF (1M in THF, 1.6 mL, 1.6 mmol, 1.1 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 98:2 to 96:4) to afford the desired phenol as a colourless oil (397 mg, 1.28 mmol, 91%). IR (v_{max} /cm⁻¹) 3365, 2859, 1737, 1637, 1562, 1513, 1451, 1374, 1268, 1192, 1027; ¹H NMR (400 MHz; CDCl₃) δ = 6.81 (1H, d, *J* = 8.0), 6.67 (1H, d, *J* = 1.7), 6.64 (1H, dd, *J* = 8.0, 1.7), 5.60 (1H, s), 5.08 (1H, t, *J* = 5.2), 4.82 (1H, t, *J* = 5.6), 4.18 (2H, q, *J* = 7.1), 3.97 (2H, d, *J* = 5.4), 3.85 (3H, s), 3.19 (2H, td, *J* = 6.8, 5.5), 2.56 (2H, t, *J* = 7.7), 1.82 – 1.73 (2H, m), 1.26 (3H, t, *J* = 7.1); ¹³C NMR (101 MHz; CDCl₃) δ = 171.6, 158.1, 146.6, 143.9, 133.6, 120.9, 114.4, 111.1, 61.5, 56.0, 42.3, 40.2, 32.9, 32.1, 14.2; HRMS (ESI⁺): Calculated for C₁₅H₂₃N₂O₅ ([M+H]⁺): 311.1601. Found: 311.1599.

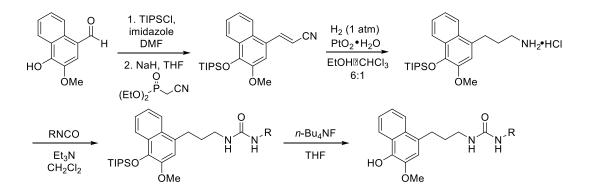
3-[3-(4-Hydroxy-3-methoxyphenyl)propyl]-1-(4-methylbenzenesulfonyl)urea 1m


To a solution of the crude amine salt **S5** (827 mg, ≤ 2.22 mmol) in CH₂Cl₂ (15 mL) at 0 °C was successively added Et₃N (470 µL, 3.37 mmol, ≥ 1.52 eq) and *p*-toluenesulfonylisocyanate (370 µL, 2.42 mmol, ≥ 1.09 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (15 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with Brine

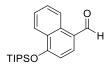
(20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 7:3 to 5:5) afforded the desired urea **S8** as a colourless oil (554 mg, 1.03 mmol, 47% over two steps). IR (v_{max} /cm⁻¹) 3346, 2942, 2865, 1662, 1544, 1513, 1417, 1342, 1274, 1232, 1159, 1090; ¹H NMR (400 MHz; CDCl₃) δ = 8.51 (1H, br s), 7.76 (2H, d, *J* = 8.3), 7.28 (2H, d, *J* = 8.3), 6.78 (1H, d, *J* = 8.0), 6.62 (1H, d, *J* = 1.9), 6.55 (1H, dd, *J* = 8.0 and 1.9), 3.78 (3H, s), 3.22 (2H, dt, *J* = 7.0, 6.2), 2.50 (2H, app t, *J* = 7.6), 2.41 (3H, s), 1.83 – 1.73 (2H, m), 1.30 – 1.19 (3H, m), 1.09 (18H, d, *J* = 7.2); ¹³C NMR (101 MHz; CDCl₃) δ = 151.8, 150.8, 144.8, 143.9, 136.9, 134.7, 130.1, 127.0, 120.4, 120.3, 112.6, 55.6, 39.8, 32.6, 31.3, 21.7, 18.0, 13.0; HRMS (ESI⁺): Calculated for C₂₇H₄₃N₂O₅SSi ([M+H]⁺): 535.2656. Found: 535.2653.


To a solution of the above urea (554 mg, 1.04 mmol) in THF (2 mL) at 0 °C was added nBu_4NF (1M in THF, 1.2 mL, 1.2 mmol, 1.15 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 98:2 to 96:4) to afford the desired phenol as a colourless solid (332 mg, 0.88 mmol, 84%). m.p. (CH₂Cl₂) 128.4–129.0 °C; IR (v_{max} /cm⁻¹) 3353, 2937, 2945, 1699, 1598, 1514, 1514, 1451, 1337, 1269, 1233, 1157, 1089; ¹H NMR (400 MHz; CD₃OD) δ = 7.85 (2H, d, *J* = 8.3), 7.36 (2H, d, *J* = 8.3), 6.69 – 6.65 (2H, m), 6.52 (1H, dd, *J* = 8.0 and 1.7), 3.79 (3H, s), 3.08 (2H, t, *J* = 6.9), 2.45 – 2.38 (5H, m includes 2.40, s)), 1.68 (2H, app quint, *J* = 7.1); ¹³C NMR (101 MHz; CD₃OD) δ = 153.9, 148.8, 145.7, 145.6, 138.7, 134.2, 130.6, 128.5, 121.7, 116.1, 113.0, 56.3, 40.3, 33.4, 32.5, 21.5; HRMS (ESI⁺): Calculated for C₁₈H₂₃N₂O₅S ([M+H]⁺): 379.1322. Found: 379.1313.

1-(4-Chlorophenyl)-3-[3-(4-hydroxy-3-methoxyphenyl)propyl]urea 1n

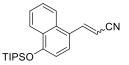

To a solution of the crude amine salt **S5** (345 mg, ≤ 0.925 mmol) in CH₂Cl₂ (8 mL) at 0 °C was successively added Et₃N (170 µL, 1.22 mmol, ≥ 1.32 eq) and 4-chlorophenyl isocyanate (156 mg, 1.02 mmol, ≥ 1.10 eq). The reaction mixture was stirred overnight at rt. Saturated aqueous NH₄Cl (10 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 8:2 to 7:3) afforded the desired urea **S9** as a colourless oil (305 mg, 0.621 mmol, 67% over two steps). IR (v_{max} /cm⁻¹) 3330, 2941, 2865, 1645, 1594, 1552, 1512, 1491, 1272, 1229, 1157; ¹H NMR (400 MHz; CDCl₃) δ = 7.18 (4H, s), 7.09 (1H, s), 6.75 (1H, d, *J* = 8.0), 6.60 (1H, d, *J* = 1.9), 6.54 (1H, dd, *J* = 8.0, 1.9), 5.27 (1H, t, *J*

= 5.6), 3.73 (3H, s), 3.19 (2H, td, J = 6.7, 5.6), 2.52 (2H, dd, J = 8.0, 7.2), 1.80 – 1.70 (2H, m), 1.29 – 1.17 (3H, m), 1.08 (18H, d, J = 7.2); ¹³C NMR (101 MHz; CDCl₃) δ = 156.1, 150.8, 143.8, 137.5, 134.6, 129.1, 128.4, 121.6, 120.3, 120.3, 112.5, 55.6, 40.1, 32.9, 31.9, 18.0, 12.9; HRMS (ESI⁺): Calculated for C₂₆H₃₉ClN₂NaO₃Si ([M+Na]⁺): 513.2310. Found: 513.2311.

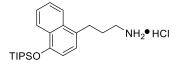


To a solution of the above urea (304 mg, 0.620 mmol) in THF (5 mL) at 0 °C was added nBu_4NF (1M in THF, 0.70 mL, 0.70 mmol, 1.1 eq) dropwise. The reaction mixture warmed to rt and stirred overnight. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 98:2) to afford the desired phenol as a colourless solid (190 mg, 0.569 mmol, 91%). m.p. (CH₂Cl₂–MeOH) 157.6–158.6 °C; IR (v_{max} /cm⁻¹) 3547, 3330, 2936, 2861, 2838, 1630, 1592, 1563, 1514, 1488, 1252, 1242, 1206, 1118, 1033; ¹H NMR (400 MHz; MeOD) δ = 7.34 (2H, d, *J* = 8.9), 7.21 (2H, d, *J* = 8.9), 6.77 (1H, d, *J* = 1.8), 6.70 (1H, d, *J* = 8.0), 6.63 (1H, dd, *J* = 8.0, 1.8), 3.82 (3H, s), 3.19 (2H, t, *J* = 7.0), 2.58 (2H, dd, *J* = 8.2, 7.1), 1.80 (2H, app dq, *J* = 8.6, 7.2); ¹³C NMR (101 MHz; MeOD) δ = 158.0, 148.9, 145.6, 139.9, 134.5, 129.6, 128.0, 121.7, 121.3, 116.1, 113.1, 56.3, 40.3, 33.6, 33.1; HRMS (ESI⁺): Calculated for C₁₇H₂₀ClN₂O₃ ([M+H]⁺): 335.1156. Found: 335.1154.

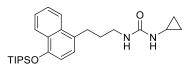
Preparation of naphthol-derived substrates 1o-r


4-{[Tris(propan-2-yl)silyl]oxy}naphthalene-1-carbaldehyde S10

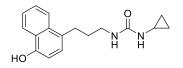
4-Hydroxy-1-naphthaldehyde (3.00 g, 17.4 mmol) was dissolved in DMF (9 mL). Triisopropylsilyl chloride (4.5 mL, 21.0 mmol, 1.21 eq) was added and the reaction mixture was cooled down to 0 °C before the addition of imidazole (1.42 g, 20.9 mmol, 1.20 eq). The reaction mixture was warmed to rt and stirred overnight. EtOAc (150 mL) and H_2O (50 mL) were added. The phases were separated and the organic phase was successively washed


with H₂O (2 × 50 mL), aqueous HCl (1M, 50 mL), aqueous saturated NaHCO₃ (50 mL) and Brine (100 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 95:5) gave the title compound (5.43 g, 16.5 mmol, 95%) as a colourless oil. IR (v_{max} /cm⁻¹) 2938, 2863, 2732, 1616, 1566, 1507, 1460, 1428, 1393, 1166, 1055; ¹H NMR (400 MHz; CDCl₃) δ = 10.2 (1H, s), 9.33 (1H, d, *J* = 8.5), 8.36 (1H, d, *J* = 8.4), 7.86 (1H, d, *J* = 7.9), 7.70 (1H, ddd, *J* = 8.4, 7.3, 0.9), 7.59 (1H, ddd, *J* = 8.5, 7.3, 0.9), 6.97 (1H, d, *J* = 7.9), 1.47 (3H, sept, *J* = 7.5), 1.47 (18H, d, *J* = 7.5); ¹³C NMR (101 MHz; CDCl₃) δ = 192.2, 158.5, 139.3, 132.7, 129.5, 127.7, 126.4, 125.2, 125.0, 123.1, 111.1, 18.1, 13.2; HRMS (ESI⁺): Calculated for C₂₀H₂₉O₂Si ([M+H]⁺): 329.1931. Found: 329.1928.

(2E/2Z)-3-(4-{[Tris(propan-2-yl)silyl]oxy}naphthalen-1-yl)prop-2-enenitrile S11

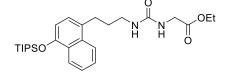

Following a procedure adapted from Pouységu *et al.*,² to a solution of THF (26 mL) at 0 °C was added NaH (60% in mineral oil, 475 mg, 11.8 mmol, 1.15 eq) portionwise and the suspension was stirred for 10 min. Diethylcyanophosphonate (2.0 mL, 12 mmol, 1.16 eq) was added dropwise at at 0 °C and the reaction mixture was stirred 10 min before the addition of the above aldehyde **S10** (3.38 g, 10.3 mmol) in THF (8 mL). The reaction mixture was stirred for 7 h at 0 °C, and Et₂O was added (100 mL) before filtration of the reaction mixture directly over a pad of silica washed with Et₂O. After concentration *in vacuo*, the residue was purified by flash column chromatography (SiO₂, hexane–EtOAc, 95:5 to 9:1) to give the desired nitriles as an inseparable mixture of isomers (2.27 g, 6.47 mmol, 63%, *E/Z* 5.3:1). IR (v_{max} /cm⁻¹) 2943, 2865, 2214, 1509, 1458, 1427, 1369, 1264, 1218, 1068; **Major isomer peaks reported only** ¹H NMR (400 MHz, CDCl₃) δ = 8.21 (1H, dd, *J* = 8.2, 1.1), 8.03 (1H, d, *J* = 16.4), 7.89 (1H, d, *J* = 8.2), 7.50 – 7.39 (3H, m), 6.75 (1H, d, *J* = 8.2), 5.72 (1H, d, *J* = 16.4), 1.36 – 1.25 (3H, m), 1.04 (18H, d, *J* = 7.5); ¹³C NMR (101 MHz, CDCl₃) δ = 155.6, 147.6, 132.5, 127.9, 127.8, 125.9, 125.8, 123.7, 123.6, 122.7, 119.1, 111.9, 95.8, 18.2, 13.2; HRMS (ESI⁺): Calculated for C₂₂H₃₀NOSi ([M+H]⁺): 352.2091. Found: 352.2085.

Amine salt S12

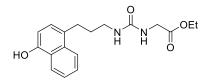


Following a procedure adapted from Pouységu *et al.*,² to a mixture of $EtOH-CHCl_3$ (6:1, 56 mL) was added the unsaturated nitrile **S11** (4.02 g, 12.1 mmol). $PtO_2.H_2O$ (200 mg, 0.816 mmol, 0.067 eq) was added and the reaction mixture was stirred under an atmosphere of H_2 (balloon) overnight. MeOH (100 mL) was added and the stirring was stopped. After 30 min the reaction mixture was removed from the reaction flask without the solid platinum residue. After concentration *in vacuo* the amine salt was used directly without further purification.

3-Cyclopropyl-1-[3-(4-hydroxynaphthalen-1-yl)propyl]urea 10

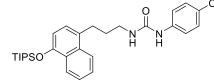


To a solution of the crude amine salt **\$12** (400 mg, \leq 1.01 mmol) in CH₂Cl₂ (10 mL) at 0 °C was successively added Et₃N (150 µL, 1.07 mmol, \geq 1.06 eq) and cyclopropyl isocyanate (95 µL, 1.12 mmol, \geq 1.11 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (15 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 5:5) afforded the desired urea **\$13** as a colourless solid (317 mg, 0.714 mmol, 71% over two steps). mp (hexane–EtOAc): 92-93 °C; IR (v_{max} /cm⁻¹) 2945, 2867, 1632, 1584, 1461, 1392, 1273, 1157, 1069; ¹H NMR (400 MHz, CDCl₃) δ = 8.31 (1H, dd, *J* = 7.9, 1.5), 7.95 (1H, d, *J* = 8.5), 7.53 – 7.44 (2H, m), 7.15 (1H, d, *J* = 7.7), 6.79 (1H, d, *J* = 7.7), 4.93 (1H, br s), 4.60 (1H, s), 3.36 (2H, dd, *J* = 13.1, 6.8), 3.05 (2H, t, *J* = 7.5), 2.34 – 2.27 (1H, m), 2.03 – 1.94 (2H, m), 1.47 – 1.35 (3H, m), 1.15 (18H, d, *J* = 7.4, 6 × TIPS-H₃), 0.69 – 0.64 (2H, m), 0.54 – 0.49 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 159.1, 150.9, 133.0, 129.9, 128.1, 126.2, 126.0, 124.8, 123.7, 123.6, 111.4, 40.3, 31.4, 30.1, 22.4, 18.2, 13.2, 7.6; HRMS (ESI⁺): Calculated for C₂₆H₄₁N₂O₂Si ([M+H]⁺): 441.2931. Found: 441.2931.

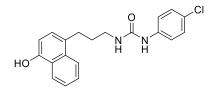


To a solution of the above urea **\$13** (153 mg, 0.348 mmol) in THF (2 mL) at 0 °C was added nBu_4NF (1M in THF, 370 µL, 0.370 mmol, 1.06 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂–MeOH, 98:2 to 96:4) to afford the desired phenol as a colourless solid (76 mg, 0.267 mmol, 77%). mp (CH₂Cl₂–MeOH): 167-169 °C;IR (v_{max} /cm⁻¹) 3434, 3280, 3126, 2932, 1643, 1620, 1543, 1515, 1457, 1333, 1280, 1249, 1138; ¹H NMR (400 MHz; MeOD) δ = 8.22 (1H, d, *J* = 8.1), 7.95 (1H, d, *J* = 8.3), 7.49 – 7.43 (1H, m), 7.43 – 7.37 (1H, m), 7.12 (1H, d, *J* = 7.6), 6.73 (1H, d, *J* = 7.6), 3.23 (2H, t, *J* = 6.6), 2.99 (2H, t, *J* = 7.5), 2.44 – 2.36 (1H, m), 1.87 (2H, app quint, *J* = 6.7), 0.66 (2H, app q, *J* = 5.8), 0.47 – 0.40 (2H, m); ¹³C NMR (101 MHz; MeOD) δ = 162.1, 153.1, 134.0, 129.7, 127.1, 126.9, 126.8, 125.1, 124.5, 123.8, 108.4, 40.9, 32.6, 30.8, 23.1, 7.4; HRMS (ESI⁺): Calculated for C₁₇H₂₁N₂O₂ ([M+H]⁺): 285.1597. Found: 285.1594.

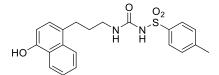
Ethyl 2-({[3-(4-hydroxynaphthalen-1-yl)propyl]carbamoyl}amino)acetate 1p



To a solution of the crude amine salt (599 mg, \leq 1.52 mmol) in CH₂Cl₂ (20 mL) at 0 °C was successively added Et₃N (300 μ L, 2.15 mmol, \geq 1.41 eq) and ethyl isocyanatoacetate (175 μ L, 1.56 mmol, \geq 1.02 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH_4Cl (15 mL) and H_2O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH_2CI_2 (2 × 20 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. Flash column chromatography (SiO₂, hexane-EtOAc, 6:4 to 5:5) afforded the desired urea S14 as a colourless oil (246 mg, 0.50 mmol, 32% over two steps). IR (v_{max} /cm⁻¹) 3350, 2944, 2866, 2247, 1743, 1634, 1573, 1460, 1391, 1273, 1197, 1156, 1068; 1 H NMR (400 MHz; CDCl₃) δ = 8.32 - 8.29 (1H, m), 7.92 (1H, dd, J = 7.1, 2.3), 7.50 - 7.42 (2H, m), 7.11 (1H, d, J = 7.8), 6.77 (1H, d, J = 7.8), 5.44 (1H, t, J = 5.3), 5.28 (1H, t, J = 5.5), 4.12 (2H, q, J = 7.1), 3.97 (2H, d, J = 5.5), 3.29 - 3.24 (2H, m), 3.02 - 2.96 (2H, m), 1.95 - 1.86 (2H, m), 1.46 - 1.34 (3H, m), 1.21 (3H, t, J = 7.1), 1.15 (18H, d, J = 7.5); ¹³C NMR (101 MHz, CDCl₃) δ = 171.6, 158.4, 150.7, 133.0, 129.9, 128.0, 126.1, 125.8, 124.7, 123.7, 123.4, 111.4, 61.3, 42.3, 40.4, 31.1, 29.8, 18.2, 14.1, 13.1; HRMS (ESI⁺): Calculated for C₂₇H₄₃N₂O₄Si ([M+H]⁺): 487.2986. Found: 487.2984.


To a solution of the above urea **S14** (246 mg, 0.50 mmol) in THF (10 mL) at 0 °C was added nBu_4NF (1M in THF, 600 µL, 0.600 mmol, 1.1 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, EtOAc then CH₂Cl₂–MeOH, 97:3) to afford the desired phenol as a colourless oil (145 mg, 0.44 mmol, 88%). IR (v_{max} /cm⁻¹) 3410, 2950, 2821, 1850, 1635, 1515, 1377, 1460, 1353, 1201, 1151; ¹H NMR (300 MHz; MeOD) δ = 8.22 (1H, dd, *J* = 8.3, 1.0), 7.97 (1H, d, *J* = 8.4), 7.47 (1H, ddd, *J* = 8.4, 6.8, 1.5), 7.39 (1H, ddd, *J* = 8.1, 6.8, 1.3), 7.13 (1H, d, *J* = 7.7), 6.73 (1H, d, *J* = 7.7), 4.17 (2H, q, *J* = 7.1), 3.87 (2H, s), 3.21 (2H, t, *J* = 6.9), 3.00 (2H, dd, *J* = 8.7, 6.9), 1.86 (2H, dq, *J* = 8.7, 6.9), 1.25 (3H, t, *J* = 7.1); ¹³C NMR (75 MHz; MeOD) δ = 172.7, 161.1, 153.0, 134.1, 129.7, 127.2, 126.9, 126.8, 125.1, 124.6, 123.8, 108.4, 62.0, 42.8, 40.9, 32.6, 30.7, 14.4; HRMS (ESI⁺): Calculated for C₁₈H₂₃N₂O₄ ([M+H]⁺): 331.1652. Found: 331.1647.

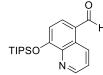
1-(4-Chlorophenyl)-3-[3-(4-hydroxynaphthalen-1-yl)propyl]urea 1q


To a solution of the crude amine salt (361 mg, \leq 0.916 mmol) in CH₂Cl₂ (10 mL) at 0 °C was successively added Et₃N (150 µL, 1.07 mmol, \geq 1.17 eq) and 4-chlorophenyl isocyanate (155

mg, 1.01 mmol, ≥ 1.10 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (15 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 7:3) followed by crystallisation with CH₂Cl₂ afforded the desired urea **S15** as a colourless solid (243 mg, 0.476 mmol, 52% over two steps). m.p. (CH₂Cl₂): 135-136 °C; IR (v_{max} /cm⁻¹) 2942, 2865, 1646, 1590, 1552, 1491, 1462, 1393, 1276, 1237, 1091; ¹H NMR (400 MHz, CDCl₃) δ = 8.33 – 8.29 (1H, m), 7.91 – 7.87 (1H, m), 7.49 – 7.42 (2H, m), 7.21 (2H, d, *J* = 8.9), 7.16 (2H, d, *J* = 8.9), 7.09 (1H, d, *J* = 7.7), 6.76 (1H, d, *J* = 7.7), 6.49 (1H, br s), 4.85 (1H, app t, *J* = 5.5), 3.34 – 3.27 (2H, m), 3.00 (2H, app t, *J* = 7.5), 1.97 – 1.88 (2H, m), 1.46 – 1.34 (3H, m), 1.14 (18H, d, *J* = 7.5); ¹³C NMR (101 MHz, CDCl₃) δ = 155.7, 150.9, 137.3, 133.0, 129.6, 129.3, 128.8, 128.1, 126.2, 126.0, 124.9, 123.6, 123.6, 122.0, 111.4, 40.4, 30.9, 30.0, 18.2, 13.2; HRMS (ESI⁺): Calculated for C₂₉H₃₉N₂³⁵ClNaO₂Si ([M+Na]⁺): 533.2361. Found: 533.2359.

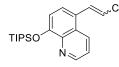
To a solution of the above urea **S15** (239 mg, 0.460 mmol) in THF (2 mL) at 0 °C was added nBu_4NF (1M in THF, 540 µL, 0.54 mmol, 1.17 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, hexane–EtOAc, 6:4 to 5:5) to afford the desired phenol as a colourless solid (105 mg, 0.297 mmol, 65%). mp (hexane–EtOAc): 170-171 °C; IR (v_{max} /cm⁻¹) 3334, 3287, 2936, 2861, 1632, 1589, 1565, 1490, 1381, 1352, 1280, 1224, 1120; ¹H NMR (400 MHz, MeOD) δ = 8.22 (1H, d, *J* = 8.2), 7.96 (1H, d, *J* = 8.3), 7.49 – 7.43 (1H, m), 7.42 – 7.37 (1H, m), 7.34 (2H, d, *J* = 8.7), 7.21 (2H, d, *J* = 8.7), 7.13 (1H, d, *J* = 7.6), 6.73 (1H, d, *J* = 7.6), 3.26 (2H, t, *J* = 6.9), 3.02 (2H, t, *J* = 7.6), 1.90 (2H, tt, *J* = 7.6, 6.9); ¹³C NMR (101 MHz, MeOD) δ = 158.1, 153.1, 139.9, 134.0, 129.6, 129.5, 128.0, 127.2, 126.9, 126.8, 125.1, 124.5, 123.8, 121.3, 108.4, 40.7, 32.4, 30.7; HRMS (ESI⁺): Calculated for C₂₀H₂₀³⁵ClN₂O₂ ([M+H]⁺): 355.1207. Found: 355.1204.

3-[3-(4-Hydroxynaphthalen-1-yl)propyl]-1-(4-methylbenzenesulfonyl)urea 1r


To a solution of the crude amine salt (430 mg, \leq 1.09 mmol) in CH₂Cl₂ (10 mL) at 0 °C was successively added Et₃N (160 µL, 1.15 mmol, \geq 1.05 eq) and *p*-toluenesulfonyl isocyanate (185 µL, 1.21 mmol, \geq 1.11 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (15 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed

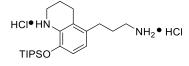
with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 8:2) afforded an amorphous solid (416 mg, \leq 0.752 mmol) that was used straight without further purification. The solid was dissolved in THF (4 mL) and *n*Bu₄NF (1M in THF, 840 µL, 0.840 mmol, \geq 1.12 eq) was added dropwise at 0 °C. The reaction mixture warmed to rt and stirred overnight. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 98:2) to afford the desired phenol as a colourless solid (258 mg, 0.648 mmol, 59%, 3 steps). m.p. (hexane–EtOAc) 144.0–144.4 °C; IR (v_{max} /cm⁻¹) 3310, 2958, 2884, 1670, 1588, 1542, 1380, 1276, 1245, 1186, 1160, 1052; ¹H NMR (400 MHz, MeOD) δ = 8.21 (1H, dd, *J* = 7.9, 1.5), 7.86 – 7.80 (3H, m including d, *J* = 8.1 at 7.84), 7.45 – 7.36 (2H, m), 7.30 (2H, d, *J* = 8.1), 7.01 (1H, d, *J* = 7.7), 6.70 (1H, d, *J* = 7.7), 3.17 (2H, t, *J* = 6.8), 2.86 – 2.80 (2H, m), 2.31 (3H, s), 1.81 – 1.73 (2H, m); ¹³C NMR (101 MHz, MeOD) δ = 154.2, 153.1, 145.6, 138.7, 134.0, 130.6, 129.3, 128.4, 127.0, 126.9, 126.7, 125.1, 124.4, 123.8, 108.3, 40.7, 31.8, 30.4, 21.4; HRMS (ESI⁺): Calculated for C₂₁H₂₃N₂O₄S ([M+H]⁺): 399.1373. Found: 399.1369.

Preparation of the tetrahydroquinolinyl urea 1s

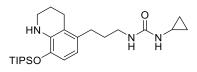

8-{[Tris(propan-2-yl)silyl]oxy}quinoline-5-carbaldehyde S16

8-Hydroxyquinoline-5-carbaldehyde (250 mg, 1.44 mmol) was dissolved in DMF (2 mL). Triisopropylsilyl chloride (370 µL, 1.73 mmol, 1.20 eq) was added and the reaction mixture was cooled down to 0 °C before the addition of imidazole (118 mg, 1.73 mmol, 1.20 eq). The reaction mixture was warmed to rt and stirred overnight. More triisopropylsilyl chloride (1.2 eq) and imidazole (1.2 eq) were added and the reaction mixture was stirred for 24 h. EtOAc (30 mL) and H₂O (10 mL) were added. The phases were separated and the organic phase was successively washed with H₂O (2 × 10 mL), aqueous HCl (1M, 10 mL), aqueous saturated NaHCO₃ (10 mL) and brine (20 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 9:1) gave the title compound (353 mg, 1.07 mmol, 74%) as a colourless oil. IR (v_{max} /cm⁻¹) 2942, 2891, 2864, 2723, 1684, 1600, 1560, 1500, 1474, 1377, 1319, 1249, 1169, 1089; ¹H NMR (400 MHz, CDCl₃) δ = 10.15 (1H, s), 9.65 (1H, dd, *J* = 8.6, 1.7), 8.90 (1H, dd, *J* = 4.1, 1.7), 7.93 (1H, d, *J* =

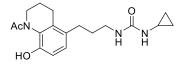
8.0), 7.56 (1H, dd, J = 8.6, 4.1), 7.26 (1H, d, J = 8.0), 1.51 – 1.40 (3H, m), 1.12 (18H, d, J = 7.5); ¹³C NMR (101 MHz, CDCl₃) $\delta = 192.0$, 159.5, 149.1, 141.4, 139.7, 133.6, 127.9, 124.6, 124.0, 115.9, 18.2, 13.9; HRMS (ESI⁺): Calculated for C₁₉H₂₈NO₂Si ([M+H]⁺): 330.1883. Found: 330.1881.


(2E/Z)-3-(8-{[Tris(propan-2-yl)silyl]oxy}quinolin-5-yl)prop-2-enenitrile S17

Following a procedure adapted from Pouységu *et al.*,² to a solution of THF (4 mL) at 0 °C was added NaH (60% in mineral oil, 50 mg, 1.25 mmol, 1.17 eq) portionwise and the suspension was stirred for 10 min. Diethylcyanophosphonate (220 μ L, 1.36 mmol, 1.27 eq) was added dropwise at at 0 °C and the reaction mixture was stirred 10 min before the addition of aldehyde **S16** (352 mg, 1.07 mmol) in THF (2 mL). The reaction mixture was stirred for 7 h at 0 °C, and Et₂O was added (20 mL) before the reaction mixture was filtered directly over a pad of silica washed with Et₂O. After concentration *in vacuo* the residue was purified by flash column chromatography (hexane–EtOAc, 95:5) to provide the desired nitriles as a (*Z/E*, 1:5) mixture of diastereomers (328 mg, 0.934 mmol, 87%). For characterization purposes the isomers could be separated.

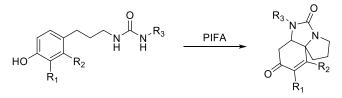

IR (v_{max} /cm⁻¹) 2942, 2864, 2214, 1612, 1564, 1470, 1400, 1387, 1313, 1269, 1091; **Major** *E* **isomer** ¹H NMR (400 MHz, CDCl₃) δ = 8.90 (1H, dd, *J* = 4.0, 1.3), 8.35 (1H, dd, *J* = 8.6, 1.3), 8.06 (1H, d, *J* = 16.3), 7.69 (1H, d, *J* = 8.2), 7.49 (1H, dd, *J* = 8.6, 4.0), 7.19 (1H, d, *J* = 8.2), 5.89 (1H, d, *J* = 16.3), 1.49 – 1.37 (3H, m), 1.12 (19 H, d, *J* = 7.5); *13C NMR* (101 MHz, CDCl₃) δ = 156.5, 148.9, 146.0, 141.7, 130.8, 127.4, 126.2, 122.8, 122.3, 118.7, 117.0, 96.3, 18.2, 13.7; **Minor** *Z* **isomer** ¹H NMR (400 MHz, CDCl₃) δ = 8.91 (1H, dd, *J* = 4.1, 1.5), 8.25 (1H, dd, *J* = 8.6, 1.5), 8.20 (1H, d, *J* = 8.2), 7.77 (1H, d, *J* = 11.8), 7.47 (1H, dd, *J* = 8.6, 4.1), 7.25 (1H, d, *J* = 8.2), 5.59 (1H, d, *J* = 11.9), 1.51 – 1.39 (3H, m), 1.13 (18H, d, *J* = 7.5); ¹³C NMR (101 MHz, CDCl₃) δ = 156.0, 148.7, 144.8, 141.8, 131.0, 128.4, 127.9, 122.6, 122.1, 117.6, 116.8, 96.1, 18.2, 13.7; HRMS (ESI⁺): Calculated for C₂₁H₂₈N₂NaOSi ([M+H]⁺): 375.1863. Found: 375.1856.

Amine salt S18

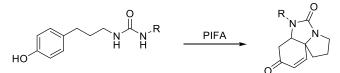

Following a procedure adapted from Pouységu *et al.*,² to a mixture of EtOH–CHCl₃ (6:1, 7 mL) was added unsaturated nitrile (328 mg, 0.932 mmol). PtO_2 .H₂O (15 mg, 0.066 mmol, 0.07 eq) was added and the reaction mixture was stirred under an atmosphere of H₂ (balloon) overnight. MeOH (50 mL) was added and the stirring was stopped. After 30 min the reaction mixture was removed from the reaction flask without the solid platinum residue. After concentration *in vacuo* the amine salt **S18** was used directly without further purification.

3-Cyclopropyl-1-[3-(8-{[*tris*(propan-2-yl)silyl]oxy}-1,2,3,4-tetrahydroquinolin-5yl)propyl]urea S19

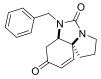
To a solution of the crude amine salt (≤ 0.932 mmol) in CH₂Cl₂ (5 mL) at 0 °C was successively added Et₃N (390 µL, 2.78 mmol, ≥ 2.98 eq) and cyclopropyl isocyanate (83 µL, 0.98 mmol, ≥ 1.05 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NaHCO₃ (10 mL) and H₂O (10 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 10 mL). The organic extracts were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 5:5 2:8) provided the desired urea as a colourless oil (186 mg, 0.418 mmol, 45% over two steps). IR (v_{max} /cm⁻¹) 3330, 2941, 2865, 1633, 1566, 1501, 1433, 1258, 1194; ¹H NMR (400 MHz; CDCl₃) δ = 6.51 (1H, d, *J* = 8.1), 6.29 (1H, d, *J* = 8.1), 4.98 (1H, t, *J* = 5.2), 4.81 (1H, s), 4.22 (1H, s), 3.32 – 3.26 (4H, m), 2.68 (2H, t, *J* = 6.5), 2.51 (2H, dd, *J* = 8.3, 7.0), 2.39 – 2.32 (1H, m), 1.99 – 1.91 (2H, m), 1.77 (2H, app dq, *J* = 8.6, 7.1), 1.34 – 1.22 (3H, m), 1.10 (18H, d, *J* = 7.4), 0.68 (2H, td, *J* = 6.7, 4.7), 0.54 – 0.49 (2H, m); ¹³C NMR (101 MHz; CDCl₃) δ = 159.2, 140.6, 136.6, 132.5, 119.6, 115.8, 114.4, 41.2, 40.3, 30.8, 30.0, 23.9, 22.4, 22.4, 18.1, 13.0, 7.5; HRMS (ESI⁺): Calculated for C₂₅H₄₃N₃O₂Si ([M+H]⁺): 446.3197. Found: 446.3205.


1-[3-(1-Acetyl-8-hydroxy-1,2,3,4-tetrahydroquinolin-5-yl)propyl]-3-cyclopropylurea 1s

To a solution of the urea S19 (140 mg, 0.314 mmol) in THF (2 mL) at 0 °C was added nBu₄NF (1M in THF, 350 μ L, 0.350 mmol, 1.11 eq) dropwise. The reaction mixture warmed to rt and stirred for 15 min. After concentration in vacuo the residue was purified by flash column chromatography (SiO₂, hexane-EtOAc, 1:9 then 0:10 then EtOAc-MeOH 97:3) to afford the desired phenol as a colourless oil (74 mg, 0.256 mmol, 82%). The compound was diluted in CH₂Cl₂ (2 mL) and the solution was cooled to 0 °C. Et₃N (79 μ L, 0.566 mmol, 2.21 eq) and acetic anhydride (54 µL, 0.571 mmol, 2.23 eq) were successively added. The reaction mixture was stirred at rt overnight. Saturated aqueous NH₄Cl (20 mL) and H₂O (20 mL) were added and the phases were separated. The aqueous phase was extracted with CH_2CI_2 (2 × 40 mL). The organic extracts were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was next diluted in MeOH (3 mL) and H₂O (1 mL). At 0 °C NaOH (100 mg, 2.50 mmol, 9.77 eq) was added. The reaction mixture was stirred at rt for 2 h. After removal of MeOH under vacuo, the residue was diluted with H₂O (5 mL) and CH₂Cl₂ (5 mL). Aqueous HCI (1N) was added until the aqueous phase reached an acidic pH (ca 4) and after vigorous stirring for 15 min the phases were separated. The aqueous phase was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were washed with saturated NaHCO₃ (10 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂-MeOH, 97:3) to afford the desired phenol as a colourless solid (78 mg, 0.235 mmol, 75% over 3 steps). m.p. (CH₂Cl₂–MeOH): 131-132 °C; IR (v_{max} /cm⁻¹) 3300, 3019, 2933, 1619, 1573, 1504, 1462, 1412, 1282, 1092; ¹H NMR (400 MHz; MeOD) δ = 6.95 (1H, d, *J* = 8.3), 6.71 (1H, d, *J* = 8.3), 4.59 – 4.49 (1H, m), 3.17 (2H, t, J = 6.9), 2.92 – 2.83 (2H, m), 2.59 (2H, t, *J* = 8.4, 6.9), 2.47 – 2.40 (1H, m), 2.35 – 2.16 (2H, m), 2.01 (3H, br s), 1.70 (2H, app quint, *J* = 7.2), 1.64 – 1.53 (1H, m), 0.72 – 0.66 (2H, m), 0.48 – 0.42 (2H, m); ¹³C NMR (101 MHz; MeOD) δ = 174.0, 162.1, 150.2, 136.7, 131.2, 129.1, 128.5, 114.9, 42.6, 40.7, 33.0, 30.5, 25.3, 23.7, 23.1, 23.1, 21.8, 7.5; HRMS (ESI⁺): Calculated for C₁₈H₂₆N₃O₃ ([M+H]⁺): 332.1968. Found: 332.1963.


Oxidative dearomatisations (Tables 1, 2)

General procedure A for oxidative dearomatisation:


To a solution of the urea in a hexafluoroisopropanol– CH_2Cl_2 mixture (50:50, 0.2 M) at 0 °C was added a solution of [bis(trifluoroacetoxy)iodo]benzene (1.10 eq) in hexafluoroisopropanol– CH_2Cl_2 (50:50, 1 M) dropwise. The reaction mixture was kept at 0 °C for 2 h and then allowed to warm to rt. Upon completion, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography to give the desired product.

General procedure B for oxidative dearomatisation:

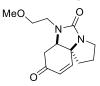
To a solution of the urea in a hexafluoroisopropanol (0.1 M) at 0 °C was added a solution of [bis(trifluoroacetoxy)iodo]benzene (1.10 eq) in hexafluoroisopropanol (1.0 M) dropwise. The reaction mixture was kept at 0 °C for 2 h and then allowed to warm to rt. Upon completion, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography to give the desired product.

7-Benzyl-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2a

General Procedure A was followed starting with urea **1a** (2.00 g, 7.03 mmol). Flash column chromatography eluting with EtOAc–hexanes (80:20) gave the desired enone (1.34 g, 4.75 mmol, 68%) as a colourless oil.

IR (v_{max} / cm^{-1}) 2966, 1687, 1416, 779, 728, 587; ¹H NMR (500 MHz; MeOD) δ = 7.36 – 7.22 (5H, m), 6.48 (1H, dd, *J* = 10.2, 0.8), 6.05 (1H, *J* = 10.2), 4.81 (1H, d, *J* = 15.3), 3.99 (1H, d, *J* = 15.3), 3.90 (1H, ddd, *J* = 12.0, 7.8, 4.2), 3.65 (1H, dd, *J* = 5.6, 5.4), 3.18 (1H, app dt, *J* = 12.0, 7.4), 2.64 (1H, d, *J* = 5.4), 2.63 (1H, d, *J* = 5.6), 2.10 – 2.00 (1H, m), 1.94 – 1.76 (3H, m); ¹³C NMR (126 MHz; MeOD) δ = 195.5, 162.5, 146.4, 136.2, 128.9, 128.2, 127.9, 127.5, 63.1, 58.5, 46.3, 45.4, 38.2, 35.4, 25.7; HRMS (ESI⁺): Calculated for C₁₇H₁₉N₂O₂ ([M+H]⁺): 283.1441. Found: 283.1434.

7-Cyclopropyl-5,7-diaztricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2b


General Procedure A was followed starting with urea **1b** (1.06 g, 4.53 mmol). Flash column chromatography eluting with EtOAc–hexanes (80:20) gave the desired enone (547 mg, 2.36 mmol, 52%) as a colourless oil. IR (v_{max} /cm⁻¹) 3487, 2971, 2889, 1682, 1410, 1379, 1364, 1225; ¹H NMR (500 MHz; MeOD) $\delta = 6.62$ (1H, dd, J = 10.2, 1.3), 6.04 (1H, dd, J = 10.2, 0.8), 4.02 (1H, app td, J = 4.5, 1.3), 3.72 (1H, ddd, J = 11.9, 7.3, 4.1), 3.17 (1H, dt, J = 11.9), 2.98 (1H, ddd, J = 16.7, 4.3, 0.9), 2.90 (1H, dd, J = 16.7, 4.6), 2.17 (1H, tt, J = 7.2, 3.7), 2.15 – 1.92 (4H, m), 0.79 (1H, app dtd, J = 9.7, 7.2 and 5.0), 0.73 (1H, app dtd, J = 9.7, 7.2 and 4.8), 0.61 (1H, dddd, J = 10.1, 6.4, 5.0 and 3.7), 0.45 (1H, dddd, J = 10.1, 6.7, 4.8 and 3.7); ¹³C NMR (126 MHz; MeOD) $\delta = 198.4$, 165.5, 148.6, 128.1, 65.2, 64.2, 46.9, 38.5, 35.5, 26.9, 25.1, 7.0, 5.0; HRMS (ESI⁺): Calculated for C₁₃H₁₇N₂O₂ ([M+H]⁺): 233.1284. Found: 233.1281.

6-Isopropyl-2,3,6a,7-tetrahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 2c

General Procedure A was followed starting with urea **1c** (603 mg, 2.55 mmol). Flash column chromatography eluting with 1% MeOH in DCM gave the desired enone (222 mg, 0.95 mmol, 37%) as a colourless oil. ¹H NMR (300 MHz, MeOD) δ = 6.58 (1H, d, *J* = 10.2), 5.96 (1H, d, *J* = 10.2), 4.04 (1H, dd, *J* = 6.9, 5.3), 3.82 (1H, hept, *J* = 6.9), 3.65 (1H, ddd, *J* = 15.6, 7.8, 3.9), 3.02 (1H, m), 2.81 (1H, dd, *J* = 16.1, 5.2), 2.61 (1H, dd, *J* = 16.1, 6.9), 2.05 - 1.90 (1H, m), 1.90 - 1.82 (1H, m), 1.82 - 1.72 (2H, m), 1.14 (3H, d, *J* = 6.9), 1.11 (3H, d, *J* = 6.9). ¹³C NMR (75 MHz, MeOD) δ = 198.2, 164.2, 147.8, 128.2, 64.7, 59.1, 46.7, 46.0, 41.9, 35.8, 25.5, 21.4, 19.5. **IR** v_{max (}neat)/cm⁻¹: 2966, 2938, 2876 (C-H), 1681 (C=O), 1456 (C=C). HRMS (ESI): C₁₃H₁₉N₂O₂ [M + H⁺]: calculated 235.1441, found 235.1437.

7-[2-Methoxyethyl]-5,7-diaztricyclo[6.4.0.0^{1,5}]dodecane-6,10-dione 2d

General Procedure A was followed starting with urea **1d** (155 mg, 0.614 mmol). Flash column chromatography eluting with EtOAc–hexanes (8:2 to 10:0) gave the desired enone (57.6 mg, 0.228 mmol, 37%) as a colourless oil. IR (v_{max} /cm⁻¹) 2928, 2885, 1677, 1410, 1392, 1311, 1114, 1028; ¹H NMR (500 MHz; MeOD) δ = 6.47 (1H, dd, *J* = 10.2 and 0.9, 12-H), 6.06 (1H, d, *J* = 10.2), 4.03 (1H, app t, *J* = 5.4), 3.87 – 3.80 (1H, m), 3.53 – 3.39 (3H, m), 3.30 (3H, s, OMe), 3.26 – 3.20 (1H, m), 3.19 – 3.11 (1H, m), 2.78 (1H, dd, *J* = 16.4 and 5.2), 2.75 (1H, dd, *J*

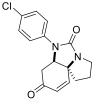
= 16.4 and 5.8), 2.12 – 2.02 (1H, m), 1.99 – 1.87 (3H, m); ¹³C NMR (126 MHz; MeOD) δ = 195.8, 162.3, 146.2, 127.6, 71.5, 63.2, 60.5, 58.8, 46.1, 41.1, 38.4, 35.2, 25.5; HRMS (ESI⁺): Calculated for C₁₃H₁₉N₂O₃ ([M+H]⁺): 251.1390. Found: 251.1396.

Ethyl 2-{6,10-dioxo-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-en-7-yl}acetate 2e

General Procedure A was followed starting with urea **1e** (610 mg, 2.18 mmol). Flash column chromatography eluting with CH_2Cl_2 —MeOH (99:1) gave the desired enone (482 mg, 1.73 mmol, 79%) as a colourless oil. IR (v_{max} /cm⁻¹) 2977, 1739, 1687, 1428, 1394, 1314, 1246, 1205, 1094, 1028, 977, 778; ¹H NMR (500 MHz, CDCl₃) δ = 6.46 (1H, d, *J* = 10.2, 12-H), 6.04 (1H, d, *J* = 10.2), 4.18 (1H, d, *J* = 18.2), 4.20—4.07 (3H, m), 3.82 (1H, dd, *J* = 11.3, 7.8 and 3.3), 3.58 (1H, d, *J* = 18.2), 3.18—3.11 (1H, m), 2.73 (1H, dd, *J* = 16.8 and 4.9), 2.61 (1H, dd, *J* = 16.8 and 4.2), 2.11—1.88 (4H, m), 1.24 (3H, t, *J* = 7.2); ¹³C NMR (125 MHz, CDCl₃) δ = 195.0, 169.1, 162.5, 146.9, 127.3, 63.2, 61.3, 60.5, 46.6, 42.6, 37.4, 35.3, 26.2, 14.1; HRMS (ESI⁺): Calculated for C₁₄H₁₈N₂NaO₄ ([M+Na]⁺): 301.1158. Found: 301.1159.

(6a*R**,10a*S**)-6-(4-Toluenesulfonyl)-2,3,6a,7-tetrahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2*c*]imidazole-5,8(6*H*)-dione 2f

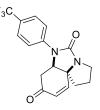
General Procedure A was followed starting with urea **1f** (518 mg, 1.49 mmol). Flash column chromatography eluting with 40% EtOAc/hexanes gave the desired enone (118 mg, 0.34 mmol, 23%) as a white solid. IR v_{max} (neat)/cm⁻¹: 2958, 2930, 1736, 1685, 1597, 1494, 1458, 1369. ¹H NMR (300 MHz, CDCl₃) δ = 7.85 (2H, d, *J* = 8.3), 7.26 (2H, d, *J* = 8.2), 6.40 (1H, d, *J* = 10.3), 6.05 (1H, d, *J* = 10.3), 4.54 (1H, dd, *J* = 8.8, 5.8), 3.84 – 3.70 (1H, m), 3.12 (1H, dd, *J* = 15.9, 5.7), 3.05 (1H, ddd, *J* = 12.9, 5.7, 1.2), 2.86 (1H, dd, *J* = 15.9, 8.8), 2.36 (3H, s), 2.04 – 1.82 (3H, m), 1.63 (1H, dt, *J* = 12.8, 9.5). ¹³C NMR (75 MHz, CDCl₃) δ = 194.5, 156.3, 145.2, 142.8, 135.5, 129.7, 129.0, 128.3, 63.2, 58.3, 44.7, 41.3, 35.1, 23.5, 21.7. HRMS (ESI): C₁₇H₁₉N₂O₄S [M + H⁺]: calculated 347.1060, found 347.1060.


5,7-Diazatricyclo[6.4.0.0¹,⁵]dodec-11-ene-6,10-dione 2g

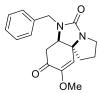
General Procedure A was followed starting with urea **1g** (250 mg, 1.29 mmol). Flash column chromatography eluting with EtOAc–MeOH (90:10) gave the desired enone (157 mg, 0.82 mmol, 64%) as a colourless foam. IR (v_{max} /cm⁻¹) 3291, 2972, 2890, 1675, 1396, 1313, 1241,

1183, 1127; ¹H NMR (400 MHz, CDCl₃) δ = 6.46 (1H, d, *J* = 10.3), 6.09 (1H, d, *J* = 10.3), 5.11 (1H, s), 4.07 (1H, app t, *J* = 4.6), 3.80 (1H, dt, *J* = 7.7, 5.0), 3.17 – 3.09 (1H, m), 2.72 (1H, dd, *J* = 16.7, 4.8), 2.66 (1H, dd, *J* = 16.7, 4.6), 2.13 – 2.06 (1H, m), 2.03 – 1.89 (3H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 195.4, 163.4, 146.2, 127.7, 65.1, 57.4, 45.6, 40.0, 35.3, 26.3; HRMS (ESI⁺): Calculated for C₁₀H₁₂N₂O₂ ([M+H]⁺): 193.0972. Found: 193.0966.

7-(4-Chlorophenyl)-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2h


General Procedure A was followed starting with urea **1h** (100 mg, 0.328 mmol). Flash column chromatography eluting with EtOAc-hexanes (5:5) gave the desired enone (46.8 mg, 0.155 mmol, 47%) as a colourless oil. IR (v_{max} /cm⁻¹) 2967, 2887, 1686, 1493, 1414, 1381, 1314, 1044; ¹H NMR (400 MHz, CDCl₃) δ = 7.32 (2H, d, *J* = 8.8), 7.19 (2H, d, *J* = 8.8), 6.55 (1H, d, *J* = 10.2), 6.12 (1H, d, *J* = 10.2), 4.46 (1H, dd, *J* = 5.8, 5.2), 3.96 – 3.88 (1H, m), 3.29 – 3.20 (1H, m), 2.79 (1H, dd, *J* = 16.6, 5.2), 2.68 (1 H, dd, *J* = 16.6, 5.8), 2.20 – 1.99 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 194.7, 159.9, 145.7, 135.7, 130.7, 129.4, 127.9, 124.0, 62.8, 60.2, 45.8, 38.2, 35.8, 25.4; HRMS (ESI⁺): Calculated for C₁₆H₁₆³⁵ClN₂O₂ ([M+H]⁺): 303.0894. Found: 303.0892.

6-(4-Methoxyphenyl)-2,3,6a,7-tetrahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazole-5,8(6*H*)dione 2i

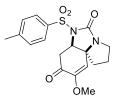

General Procedure A was followed starting with urea **1i** (250 mg, 0.83 mmol). Flash column chromatography eluting with 1% MeOH in DCM gave the desired enone (104 mg, 0.35 mmol, 42%) as a white solid. IR v_{max} (neat)/cm⁻¹: 2957, 2900, 2834, 1686, 1582, 1510, 1443, 1390. ¹H NMR (300 MHz, CDCl₃) δ = 7.13 (2H, d, *J* = 9.0), 6.91 (2H, d, *J* = 9.0), 6.56 (1H, d, *J* = 10.2), 6.13 (1H, d, *J* = 10.3), 4.36 (1H, t, *J* = 5.1), 3.99 – 3.88 (1H, m), 3.80 (3H, s), 3.30 - 3.19 (1H, m), 2.74 (1H, dd, *J* = 16.6, 5.0), 2.66 (1H, dd, *J* = 16.6, 5.2), 2.30 – 2.12 (1H, m), 2.12 – 2.07 (1H, m), 2.06 – 1.99 (2H, m). ¹³C NMR (75 MHz, CDCl₃) δ = 195.1, 160.6, 157.7, 146.2, 129.8, 127.6, 125.8, 114.6, 62.8, 61.7, 55.5, 45.9, 38.1, 35.5, 25.7. HRMS (ESI): C₁₇H₁₉N₂O₃ [M + H⁺]: calculated 299.1390, found 299.1390.

7-[4-(Trifluoromethyl)phenyl]-5,7-diaztricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2j

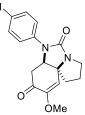
General Procedure A was followed starting with urea **1J** = (1.93 g, 5.69 mmol). Flash column chromatography eluting with MeOH–CH₂Cl₂ (1:99) gave the desired enone (1.51 g, 4.49 mmol, 79%) as a colourless oil. IR (v_{max} /cm⁻¹) 2973, 2896, 1686, 1614, 1522, 1425, 1323, 1313, 1072; ¹H NMR (500 MHz; MeOD) δ = 6.62 (1H, dd, *J* = 10.2, 1.3), 6.04 (1H, dd, *J* = 10.2, 0.8), 4.02 (1H, app td, *J* = 4.5, 1.3), 3.72 (1H, ddd, *J* = 11.9, 7.3, 4.1), 3.17 (1H, dt, *J* = 11.9, 7.2), 2.98 (1H, ddd, *J* = 16.7, 4.3, 0.9), 2.90 (1H, dd, *J* = 16.7, 4.6), 2.17 (1H, tt, *J* = 7.2, 3.7), 2.15 – 1.92 (4H, m), 0.79 (1H, app dtd, *J* = 9.7, 7.2 and 5.0), 0.73 (1H, app dtd, *J* = 9.7, 7.2 and 4.8), 0.61 (1H, dddd, *J* = 10.1, 6.4, 5.0 and 3.7), 0.45 (1H, dddd, *J* = 10.1, 6.7, 4.8 and 3.7); ¹³C NMR (126 MHz; MeOD) δ = 198.4, 165.5, 148.6, 128.1, 65.2, 64.2, 46.9, 38.5, 35.5, 26.9, 25.1, 7.0, 5.0; HRMS (ESI⁺): Calculated for C₁₇H₁₆F₃N₂O₂ ([M+H]⁺): 337.1158. Found: 337.1152.

7-Benzyl-11-methoxy-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2k

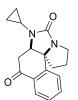
General Procedure B was followed starting with urea **1k** (87 mg, 0.28 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 2:8 to 1:9) gave the desired enone (47 mg, 0.15 mmol, 54%) as a colourless oil. IR (v_{max} /cm⁻¹) 2956, 2908, 1692, 1494, 1360, 1317, 1283, 1081; ¹H NMR (400 MHz; CDCl₃) δ = 7.28 – 7.15 (5H, m), 5.31 (1H, s), 4.76 (1H, d, *J* = 15.2), 3.91 (1H, d, *J* = 15.2), 3.83 (1H, ddd, *J* = 12.0, 7.8, 4.2), 3.57 (3H, s), 3.52 (1H, t, *J* = 5.6), 3.13 (1H, dt, *J* = 12.0, 7.1), 2.72 – 2.62 (2H, m), 2.06 – 1.93 (1H, m), 1.89 – 1.70 (3H, m); ¹³C NMR (101 MHz; CDCl₃) δ = 190.4, 162.5, 150.1, 136.1, 128.9, 128.4, 127.9, 113.8, 64.7, 57.6, 55.1, 45.9, 45.4, 38.9, 36.6, 25.5; HRMS (ESI⁺): Calculated for C₁₈H₂₁N₂O₃ ([M+H]⁺): 313.1546. Found: 313.1545.


Ethyl 2-{11-methoxy-6,10-dioxo-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-en-7-yl}acetate 2l

General Procedure B was followed starting with urea **1I** (190 mg, 0.612 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 2:8 to 0:10) gave the desired enone (157 mg, 0.510 mmol, 83%) as a colourless oil. IR (v_{max} /cm⁻¹) 3469, 2975, 1687, 1631, 1416, 1389, 1318, 1199, 1150, 1085; ¹H NMR (400 MHz; CDCl₃) δ = 5.35 (1H, s), 4.21 (1H, d, *J* = 18.24.19 – 4.08


(3H, m), 3.82 (1H, ddd, J = 11.7, 7.3, 3.6), 3.61 (3H, s), 3.57 (1H, d, J = 18.2), 3.16 (1H, ddd, J = 11.7, 7.9, 6.8), 2.81 (1H, dd, J = 16.7, 4.7), 2.72 (1H, dd, J = 16.7, 4.6), 2.14 – 1.87 (4H, m), 1.24 (3H, t, J = 7.1); ¹³C NMR (101 MHz; CDCl₃) $\delta = 190.1$, 169.2, 162.5, 149.8, 114.5, 64.9, 61.4, 59.9, 55.1, 46.3, 42.6, 38.1, 36.7, 26.1, 14.2; HRMS (ESI⁺): Calculated for C₁₅H₂₁N₂O₅ ([M+H]⁺): 309.1444. Found: 309.1444.

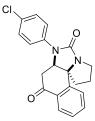
11-Methoxy-7-(4-methylbenzenesulfonyl)-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10dione 2m


General Procedure B was followed starting with urea **1m** (140 mg, 0.371 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 2:8 to 0:10) gave the desired enone (102 mg, 0.271 mmol, 73%) as a colourless solid. m.p. (hexane–EtOAc) 205.2–208.6 °C; IR (v_{max} /cm⁻¹) 2974, 2907, 2255, 1736, 1633, 1595, 1337, 1203, 1149, 1063; ¹H NMR (400 MHz; CDCl₃) δ = 7.91 (2H, d, *J* = 8.3), 7.31 (2H, d, *J* = 8.3), 5.30 (1H, s), 4.57 (1H, dd, *J* = 9.2, 5.7), 3.84 (1H, ddd, *J* = 12.4, 8.4, 6.1), 3.62 (3H, s), 3.28 (1H, dd, *J* = 15.9, 5.7), 3.11 (1H, ddd, *J* = 12.4, 8.5, 6.5), 2.99 (1H, dd, *J* = 15.9, 9.2), 2.42 (3H, s), 2.10 – 1.98 (2H, m), 1.92 (1H, ddd, *J* = 12.4, 7.2, 3.4), 1.68 (1H, app dt, *J* = 12.4, 9.8); ¹³C NMR (101 MHz; CDCl₃) δ = 189.4, 156.6, 151.1, 145.3, 135.6, 129.8, 128.3, 110.2, 65.1, 57.6, 55.3, 44.3, 42.0, 36.4, 23.5, 21.8; HRMS (ESI⁺): Calculated for C₁₈H₂₁N₂O₅S ([M+H]⁺): 377.1165. Found: 377.1162.

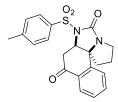
7-(4-Chlorophenyl)-11-methoxy-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2n

General Procedure A was followed starting with urea **1n** (80.5 mg, 0.241 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 3:7 to 2:8) gave the desired enone (51.4 mg, 0.155 mmol, 64%) as a colourless oil. IR (v_{max} /cm⁻¹) 2964, 2897, 1696, 1633, 1494, 1386, 1320, 1092; ¹H NMR (400 MHz, CDCl₃) δ = 7.31 (2H, d, *J* = 8.8), 7.21 (2H, d, *J* = 8.8), 5.43 (1H, s), 4.41 (1H, dd, *J* = 6.0, 5.3), 3.92 (1H, ddd, *J* = 12.2, 7.7, 4.5), 3.67 (3H, s), 3.30 – 3.20 (1H, m), 2.90 (1H, dd, *J* = 16.4, 5.1), 2.80 (1H, dd, *J* = 16.4, 6.3), 2.29 – 1.95 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 189.7, 160.0, 150.3, 135.9, 130.6, 129.4, 123.7, 113.0, 64.4, 59.5, 55.2, 45.4, 38.9, 37.1, 25.2; HRMS (ESI⁺): Calculated for C₁₇H₁₈³⁵ClN₂O₃ ([M+H]⁺): 333.1000. Found: 333.0997.

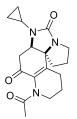
11-Cyclopropyl-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12-dione 20


General Procedure A was followed starting with urea **10** (76.6 mg, 0.270 mmol). Flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 95:5) gave the desired product (20.5 mg, 0.072 mmol, 27%) as a colourless solid. m.p. 163.1–163.2°C; IR (v_{max} /cm⁻¹) 2968, 2881, 1686, 1601, 1396, 1376, 1323, 1292, 1174; ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (1H, dd, J = 8.1, 1.4), 7.61 (1H, ddd, J = 8.1, 7.7, 1.4), 7.40 – 7.35 (2H, m), 4.04 (1H, dd, J = 12.1, 7.9), 3.86 (1H, dd, J = 4.1, 3.6), 3.39 (1H, app td, J = 11.5, 5.4), 3.32 (1H, dd, J = 16.7, 3.6), 2.94 (1H, dd, J = 16.7, 4.1), 2.36 – 2.17 (3H, m), 2.11 – 2.04 (1H, m), 2.01 – 1.87 (1H, m), 0.85 – 0.76 (1H, m), 0.72 – 0.57 (2H, m), 0.51 – 0.43 (1 H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 194.9, 164.8, 146.6, 134.8, 131.2, 128.3, 127.8, 125.4, 66.3, 64.8, 48.8, 39.0, 37.8, 27.5, 24.9, 5.9, 4.6; HRMS (ESI⁺): Calculated for C₁₇H₁₉N₂O₂ ([M+H]⁺): 283.1441. Found: 283.1441.

Ethyl 2-{8,12-dioxo-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-trien-11yl}acetate 2p


General Procedure B was followed starting with urea **1p** (95 mg, 0.29 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 9:1) gave the desired product (60 mg, 0.18 mmol, 62%) as a colourless solid. mp (hexane–EtOAc): 115.7-116.3 °C; IR (v_{max} /cm⁻¹) 2975, 2890, 1739, 1691, 1601, 1408, 1389, 1324, 1294, 1204; ¹H NMR (400 MHz; CDCl₃) δ = 7.91 (1H, dd, J = 7.9, 1.2), 7.62 (1H, td, J = 7.9, 1.3), 7.43 – 7.35 (2H, m), 4.31 (1H, app t, J = 3.7), 4.23 – 4.13 (3H, m), 4.03 (1H, app dd, J = 11.7, 7.5), 3.60 (1H, d, J = 18.2), 3.42 (1H, app td, J = 11.5, 5.5), 2.97 (1H, dd, J = 16.9, 4.1), 2.90 (1H, dd, J = 16.9, 3.4), 2.43 – 2.19 (3H, m), 2.14 – 1.98 (1H, m), 1.26 (3H, t, J = 7.1); ¹³C NMR (101 MHz; CDCl₃) δ = 194.5, 169.4, 163.7, 146.4, 134.9, 131.3, 128.3, 127.9, 125.4, 65.6, 62.6, 61.4, 49.4, 42.7, 39.1, 37.4, 27.7, 14.2; HRMS (ESI⁺): Calculated for C₁₈H₂₁N₂O₄ ([M+H]⁺): 329.1495. Found: 329.1491.

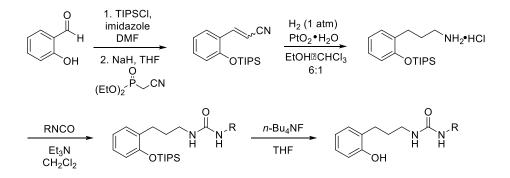
11-(4-Chlorophenyl)-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12dione 2q


General Procedure A was followed starting with urea **1q** (105 mg, 0.296 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 7:3 to 5:5) gave the desired product (63.3 mg, 0.179 mmol, 60%) as a colourless solid. mp (hexane–EtOAc): 187-188 °C; IR (v_{max} /cm⁻¹) 2951, 2885, 1690, 1598, 1531, 1493, 1374, 1325, 1175, 1132, 1089; ¹H NMR (400 MHz, MeOD) δ = 7.87 (1H, dd, *J* = 7.9, 1.2), 7.75 (1H, ddd, *J* = 8.1, 7.4, 1.4), 7.63 (1H, d, *J* = 7.9), 7.46 (1H, ddd, *J* = 8.1, 7.4, 1.1), 7.39 (2H, d, *J* = 8.8), 7.12 (2H, d, *J* = 8.8), 4.71 (1H, dd, *J* = 4.0, 3.5), 3.95 (1H, app dd, *J* = 11.6, 7.7), 3.54 (1H, app td, *J* = 11.4, 5.9), 3.17 (1H, dd, *J* = 16.9, 4.2), 2.89 (1H, dd, *J* = 16.9, 3.3), 2.58 (1H, ddd, *J* = 13.3, 8.4, 1.7), 2.43 (1H, ddd, *J* = 13.3, 10.9, 7.4), 2.37 – 2.28 (1H, m), 2.20 – 2.08 (1H, m); ¹³C NMR (101 MHz, MeOD) δ = 196.2, 163.5, 147.6, 137.2, 136.2, 132.5, 132.3, 130.1, 129.6, 129.0, 127.2, 126.1, 66.9, 65.0, 39.5, 37.9, 28.2 (one signal under solvent peak, at 48.6 in CDCl₃); HRMS (ESI⁺): Calculated for C₂₀H₁₈³⁵ClN₂O₂ ([M+H]⁺): 353.1051. Found: 353.1045.

11-(4-Methylbenzenesulfonyl)-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12-dione 2r

General Procedure A was followed starting with urea **1r** (99.6 mg, 0.250 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 2:8 then CH₂Cl₂–MeOH 95:5) gave the desired product (28.7 mg, 0.0720 mmol, 29%) as a colourless oil. IR (v_{max} /cm⁻¹) 2927, 2892, 1732, 1692, 1599, 1328, 1293, 1167, 1087; ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (1H, dd, *J* = 7.8, 1.2), 7.90 (2H, d, *J* = 8.3), 7.61 (1H, app td, *J* = 7.7, 1.4), 7.43 (1H, app td, *J* = 7.3, 0.8), 7.33 – 7.28 (3H, m), 4.50 (1H, app t, *J* = 5.1), 3.97 (1H, ddd, *J* = 10.5, 8.4, 1.7), 3.62 (1H, dd, *J* = 16.4, 5.5), 3.38 – 3.30 (1H, m), 3.15 (1H, dd, *J* = 16.4, 4.7), 2.41 (3H, s), 2.28 – 2.16 (3H, m), 2.01 – 1.95 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ = 193.4, 156.9, 145.2, 143.8, 135.1, 134.9, 131.4, 129.7, 128.6, 127.4, 126.2, 65.8, 63.2, 47.4, 40.2, 38.2, 26.2, 21.8; HRMS (ESI⁺): Calculated for C₂₁H₂₁N₂O₄S ([M+H]⁺): 397.1216. Found: 397.1219.

6-Acetyl-11-cyclopropyl-6,11,13-triazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-2(7)-ene-8,12dione 2s



General Procedure B was followed starting with urea **1s** (76 mg, 0.23 mmol). Flash column chromatography (SiO₂, CH₂Cl₂ then CH₂Cl₂–MeOH, 97:3) gave the desired product (59 mg, 0.18 mmol, 78%) as a colourless oil. The product is rotameric leading to complex NMRs – spectra (CDCl₃) were recorded at rt and 50 °C without significant clarification; switching to MeOD did not result in clarification.

IR (v_{max} /cm⁻¹) 2957, 2883, 2237, 1687, 1655, 1386, 1315, 1230, 1027; ¹H NMR (501 MHz, CDCl₃, 50 °C) δ = 3.93 (1H, dd, *J* = 11.9, 8.3), 3.86 – 3.67 (2H, br m, includes at 3.73, dd, *J* = 4.1, 3.0), 3.41 – 3.16 (1H, br m), 3.16 (1H, dd, *J* = 15.6, 2.9), 3.10 – 3.03 (1H, m), 2.86 (1H, dd, *J* = 15.6, 4.0), 2.34 and 2.30 (1H, 2 × t, *J* = 6.8), 2.16 – 1.73 (11H, m), 0.84 – 0.78 (1H, m), 0.71 – 0.60 (2H, m), 0.60 – 0.53 (1H, m); ¹³C NMR (126 MHz, CDCl₃, 50 °C) δ = 188.2, 169.2, 163.6, 145.9 (*very broad and faint*), 134.4, 66.1, 65.1, 48.4, 42.5, 36.1, 33.7, 26.1, 23.9, 23.3, 22.2, 21.7, 4.8, 3.6; HRMS (ESI⁺): Calculated for C₁₈H₂₄N₃O₃ ([M+H]⁺): 330.1812. Found: 330.1807.

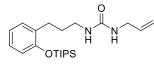
Preparation of compounds 3-6 (Scheme 1)

Preparation of 3a

2-{[Tris(propan-2-yl)silyl]oxy}benzaldehyde S20

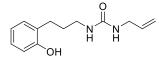
Salicylaldehyde (3 mL, 28.2 mmol) was dissolved in DMF (14 mL). Triisopropylsilyl chloride (7.3 mL, 34 mmol, 1.2 eq) was added and the reaction mixture was cooled down to 0 °C before the addition of imidazole (2.31 g, 33.9 mmol, 1.20 eq). The reaction mixture was warmed to rt and stirred overnight. EtOAc (50 mL) and H₂O (20 mL) were added. The phases were separated and the organic phase was successively washed with H₂O (2 × 20 mL), aqueous HCl (1M, 20 mL), aqueous saturated NaHCO₃ (20 mL) and brine (50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 95:5) gave the title compound **S20** (6.85 g, 24.6 mmol, 87%) as a colourless oil. IR (v_{max} /cm⁻¹) 2945, 2866, 1597, 1575, 1388, 1368, 1476, 1456, 1306, 1275, 1117; ¹H NMR (300 MHz; CDCl₃) δ = 10.5 (1H, s), 7.81 (1H, dd, *J* = 7.8, 1.9), 7.44 (1H, ddd, *J* = 8.3, 7.3, 1.9), 7.04 – 6.97 (1H, m), 6.89 (1H, dd, *J* = 8.3, 0.6), 1.42 – 1.28 (3H, m), 1.13 (18H, d, *J* = 7.2); ¹³C NMR (75 MHz; CDCl₃) δ = 190.4, 159.6, 135.8, 128.4, 126.9, 121.2, 119.9, 18.1, 13.2; HRMS (ESI⁺): Calculated for C₁₆H₂₇O₂Si ([M+H]⁺): 279.1774. Found: 279.1766.

(2E/2Z)-3-(2-{[Tris(propan-2-yl)silyl]oxy}phenyl)prop-2-enenitrile S21


Following a procedure adapted from Pouységu *et al.*,² to a solution of THF (60 mL) at 0 °C was added NaH (60% in mineral oil, 1.13 g, 28.1 mmol, 1.15 eq) portionwise and the suspension was stirred for 10 min. Diethylcyanophosphonate (4.6 mL, 28.4 mmol, 1.16 eq) was added dropwise at at 0 °C and the reaction mixture was stirred 10 min before the addition of aldehyde **S20** (6.8 g, 24.4 mmol) in THF (19 mL). The reaction mixture was stirred for 2 h at 0 °C, and Et₂O was added (100 mL) before filtration of the reaction mixture directly over a pad of silica washed with Et₂O. After concentration *in vacuo*, the residue was purified

by flash column chromatography (SiO₂, hexane–EtOAc, 9:1) to give the desired nitriles **S21** as an inseparable mixture of isomers (7.22 g, 23.9 mmol, 97%, *E/Z* 3.3:1). IR (v_{max} /cm⁻¹) 2945, 2867, 2216, 1611, 1598, 1481, 1454, 1263, 1103; **Major** *E* **isomer** ¹H NMR (300 MHz; CDCl₃) δ = 7.78 (1H, d, *J* = 16.8), 7.41 (1H, dd, *J* = 7.8, 1.7), 1.42 – 1.28 (1H, m), 6.95 (1H, t, *J* = 7.5), 6.86 (1H, d, *J* = 8.3), 5.89 (1H, d, *J* = 16.8), 1.40 – 1.25 (3H, m), 1.12 (18H, d, *J* = 7.2); ¹³C NMR (75 MHz; CDCl₃) δ = 154.9, 146.4, 132.4, 127.2, 124.7, 121.4, 119.5, 118.9, 95.7, 18.0, 13.1; **Minor** *Z* **isomer** ¹H NMR (300 MHz; CDCl₃) δ = 8.12 (1H, dd, *J* = 7.9, 1.6), 7.61 (1H, d, *J* = 12.2), 1.42 – 1.28 (1H, m), 7.01 (1H, t, *J* = 7.8), 6.86 (1H, d, *J* = 8.3), 5.42 (1H, d, *J* = 12.2), 1.40 – 1.25 (3H, m), 1.12 (18H, d, *J* = 7.1); ¹³C NMR (75 MHz; CDCl₃) δ = 154.8, 144.4, 132.2, 128.5, 125.0, 121.3, 118.9, 117.7, 94.4, 18.0, 13.0; HRMS (ESI⁺): Calculated for C₁₈H₂₈NOSi ([M+H]⁺): 302.1934. Found: 302.1925.

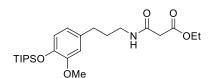
Amine salt S22


Following a procedure adapted from Pouységu *et al.*,² to a mixture of $EtOH-CHCl_3$ (6:1, 53 mL) was added unsaturated nitrile (3.50 g, 11.6 mmol). $PtO_2.H_2O$ (184 mg, 0.810 mmol, 0.07 eq) was added and the reaction mixture was stirred under an atmosphere of H_2 (balloon) overnight. MeOH (100 mL) was added and the stirring was stopped. After 30 min the reaction mixture was removed from the reaction flask without the solid platinum residue. After concentration *in vacuo* the amine salt **S22** was used directly without further purification.

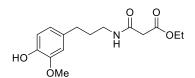
3-(Prop-2-en-1-yl)-1-[3-(2-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]urea S23

To a solution of the crude amine salt **S22** (1.04 g, \leq 3.03 mmol) in CH₂Cl₂ (20 mL) at 0 °C was successively added Et₃N (450 µL, 3.22 mmol, \geq 1.06 eq) and allyl isocyanate (270 µL, 3.05 mmol, \geq 1.01 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (20 mL) and H₂O (20 mL) were added and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 × 40 mL). The organic extracts were washed with Brine (50 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 6:4) provided the desired urea **S23** as a colourless oil (826 mg, 2.12 mmol, 70% over two steps). IR (v_{max} /cm⁻¹) 3334, 2943, 2865, 1629, 1570, 1489, 1452, 1256, 1014; ¹H NMR (300 MHz, CDCl₃) δ = 7.10 (1H, dd, *J* = 7.4, 1.7), 7.04 (1H, td, *J* = 7.7, 1.8), 6.84 (1H, td, *J* = 7.4, 1.1), 6.78 (1H, dd, *J* = 8.0, 0.9), 5.84 (1H, ddt, *J* = 17.1, 10.4, 5.5), 5.17 (1H, app dq, *J* = 17.2, 1.6), 5.10 (1H, ddt, *J* = 7.0, 6.0), 2.66 (2H, dd, *J* = 8.2, 6.9), 1.86 – 1.74 (2H, m), 1.37 – 1.23 (3H, m), 1.10 (18 H, d, *J* = 7.2); ¹³C NMR (75 MHz, CDCl₃) δ = 158.2, 154.0, 135.5, 131.7, 130.2, 127.0, 120.9, 118.1, 115.8, 43.2, 40.6, 30.4, 28.2, 18.2, 13.2; HRMS (ESI⁺): Calculated for C₂₂H₃₉N₂O₂Si ([M+H]⁺): 391.2775. Found: 391.2778.

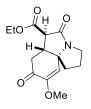
1-[3-(2-Hydroxyphenyl)propyl]-3-(prop-2-en-1-yl)urea 3


To a solution of the above urea **S23** (769 mg, 1.97 mmol) in THF (20 mL) at 0 °C was added nBu_4NF (1M in THF, 2.6 mL, 2.6 mmol, 1.3 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, hexane–EtOAc, 4:6 to 2:8) to afford the desired phenol as a colourless solid (333 mg, 1.42 mmol, 72%). m.p. 95.7–96.3 °C; IR (v_{max} /cm⁻¹) 3376, 3328, 2948, 2864, 1602, 1571, 1504, 1457, 1417, 1350, 1267, 1232, 1180, 1113; ¹H NMR (400 MHz, MeOD) δ = 7.04 (1H, d, *J* = 7.3), 6.98 (1H, t, *J* = 7.6), 6.76 – 6.70 (2H, t, *J* = 7.5), 5.85 (1H, ddt, *J* = 16.8, 10.2, 4.8), 5.17 (1H, d, *J* = 16.8), 5.06 (1H, d, *J* = 10.2), 3.73 (2H, d, *J* = 4.8), 3.13 (2H, t, *J* = 6.9), 2.62 (2H, t, *J* = 7.5), 1.81 – 1.71 (2H, m); ¹³C NMR (101 MHz, MeOD) δ = 161.1, 156.2, 136.9, 131.0, 129.2, 127.9, 120.5, 115.8, 115.2, 43.3, 40.7, 31.5, 28.3; HRMS (ESI⁺): Calculated for C₁₃H₁₉N₂O₂ ([M+H]⁺): 235.1441. Found: 235.1438.

3-(Prop-2-en-1-yl)-1,3-diazatricyclo[6.3.1.0⁴,¹²]dodeca-4(12),5,7-trien-2-one 4


General Procedure B was followed starting with urea **3** (51.2 mg, 0.219 mmol). Flash column chromatography (SiO₂, hexane–EtOAc, 9:1) gave the tetrahydroquinoline (9.5 mg, 0.041 mmol, 19%) as a colourless oil. A minor side product (containing two carbon sp^2 : CH at 7.74 (d, J = 8.3) in ¹H NMR and 137.4 in ¹³C NMR; CH at 7.11 (d, J = 8.3) in ¹H NMR and 131.2 in ¹³C NMR) could not be separated from the product; IR (v_{max} /cm⁻¹) 3484, 2935, 1699, 1498, 1409, 1352; ¹H NMR (400 MHz, CDCl₃) $\delta = 6.95$ (1H, t, J = 7.7), 6.85 (1H, d, J = 7.6), 6.80 (1H, d, J = 7.7), 5.91 (1H, ddt, J = 16.9, 10.6, 5.5), 5.27 – 5.19 (2H, m), 4.51 – 4.48 (2H, m), 3.90 – 3.86 (2H, m), 2.86 (2H, t, J = 6.1), 2.18 – 2.07 (2H, m); ¹³C NMR (101 MHz, CDCl₃) $\delta = 153.4$, 132.5, 127.9, 126.7, 120.8, 119.5, 119.4, 117.6, 106.0, 43.7, 39.2, 24.0, 22.0; HRMS (ESI⁺): Calculated for C₁₃H₁₅N₂O ([M+H]⁺): 215.1178. Found: 215.1176.

Ethyl 2-{[3-(4-hydroxy-3-methoxyphenyl)propyl]carbamoyl}acetate 5


To a solution of the crude amine salt **S5** (3.22 g, \leq 8.64 mmol) in CH₂Cl₂ (60 mL) at 0 °C was successively added Et₃N (2.8 mL, 20 mmol, \geq 2.4 eq) and ethyl malonyl chloride (1.2 mL, 9.3 mmol, \geq 1.1 eq). The reaction mixture was stirred for 2 h at rt. Saturated aqueous NH₄Cl (30 mL) and H₂O (20 mL) were added and the phases were separated. The aqueous phase was

extracted with CH_2Cl_2 (2 × 40 mL). The organic extracts were washed with brine (40 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Flash column chromatography (SiO₂, hexane–EtOAc, 6:4) afforded the urea **S24** as a colourless oil (2.87 g, 6.36 mmol, 74% over two steps). IR (v_{max} /cm⁻¹) 3292, 2942, 2865, 1740, 1649, 1556, 1513, 1464, 1274, 1232, 1157, 1072; ¹H NMR (400 MHz; CDCl₃) δ = 7.10 (1H, s), 6.71 (1H, d, *J* = 8.0), 6.60 (1H, d, *J* = 1.9), 6.54 (1H, dd, *J* = 8.0 and 1.9), 4.14 (2H, q, *J* = 7.1), 3.73 (3H, s), 3.27 – 3.21 (4H, m, includes 2H, 3.22, s), 2.52 (2H, dd, *J* = 8.1, 7.2), 1.78 (2H, app dq, *J* = 8.1, 7.2), 1.23 (3H, t, *J* = 7.1), 1.27 – 1.12 (3H, m), 1.02 (18H, d, *J* = 7.2); ¹³C NMR (101 MHz; CDCl₃) δ = 169.9, 165.0, 150.8, 143.8, 134.5, 120.3, 120.3, 112.6, 61.6, 55.6, 41.1, 39.2, 32.9, 31.2, 18.0, 14.2, 13.0; HRMS (ESI⁺): Calculated for C₂₄H₄₂NO₅Si ([M+H]⁺): 452.2826. Found: 452.2822.

To a solution of the above malonate half-ester/half-amide **S24** (2.81 g, 6.23 mmol) in THF (20 mL) at 0 °C was added *n*Bu₄NF (1M in THF, 8.2 mL, 8.2 mmol, 1.3 eq) dropwise. The reaction mixture warmed to rt and stirred for 2 h. After concentration *in vacuo* the residue was purified by flash column chromatography (SiO₂, hexane–EtOAc, 2:8 to 1:9) to afford the desired phenol as a colourless oil (1.64 g, 5.56 mmol, 89%). IR (v_{max} /cm⁻¹) 3305, 2937, 1732, 1647, 1553, 1514, 1451, 1429, 1268, 1186, 1151, 1123, 1028; ¹H NMR (400 MHz; CDCl₃) δ = 7.19 (1H, s), 6.80 (1H, d, *J* = 8.0), 6.68 – 6.62 (2H, m), 5.74 (1H, s), 4.18 (2H, q, *J* = 7.1), 3.85 (3H, s), 3.33 – 3.26 (4H, m (includes 3.27, s)), 2.60 – 2.54 (2H, m), 1.86 – 1.77 (2H, m), 1.27 (3H, t, *J* = 7.1); ¹³C NMR (101 MHz, CDCl₃) δ = 169.8, 165.1, 146.6, 143.9, 133.2, 120.9, 114.4, 111.1, 61.6, 55.9, 41.1, 39.1, 32.8, 31.2, 14.1; HRMS (ESI⁺): Calculated for C₁₅H₂₂NO₅ ([M+H]⁺): 296.1492. Found: 296.1488.

Ethyl 2-methoxy-3,6-dioxo-3*H*,4*H*,5*H*,6*H*,8*H*,9*H*,10*H*,10b*H*-cyclohexa[*h*]pyrrolizine-5-carboxylate 6

To a solution of [bis(trifluoroacetoxy)iodo]benzene (1.95 g, 4.53 mmol, 1.1 eq) in MeCN (40 mL) and H₂O (50 μ L) at 0 °C was added a solution of phenol **5** (1.22 g, 4.14 mmol) in MeCN (13 mL) dropwise. The reaction mixture was stirred at 0 °C for 20 min before the addition of Et₃N (1.5 mL, 10.8 mmol, 2.6 eq). The reaction mixture was concentrated *in vacuo* and the residue was partitioned between EtOAc (20 mL) and H₂O (20 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 20 mL). The combined organic extracts were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was then diluted with MeCN (20 mL) and the solution cooled to 0 °C. Cs₂CO₃ (2.8 g, 8.5 mmol, 2.0 eq) was added and the reaction mixture was

stirred 40 min. After concentration *in vacuo*, the residue was purified by flash column chromatography (SiO₂, hexane–EtOAc, 1:9) gave the desired product (596 mg, 2.03 mmol, 49%) as a colourless solid. A suitable crystal was obtained for X-Ray crystallography. mp (hexane–EtOAc): 168-170 °C; IR (v_{max} /cm⁻¹) 2939, 1736, 1686, 1626, 1463, 1351, 1324, 1304, 1179, 1146, 1076; ¹H NMR (400 MHz, CDCl₃) δ = 5.45 (1H, d, *J* = 1.3), 4.23 – 4.14 (2H, m), 3.80 – 3.72 (1H, m), 3.58 (3H, s), 3.51 (1H, d, *J* = 12.4), 3.17 – 3.03 (2H, m), 2.76 (1H, dd, *J* = 17.6, 5.8), 2.59 (1H, dd, *J* = 17.6, 1.9), 2.25 – 1.97 (4H, m), 1.24 (3H, t, *J* = 7.1); ¹³C NMR (101 MHz, CDCl₃) δ = 190.1 (COOEt), 168.4, 168.1, 149.6, 114.6, 66.9, 61.8, 55.9, 55.0, 44.9, 42.5, 36.9, 36.5, 26.1, 14.1; HRMS (ESI⁺): Calculated for C₁₅H₂₀NO₅ ([M+H]⁺): 294.1335. Found: 294.1331.

Functional group manipulations on dearomatised products: Scheme 2

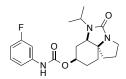
6-Isopropylhexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 7

To a solution of the enone **2c** (197 mg, 0.84 mmol, 1.0 eq.) and tris(triphenyl)rhodium(I) chloride (15.6 mg, 16.9 µmol, 2.0 mol%) in 5 mL THF, 6 mL of TES was added. The mixture was stirred at room temperature for 24 h. 0.05 mL of 1M HCl was then added and the mixture was stirred at room temperature for 1 h and evaporated *in vacuo*. Flash chromatography eluting with 50 – 100% EtOAc in hexane afforded the product **7** (167 mg, 0.71 mmol, 85%). IR v_{max} (neat)/cm⁻¹: 2967, 1682. ¹H NMR (300 MHz, MeOD) δ = 4.03 (1H, dd, *J* = 5.1, 3.2), 3.71 (1H, hept, *J* = 6.9), 3.53 (1H, ddd, *J* = 12.0, 6.0, 3.3), 2.92 (1H, ddd, *J* = 12.0, 5.7, 3.6), 2.83 (1H, dd, *J* = 15.5, 5.3), 2.50 (1H, dd, *J* = 15.5, 3.1), 2.31 – 2.22 (2H, m), 2.03 (1H, ddd, *J* = 14.5, 10.1, 6.5), 1.95 – 1.78 (4H, m), 1.65 – 1.52 (1H, m), 1.14 (3H, d, *J* = 6.9), 1.12 (3H, d, *J* = 6.9). ¹³C NMR (75 MHz, MeOD) δ = 213.1, 164.9, 66.6, 60.0, 46.3, 45.3, 43.6, 38.0, 36.1, 29.5, 24.6, 21.4, 19.5. HRMS (ESI): C₁₃H₂₁N₂O₂ [M + H⁺]: calculated 237.1598, found 237.1595.

6-(4-Toluenesulfonyl)hexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 8

To a mixture of Pd(OH)₂/C (27.0 mg, 20% w/w) and enone **2f** (133 mg, 0.38 mmol, 1.0 eq.) under an atmosphere of nitrogen, 10 mL of HPLC grade EtOAc was added gently. The reaction mixture was degassed and hydrogen gas was bubbled through it with the aid of a balloon, and this procedure was repeated twice. The mixture was then allowed to stir under a balloon of hydrogen for 27 h at room temperature. The reaction mixture was filtered through a plug of Celite washing with 100 mL EtOAc. The filtrate was evaporated *in vacuo*. Flash chromatography eluting with 50 - 90% EtOAc in hexane afforded the product **8** as a white solid (111 mg, 0.32 mmol, 83%); IR v_{max} (neat)/cm⁻¹: 2959, 1718, 1596, 1494, 1455, 1352. ¹H NMR δ (400 MHz, CDCl₃) δ = 7.83 (2H, d, *J* = 8.4), 7.32 (2H, d, *J* = 8.8), 4.56 (1H, dd, *J* = 5.2, 3.8), 3.66 (1H, ddd, *J* = 12.0, 5.6, 3.2), 3.13 (1H, dd, *J* = 16.3, 3.7), 2.94 (1H, ddd, *J* = 12.1, 9.2, 4.9), 2.84 (1H, dd, *J* = 16.3, 5.3), 2.35 (3H, s), 2.34 - 2.18 (2H, m), 2.03 - 1.79 (5H, m), 1.59-1.50 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ = 208.1, 156.6, 145.0, 135.4, 129.6, 128.4, 65.1, 59.4, 43.6, 42.9, 37.1, 34.8, 28.4, 23.5, 21.7. HRMS (ESI): C₁₇H₂₁N₂O₄S [M + H⁺]: calculated 349.1217.

6-(4-Methoxyphenyl)hexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 9


To a mixture of Pd(OH)₂/C (20.8 mg, 20% w/w) and enone **2i** (104 mg, 0.35 mmol, 1.0 eq.) under an atmosphere of nitrogen, 10 mL of HPLC grade EtOAc was added gently. The reaction mixture was degassed and hydrogen gas was bubbled through it with the aid of a balloon, and this procedure was repeated twice. The mixture was then allowed to stir under a balloon of hydrogen for 23 h at room temperature. The reaction mixture was filtered through a plug of Celite washing with 100 mL EtOAc. The filtrate was evaporated *in vacuo*. Flash chromatography eluting with 2 - 4% MeOH in DCM afforded the product **9** as a brown solid (72 mg, 0.24 mmol, 69%); IR v_{max} (neat)/cm⁻¹: 2998, 2953, 2891, 1710, 1617, 1586, 1516, 1406. ¹H NMR (500 MHz, CDCl₃) δ = 7.04 (2H, d, *J* = 9.0), 6.81 (2H, d, *J* = 9.0), 4.35 (1H, t, *J* = 4.0), 3.76 (1H, ddd, *J* = 11.5, 5.5, 3.5), 3.71 (3H, s), 3.07 (1H, ddd, *J* = 11.5, 6.0, 3.5), 2.60 – 2.54 (2H, m), 2.54 - 2.49 (1H, m), 2.31 (1H, dt, *J* = 19.0, 3.9), 2.03 – 1.89 (5H, m), 1.80 (1H, ddd, *J* = 16.0, 9.5, 3.5). ¹³C NMR (125 MHz, CDCl₃) δ = 208.2, 160.0, 156.3, 128.9, 124.3, 113.6, 63.2, 60.0, 54.5, 43.5, 39.4, 37.4, 34.2, 28.7, 23.4. HRMS (ESI): C₁₇H₂₁N₂O₃ [M + H⁺]: calculated 301.1547, found 301.1544.

8-Hydroxy-6-isopropyloctahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 10

A mixture of the ketone **7** (24.0 mg, 0.10 mmol, 1.0 eq.) and CeCl₃.7H₂O (45.5 mg, 0.12 mmol, 1.2 eq.) in 3 mL of HPLC grade MeOH and it was allowed to stir at -78 °C for 30 min. NaBH₄ (4.62 mg, 0.12 mmol, 1.2 eq.) was then added and the mixture was left to warm up to room temperature for another 30 min. The reaction mixture was evaporated *in vacuo*. It was then taken up in 1 mL H₂O, diluted with 50 mL EtOAc, dried over Na₂SO₄ and evaporated *in vacuo*. Flash chromatography with 1 – 4% MeOH in DCM afforded the product **10** as a single diastereomer (22.0 mg, 0.09 mmol, 92% yield). IR v_{max} (neat)/cm⁻¹: 3399, 2937, 1666, 1056. ¹H NMR (500 MHz, CDCl₃) δ = 3.99 (1H, hept, *J* = 7.0), 3.78 (1H, ddd, *J* = 12.4, 9.2, 5.2), 3.57 (1H, tt, *J* = 10.5, 4.0), 3.44 (1H, dd, *J* = 10.1, 6.5), 2.85 (1H, ddd, *J* = 12.0, 6.0, 3.0), 2.33 (1H, dddd, *J* = 12.7, 6.5, 4.3, 2.2), 2.13 (1H, s), 1.85 (1H, dt, *J* = 14.5, 4.0), 1.80 – 1.63 (3H, m), 1.50 – 1.34 (4H, m), 1.31 – 1.23 (1H, m), 1.14 (3H, d, *J* = 7.0), 1.11 (3H, d, *J* = 6.5). ¹³C NMR (125 MHz, CDCl₃) δ = 162.6, 66.2, 64.5, 53.6, 43.2, 43.0, 40.8, 33.6, 29.6, 28.1, 21.9, 21.4, 18.8. HRMS (ESI): C₁₃H₂₃N₂O₂ [M + H⁺]: calculated 239.1754, found 239.1750.

Preparation of crystalline derivative of 10: 6-isopropyl-5-oxooctahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]-imidazol-8-yl (3-fluorophenyl)carbamate S25

A mixture of the ketone 7 (27.0 mg, 0.11 mmol, 1.0 eq.) and CeCl₃.7H₂O (51.0 mg, 0.14 mmol, 1.2 eq.) in 3 mL of HPLC grade MeOH was allowed to stir at – 78 $^{\circ}$ C for 30 min. NaBH₄ (5.18 mg, 0.14 mmol, 1.2 eq.) was then added and the mixture was left to warm up to room temperature for another 30 min. The reaction mixture was evaporated in vacuo. It was then taken up in 1 mL H₂O, diluted with 50 mL EtOAc, dried over Na₂SO₄ and evaporated *in vacuo*. To a solution of the crude product in 5 mL DCM, 3-fluorophenylisocyanate (13 μ L, 0.11 mmol, 1.0 eq.) and TEA (0.05 mL, 0.34 mmol, 3.0 eq.) were added and the mixture was stirred at room temperature overnight. The reaction mixture was evaporated in vacuo. Flash chromatography with 1 - 4% MeOH in DCM afforded the carbamate as a diastereomeric mixture in the ratio of 93:7 (36 mg, 0.10 mmol, 84% yield). Crystals of the maJ =or diastereomer were grown for X-ray analysis. IR v_{max} (neat)/cm⁻¹: 3254 (N-H); 3076, 2968 (C-H); 1723, 1671 (C=O); 1606, 1546, 1495 (C=C); 1221 (C-O). ¹H NMR (Major diastereomer, 500 MHz, CDCl₃) δ = 7.30 (1H, d, J = 10.6), 7.17 (1H, td, J = 8.2, 6.6), 7.00 (1H, d, J = 8.0), 6.68 (1H, td, J = 8.3, 2.3), 4.69 (1H, tt, J = 10.8, 4.0), 3.99 (1H, hept, J = 6.9), 3.79 (1H, ddd, J = 12.4, 9.3, 5.2), 3.52 (1H, dd, J = 9.9, 6.5), 2.86 (1H, ddd, J = 12.5, 7.0, 4.0), 2.43 - 2.36 (1H, m), 1.88 (1H, dt, J = 15.0, 4.0), 1.85 - 1.80 (1H, m), 1.77 (1H, ddd, J = 12.5, 6.0, 3.0), 1.75 -1.66 (1H, m), 1.62 – 1.40 (4H, m), 1.37 (1H, ddd, J = 14.6, 10.8, 4.7), 1.14 (3H, d, J = 6.9), 1.12 (3H, d, J = 6.9). Signals for minor isomer visible at: 5.06 (0.07H, quint, J = 4.5), 3.70 (0.07H, dd, J = 8.2, 5.7). ¹³C NMR (Major diastereomer, 125 MHz, CDCl₃) δ = 162.6, 162.2 (d, J = 243.0), 151.8, 138.7 (d, J = 13.2), 129.1 (d, J = 9.5), 112.8, 108.9, 104.9 (d, J = 26.8), 69.3, 64.4, 53.2, 43.3, 43.0, 36.9, 33.6, 27.6, 26.0, 21.9, 21.4, 18.7. Signals for minor isomer visible at: 52.1, 34.4, 25.1, 24.1, 22.2, 21.2. HRMS (ESI): C₂₀H₂₇FN₃O₃ [M + H⁺]: calculated 376.2031, found 376.2028.

8-Hydroxy-6-(4-toluenesulfonyl)octahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 11

A mixture of the ketone **8** (18.0 mg, 0.05 mmol, 1.0 eq.) and CeCl₃.7H₂O (23.2 mg, 0.06 mmol, 1.2 eq.) in 3 mL of HPLC grade MeOH was allowed to stir at -78 °C for 30 min. NaBH₄ (2.40 mg, 0.06 mmol, 1.2 eq.) was then added and the mixture was left to warm up to room temperature for another 30 min. The reaction mixture was evaporated *in vacuo*. It was then taken up in 1 mL H₂O, diluted with 50 mL EtOAc, dried over Na₂SO₄ and evaporated *in vacuo*. Flash chromatography with 1 – 2% MeOH in DCM afforded the product **11** as a 78:22 mixture of diastereomers (15.0 mg, 0.04 mmol, 83% yield). IR v_{max} (neat)/cm⁻¹: 3388, 2922, 2852, 1727, 1658, 1597, 1161. ¹H NMR (Major diastereomer, 500 MHz, CDCl₃) δ = 7.87 (2H, d, *J* = 8.5), 7.24 (2H, d, *J* = 8.5), 4.17 (1H, dd, *J* = 10.0, 6.4), 3.74 – 3.61 (2H, m, 8-H), 2.89 (1H, ddd, *J* = 12.1, 9.4, 5.7), 2.67 (1H, dddd, *J* = 12.8, 6.4, 4.5, 1.9), 2.35 (3H, s), 1.86 – 1.70 (4H, m), 1.60 – 1.24 (6H, m). Signals for minor isomer visible at: 4.29 (0.29H, dd, *J* = 8.0, 5.5), 4.09

(0.29H, quint, J = 5.0). ¹³C NMR (Major diastereomer, 125 MHz, CDCl₃) $\delta = 158.4$, 144.8, 136.2, 129.6, 128.2, 66.4, 65.1, 57.7, 44.0, 39.4, 34.4, 30.0, 28.2, 22.9, 21.7. Signals for minor isomer visible at: 158.1, 144.7, 136.1, 129.5, 128.1, 65.4, 63.9, 57.3, 43.8, 36.7, 35.2, 27.6, 25.3, 23.0. HRMS (ESI): C₁₇H₂₃N₂O₄S [M + H⁺]: calculated 351.1373, found 351.1369.

8-Hydroxy-6-(4-methoxyphenyl)octahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazol-5-one 12

A mixture of the ketone 9 (30.0 mg, 0.10 mmol, 1.0 eq.) and CeCl₃.7H₂O (44.7 mg, 0.12 mmol, 1.2 eq.) in 3 mL of HPLC grade MeOH was allowed to stir at -78 °C for 30 min. NaBH₄ (4.54 mg, 0.12 mmol, 1.2 eq.) was then added and the mixture was left to warm up to room temperature for another 30 min. The reaction mixture was evaporated in vacuo. It was then taken up in 1 mL H₂O, diluted with 50 mL EtOAc, dried over Na₂SO₄ and evaporated *in vacuo*. Flash chromatography with 1 - 3% MeOH in DCM afforded the product **12** as an 85:15 mixture of diastereomers (29.0 mg, 0.10 mmol, 96% yield). IR v_{max} (neat)/cm⁻¹: 3398, 2934, 1674, 1582, 1510, 1462, 1244. ¹H NMR (Major diastereomer, 500 MHz, CDCl₃) δ = 7.27 (2H, d, J = 9.0), 6.80 (2H, d, J = 9.5), 3.96 (1H, dd, J = 9.5, 6.2), 3.85 (1H, ddd, J = 12.3, 9.0, 5.5), 3.72 (3H, s), 3.65 (1H, qd, J = 9.0, 4.3), 2.99 (1H, ddd, J = 12.0, 6.0, 3.0), 2.24 (1H, dddd, J = 12.7, 6.2, 4.5, 1.9), 1.91 (1H, dt, J = 14.5, 4.0), 1.89 – 1.73 (6H, m), 1.49 (1H, tdd, J = 12.9, 9.4, 3.6), 1.41 – 1.36 (1H, m), 1.36 – 1.31 (1H, m). Signals for minor isomer visible at: 4.15 (0.17H, dd, J = 6.5, 5.5), 4.03 (0.18H, quint, J = 5.5). 13 C NMR (Major diastereomer, 125 MHz, CDCl₃) δ = 162.0, 156.4, 131.4, 123.4, 114.4, 69.9, 64.4, 58.4, 55.5, 44.3, 38.0, 35.4, 30.5, 29.0, 23.2. Signals for minor isomer visible at: 64.6, 64.0, 57.7, 36.3, 33.9, 28.4, 26.6, 23.7. HRMS (ESI): $C_{17}H_{23}N_2O_3[M + H^{\dagger}]$: calculated 303.1703, found 303.1698.

6-Isopropyl-8-(methylamino)octahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 13

To a solution of the ketone **7** (22.0 mg, 0.09 mmol, 1.0 eq.) in 6 mL THF, 33 wt% methylamine in EtOH (0.10 mL, 0.93 mmol, 10.0 eq.) and titanium isopropoxide (0.06 mL, 0.19 mmol, 2.0 eq.) were added and the mixture was left to stir at room temperature overnight. NaBH₄ (5.30 mg, 0.14 mmol, 1.5 eq.) was added to the reaction mixture at -78 °C and it was stirred at the same temperature for 30 min. It was then allowed to warm up to room temperature for another 30 min. The reaction mixture was evaporated *in* vacuo. It was then taken up in 1 mL H₂O, diluted with 50 mL EtOAc, dried over MgSO₄ and evaporated *in* vacuo. Flash chromatography with 5% MeOH in DCM, followed by 99:9:1 of DCM/MeOH/aq. NH₃ respectively, afforded the product **13** as a diastereomeric mixture in the ratio of 88:12 (21.0 mg, 0.08 mmol, 90% yield). IR v_{max} (neat)/cm⁻¹: 3306, 2966, 2936, 2791, 1686. ¹H NMR

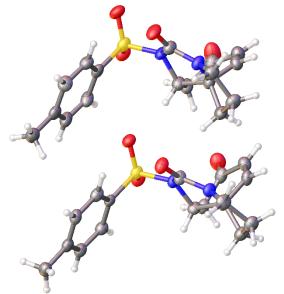
(Major diastereomer, 500 MHz, CDCl₃) δ = 3.98 (1H, hept, *J* = 7.0), 3.77 (1H, ddd, *J* = 12.4, 9.2, 5.3), 3.41 (1H, dd, *J* = 10.4, 6.5), 2.84 (1H, ddd, *J* = 12.4, 9.3, 5.9), 2.37 – 2.31 (4H, m, 8-*H*), 2.26 (1H, dddd, *J* = 12.5, 6.1, 3.7, 2.2), 1.88 – 1.82 (1H, m), 1.77 – 1.65 (4H, m), 1.44 – 1.34 (2H, m), 1.29 – 1.15 (3H, m), 1.14 (3H, d, *J* = 7.0), 1.11 (3H, d, *J* = 7.0). Signals for minor isomer visible at: 3.69 (0.14H, ddd, *J* = 12.1, 8.8, 6.0), 3.61 (0.13H, t, *J* = 5.5). ¹³C NMR (Major diastereomer, 125 MHz, CDCl₃) δ = 162.6, 64.9, 54.0, 53.7, 43.2, 43.0, 38.4, 33.8, 32.3, 28.8, 26.4, 21.9, 21.5, 18.7. Signals for minor isomer visible at: 162.4, 64.8, 53.8, 43.3, 34.8, 32.8, 25.3, 24.4, 22.2, 21.2, 18.5. HRMS (ESI): C₁₄H₂₆N₃O [M + H⁺]: calculated 252.2070, found 252.2079.

8-Hydroxy-6-isopropyl-2,3,6,6a,7,8-hexahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazol-5-one 14

A mixture of enone **2c** (186 mg, 0.79 mmol, 1.0 eq.) and CeCl₃.7H₂O (354 mg, 0.95 mmol, 1.2 eq.) in 4 mL of HPLC grade methanol was allowed to stir for 30 min at -78 °C after which NaBH₄ (35.9 mg, 0.95 mmol, 1.2 eq.) was added and the mixture was further stirred at the same temperature for 40 min. The reaction mixture was then allowed to warm up to room temperature for 1 h. It was extracted with EtOAc (5 × 20mL), dried over MgSO₄ and evaporated *in vacuo*. Silica gel chromatography eluting with 70 – 90% EtOAc in hexane afforded the compound **14** as a white solid (173 mg, 0.73 mmol, 92% yield); IR v_{max} (neat)/cm⁻¹: 3369, 2971, 2937, 1666, 1416, 1223. ¹H NMR (300 MHz, MeOD) δ = 5.87 (1H, dt, *J* = 10.2, 1.3), 5.67 (1H, dd, *J* = 10.2, 2.2), 4.21 (1H, ddd, *J* = 10.8, 4.5, 2.4), 3.96 (1H, hept, *J* = 6.9), 3.79 (1H, dd, *J* = 11.2, 4.8, 1.4), 2.04 – 1.79 (2H, m), 1.69 (1H, ddd, *J* = 12.3, 7.8, 2.6), 1.61 – 1.40 (2H, m), 1.28 (3H, d, *J* = 6.9), 1.26 (3H, d, *J* = 6.6). ¹³C NMR (75 MHz, MeOD) δ = 164.5, 134.7, 127.0, 65.8, 65.5, 56.0, 46.1, 45.3, 39.8, 36.3, 23.6, 22.4, 19.6. HRMS (ESI): C₁₃H₂₁N₂O₂ [M + H⁺]: calculated 237.1598, found 237.1598.

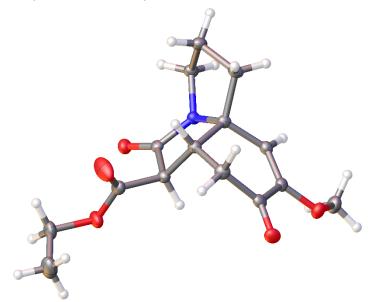
Methyl (5*S*',*6*R')-6-(4-methylbenzenesulfonamido)-8-oxo-1-azaspiro[4.5]decane-1carboxylate 15

лн СО₂Ме

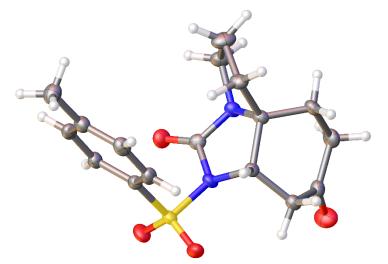

The enone **2f** (1.2 g, 3.5 mmol) was hydrogenated using palladium on carbon (10%, 120 mg) in methanol (40 mL), this gave the ketone **8** (1.21 g) as a foam which was not purified further. Sodium methoxide (100 mg, 1.85 mmol) was added to a solution of ketone (80 mg, <0.23 mmol) in toluene (2 mL); the solution was stirred at room temperature for 30 mins and then heated to 80 °C for 1 h. The reaction was cooled to room temperature, HCl (1M aq., 2 mL) was added and the reaction extracted with EtOAc (5 × 5 mL), dried, filtered and concentrated *in vacuo*. Column chromatography, eluting with EtOAc-hexanes (50:50) gave

the ketone **15** (74 mg, 0.184 mmol, 80%) as a colourless glass; ¹H NMR (500 MHz; DMSO) δ = 7.65 (2H, d, *J* = 8.3), 7.56 (1H, d, *J* = 5.3), 7.40 (2H, d, *J* = 8.3), 3.59 (3H, s) 3.55 (1H, dd, *J* = 10.6 and 4.9), 3.29 (1H, dt, *J* = 10.0 and 8.0), 2.85 (1H, td, *J* = 13.6, 13.2, 4.8), 2.73 (1H, br s), 2.60 (1H, dd, *J* = 15.9, 4.9), 2.55-2.49 (1H, m), 2.45—2.25 (3H, m) 2.41 (3H, s), 1.83 (1H, ddd, *J* = 12.8, 9.8, 6.9), 1.75 – 1.56 (3H, m); ¹³C NMR (126 MHz; DMSO) δ = 207.9, 156.3, 143.0, 136.6, 129.5, 126.5, 65.2, 57.6, 52.4, 48.1, 45.8, 37.9, 37.1, 29.3, 20.9; IR (v_{max} /cm⁻¹) 3319, 2943, 2831, 1667, 1450, 1378, 1325, 1021, 736, 564; HRMS (ESI⁺): Calculated for C₁₈H₂N₂NaO₅S ([M+Na]⁺): 403.1304. Found: 403.1305.

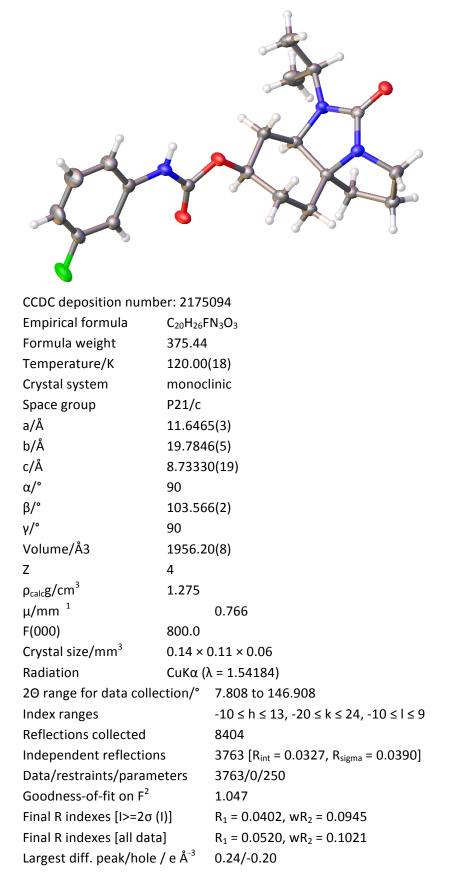
References


Padiya, K. J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Unprecedented "In Water" Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. *Org. Lett.* **2012**, *14*, 2814-2817.
Pouységu, L.; Avellan, A.-V.; Quideau, S. Iodine(III)-Mediated Generation of Nitrogen-Tethered Orthoquinolyl Acetates for the Construction of Oxygenated Indole, Quinoline, and Phenanthridine Alkaloid Motifs. *J. Org. Chem.* **2002**, *67*, 3425-3436.

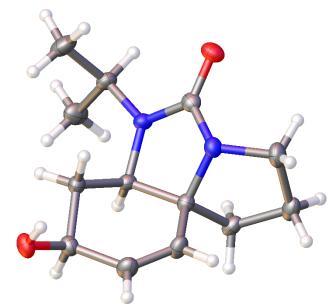
X-ray structure of compound 2f


CCDC deposition number: 2174965 **Empirical formula** $C_{17}H_{18}._{13}N_2O_{4}._{06}S$ Formula weight 347.52 Temperature/K 125.01(10) Crystal system monoclinic Space group C2/c a/Å 21.9810(18) b/Å 8.5032(5) c/Å 34.011(3) α/° 90 β/° 91.007(7) γ/° 90 Volume/Å³ 6355.9(8) Ζ 16 $\rho_{calc}g/cm^3$ 1.453 μ/mm^{1} 2.037 2922.0 F(000) Crystal size/mm³ $0.22\times0.04\times0.04$ Radiation CuKα (λ = 1.54184) 20 range for data collection/° 8.046 to 147.086 Index ranges $-27 \leq h \leq 25, \, -10 \leq k \leq 8, \, -31 \leq l \leq 42$ **Reflections collected** 12352 Independent reflections 6240 [R_{int} = 0.0862, R_{sigma} = 0.1321] Data/restraints/parameters 6240/0/436 Goodness-of-fit on F² 1.038 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0771$, $wR_2 = 0.1679$ Final R indexes [all data] $R_1 = 0.1395$, $wR_2 = 0.2158$ Largest diff. peak/hole / e $Å^{-3}$ 0.45/-0.58

X-ray structure of compound 6

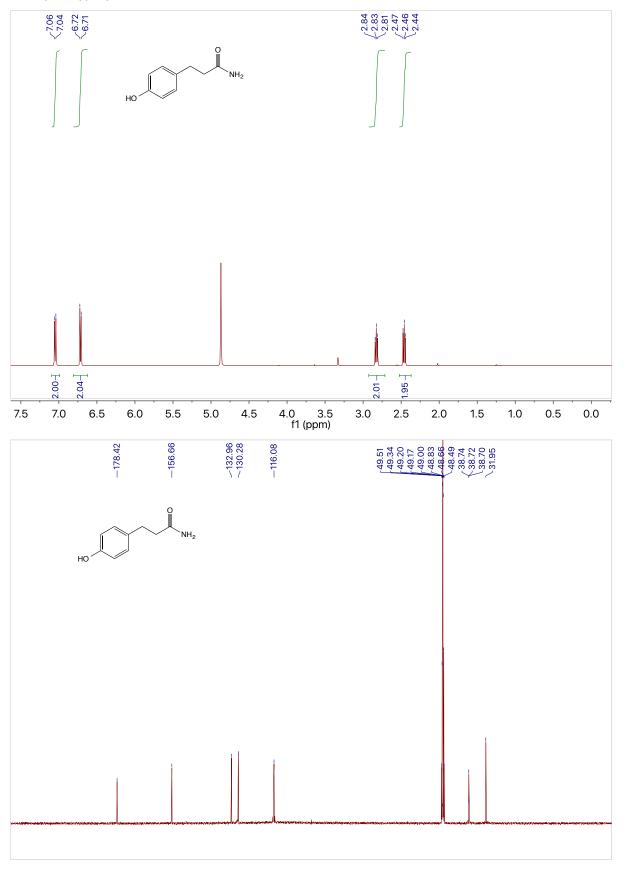

CCDC deposition number: 2174962				
Empirical formula	C ₁₅ H ₁₉ NO ₅			
Formula weight	293.31			
Temperature/K	120.00	(15)		
Crystal system	monoc	linic		
Space group	P21/c			
a/Å	10.1141(4)			
b/Å	7.4519(4)			
c/Å	18.8419(8)			
α/°	90			
β/°	96.346(4)			
γ/°	90			
Volume/Å ³	1411.4	0(11)		
Z	4			
$\rho_{calc}g/cm^3$	1.380			
µ/mm ¹		0.104		
F(000)	624.0			
Crystal size/mm ³	0.29 ×	0.26 × 0.18		
Radiation	Κα (λ = 0.71073)			
20 range for data colle	ction/°	5.884 to 62.456		
Index ranges	-13 ≤ h	≤ 14, -10 ≤ k ≤ 10, -24 ≤ l ≤ 27		
Reflections collected	19778			
Independent reflections		4269 [R_{int} = 0.0521, R_{sigma} = 0.0420]		
Data/restraints/parameters		4269/0/192		
Goodness-of-fit on F ²		1.068		
Final R indexes [I>=2σ (I)]		$R_1 = 0.0521$, $wR_2 = 0.1222$		
Final R indexes [all data]		$R_1 = 0.0652$, $wR_2 = 0.1309$		
Largest diff. peak/hole / e Å ⁻³		0.50/-0.30		

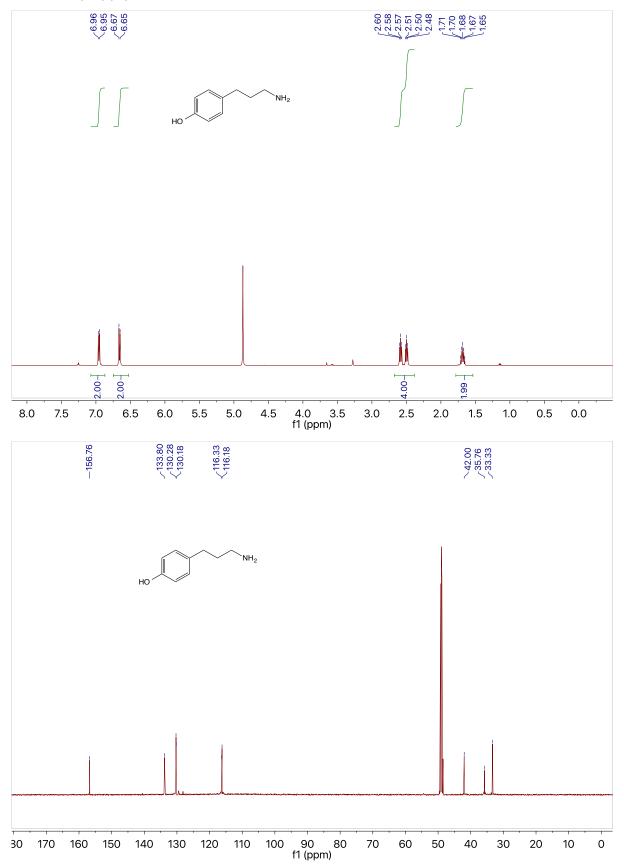
X-ray structure of compound 8

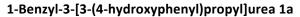


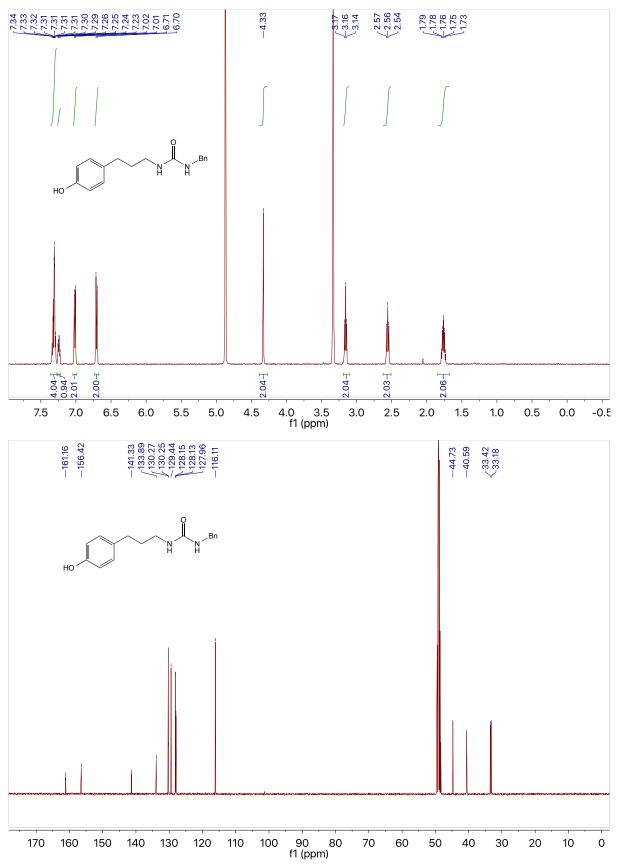
CCDC deposition number: 2174967				
Empirical formula	C ₁₇ H ₂₀ N	N ₂ O ₄ S		
Formula weight	348.41			
Temperature/K	25.01(2	10)		
Crystal system	tetrage	onal		
Space group	P41			
a/Å	8.5193	7(12)		
b/Å	8.5193	7(12)		
c/Å	22.619	8(5)		
α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	1641.7	4(6)		
Z	4			
$\rho_{calc}g/cm^3$	1.410			
μ /mm 1		1.967		
F(000)	736.0			
Crystal size/mm ³	0.17 ×	0.08 × 0.06		
Radiation	CuKα (λ = 1.54184)		
20 range for data collection/°		10.384 to 146.892		
Index ranges	-10 ≤ h	≤ 10, -7 ≤ k ≤ 9, -27 ≤ l ≤ 27		
Reflections collected	6158			
Independent reflections		3188 [$R_{int} = 0.0412$, $R_{sigma} = 0.0545$]		
Data/restraints/parameters		3188/1/218		
Goodness-of-fit on F ²		1.014		
Final R indexes [I>=2σ (I)]		$R_1 = 0.0378$, $wR_2 = 0.0852$		
Final R indexes [all data]		$R_1 = 0.0440, wR_2 = 0.0892$		
Largest diff. peak/hole / e Å ⁻³		0.22/-0.21		
Flack parameter		0.004(19)		

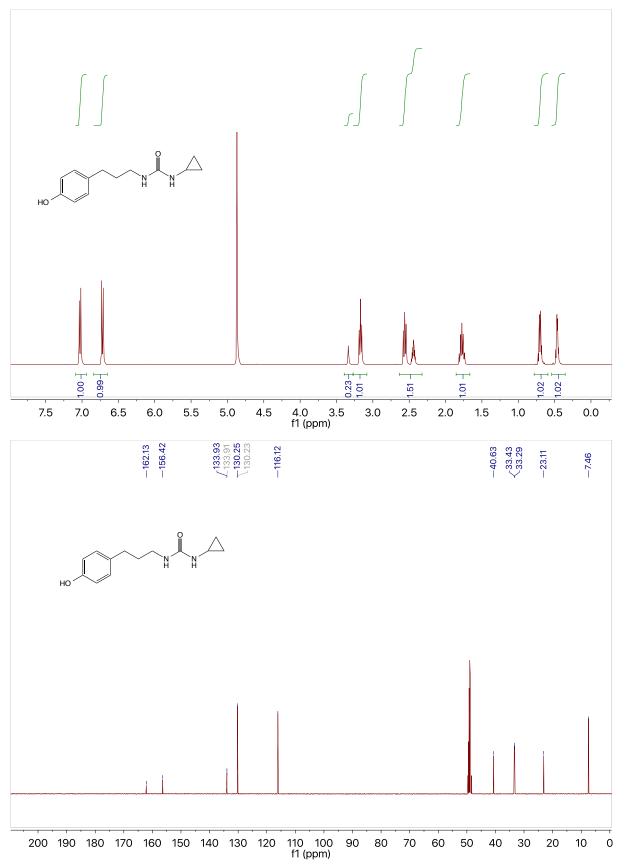
X-ray structure of S25 (urea derivative of compound 10)

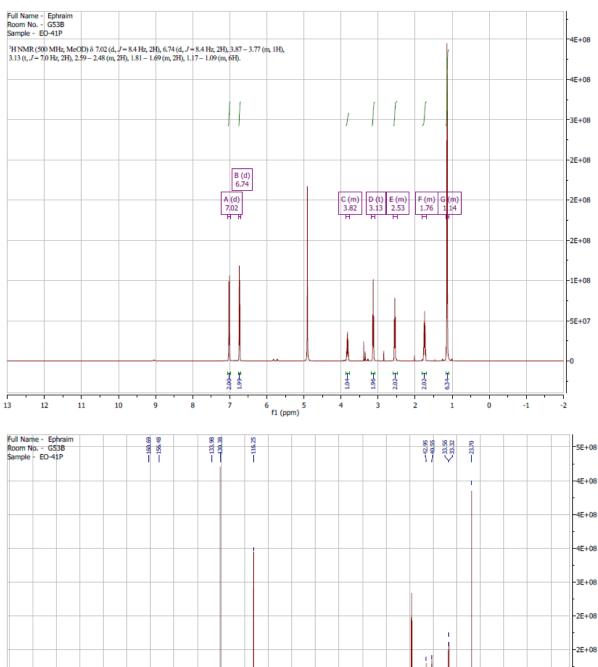

X-ray structure of compound 14

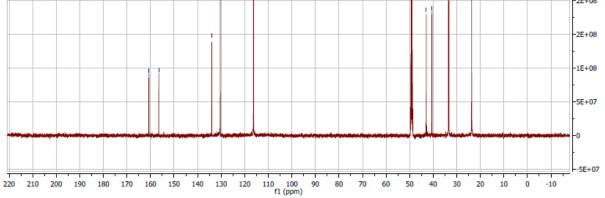

CCDC deposition number: 2174963				
Empirical formula	C ₁₃ H ₂₀ N	$C_{13}H_{20}N_2O_2$		
Formula weight	236.31			
Temperature/K	125.01	.(10)		
Crystal system	monoc	linic		
Space group	P2 ₁ /n			
a/Å	9.3232	2(2)		
b/Å	15.4039(3)			
c/Å	9.4930(2)			
α/°	90			
β/°	114.951(3)			
γ/°	90			
Volume/Å ³	1236.08(5)			
Z	4			
$\rho_{calc}g/cm^3$	1.270			
µ/mm ¹		0.691		
F(000)	512.0			
Crystal size/mm ³	0.29 ×	$0.29 \times 0.21 \times 0.11$		
Radiation	CuKα (CuKα (λ = 1.54184)		
20 range for data collection/°		11.49 to 147.082		
Index ranges	-11 ≤ h	i ≤ 11, -18 ≤ k ≤ 19, -11 ≤ l ≤ 11		
Reflections collected	9586			
Independent reflections		2433 [$R_{int} = 0.0241$, $R_{sigma} = 0.0188$]		
Data/restraints/parameters		2433/0/160		
Goodness-of-fit on F ²		1.037		
Final R indexes [I>=2σ (I)]		$R_1 = 0.0379$, $wR_2 = 0.0934$		
Final R indexes [all data]		$R_1 = 0.0420$, $wR_2 = 0.0964$		
Largest diff. peak/hole / e Å ⁻³		0.28/-0.19		

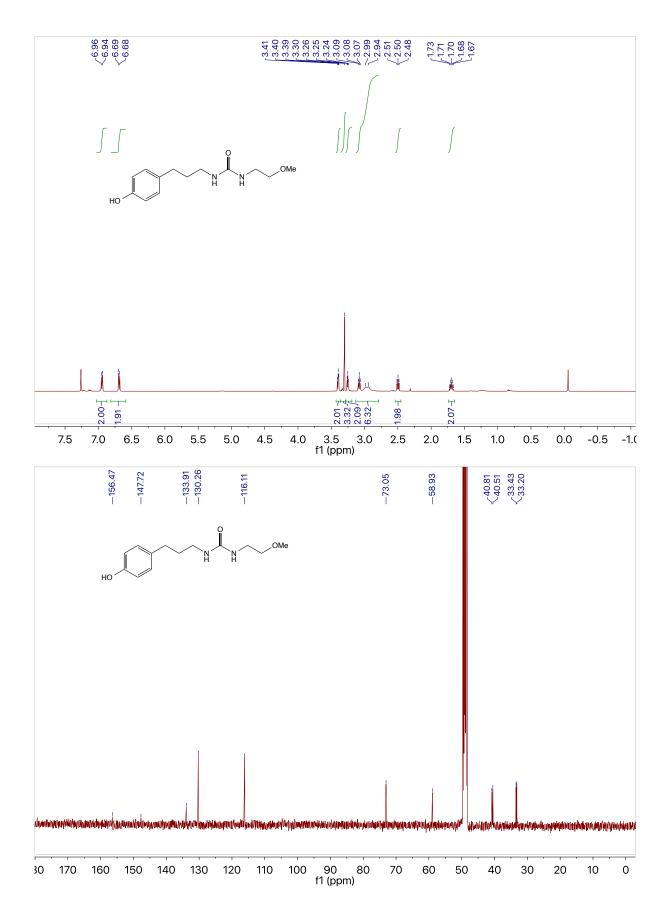

¹H and ¹³C NMR Spectra

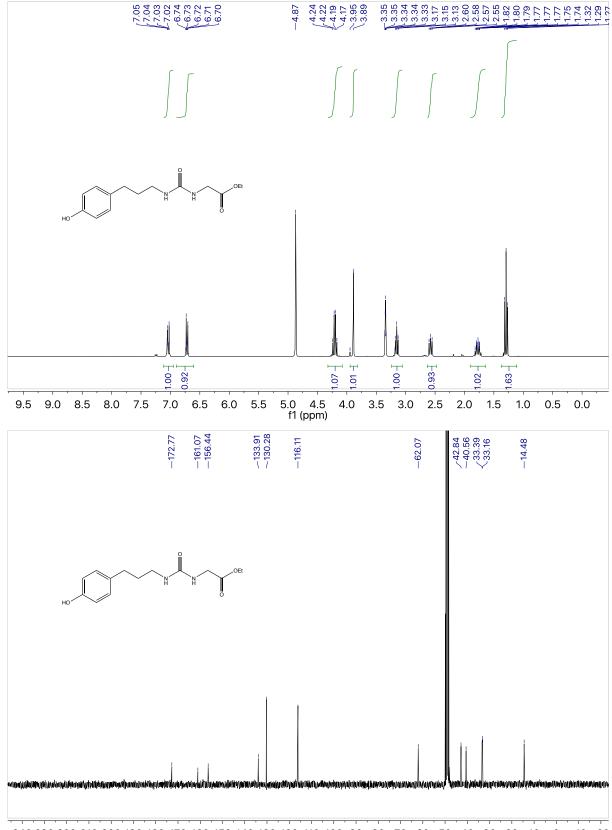

3,4-Hydroxypropanamide S1

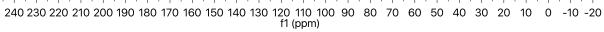

4-(3-Aminopropyl)phenol S2

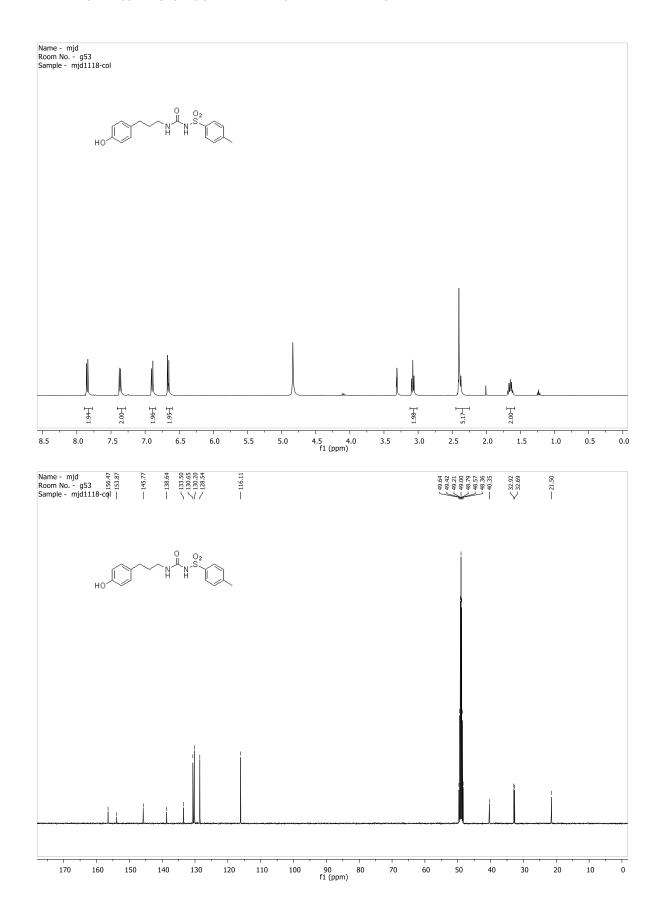


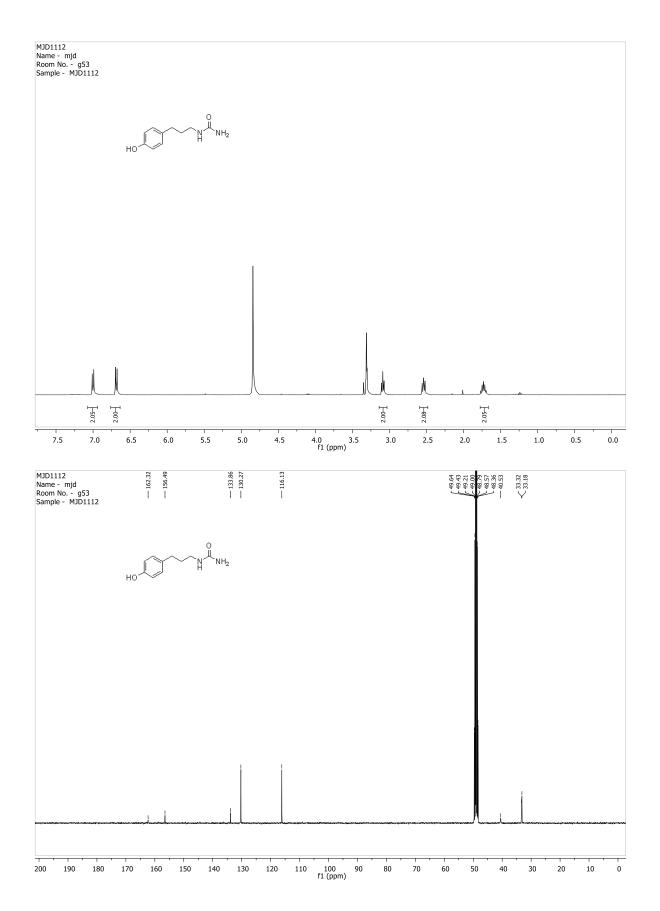


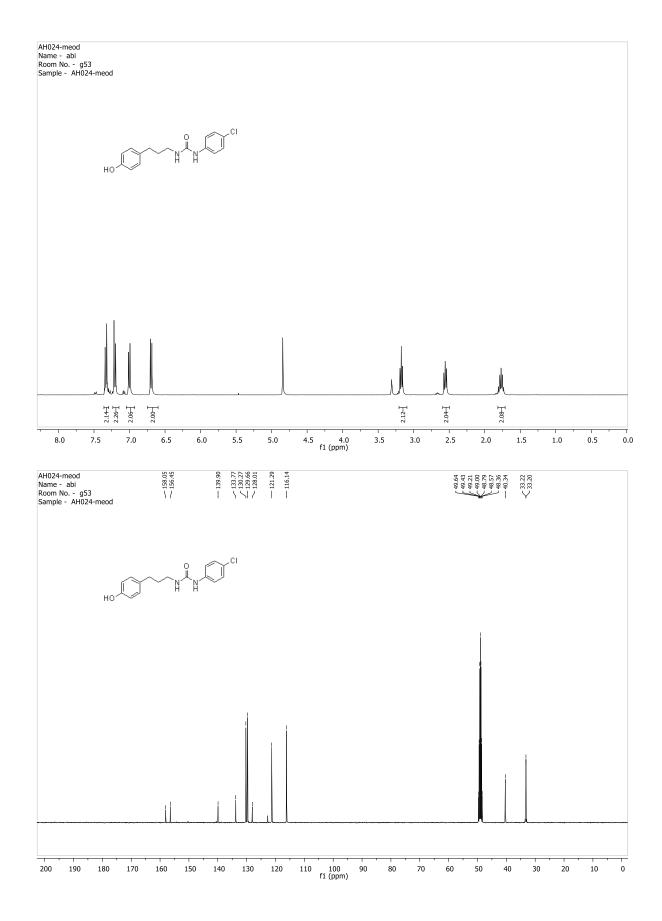

1-[3-(4-Hydroxyphenyl)propyl]-3-isopropylurea 1c


_N^oH↓ но



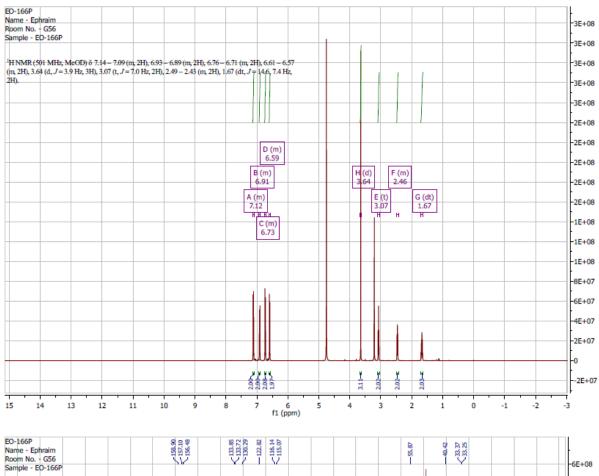

1-[3-(4-Hydroxyphenyl)propyl]-3-(2-methoxyethyl)urea 1d

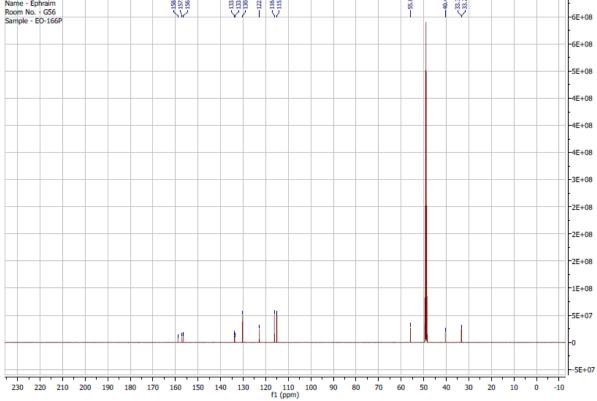

Ethyl 2-({[3-(4-hydroxyphenyl)propyl]carbamoyl}amino)acetate 1e

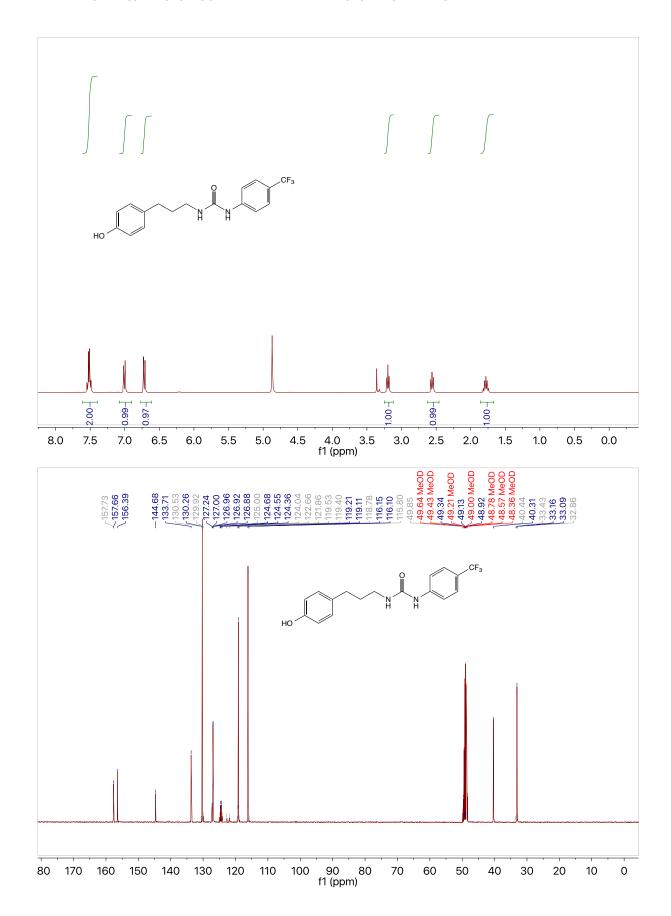


3-[3-(4-Hydroxyphenyl)propyl]-1-(4-methylbenzenesulfonyl)urea 1f

[3-(4-Hydroxyphenyl)propyl]urea 1g

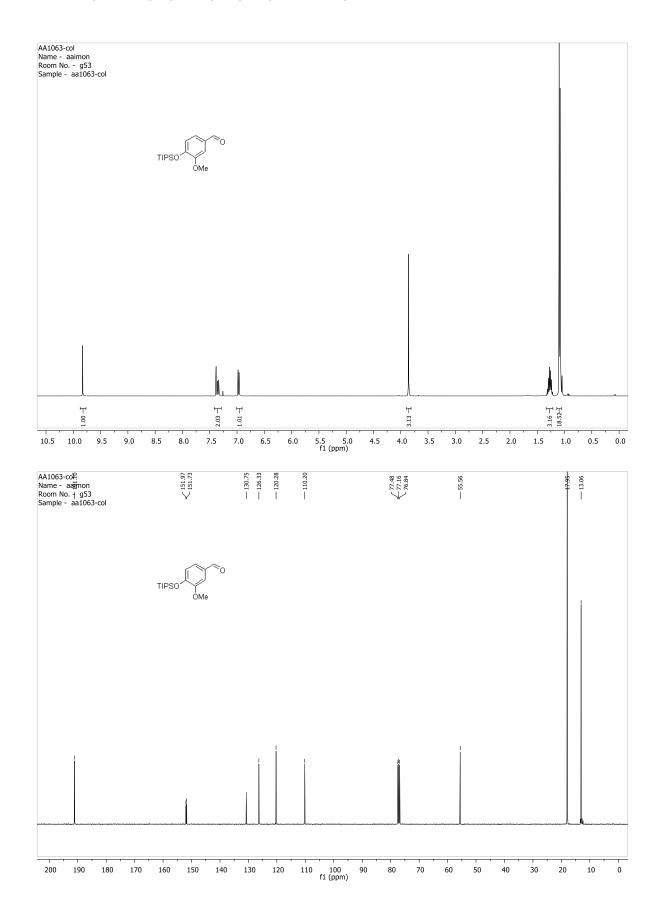


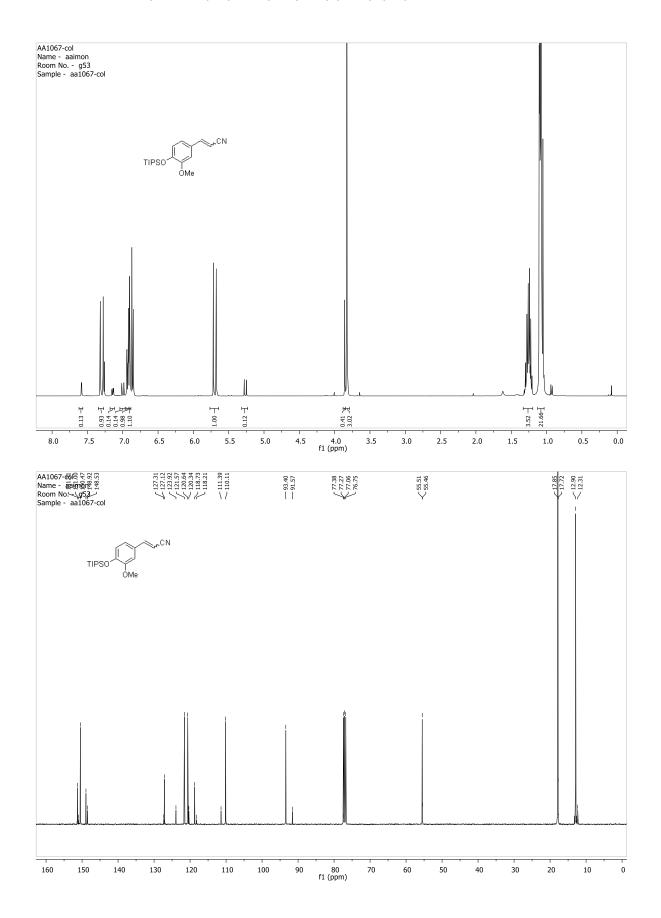


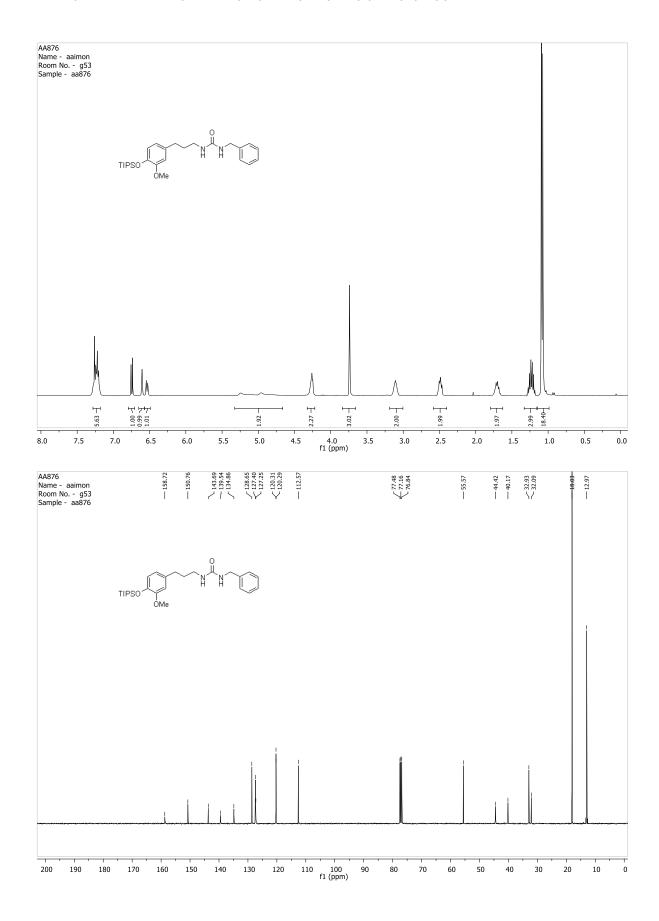

1-(4-Chlorophenyl)-3-[3-(4-hydroxyphenyl)propyl]urea 1h

1-(3-(4-Hydroxyphenyl)propyl)-3-(4-methoxyphenyl)urea 1i

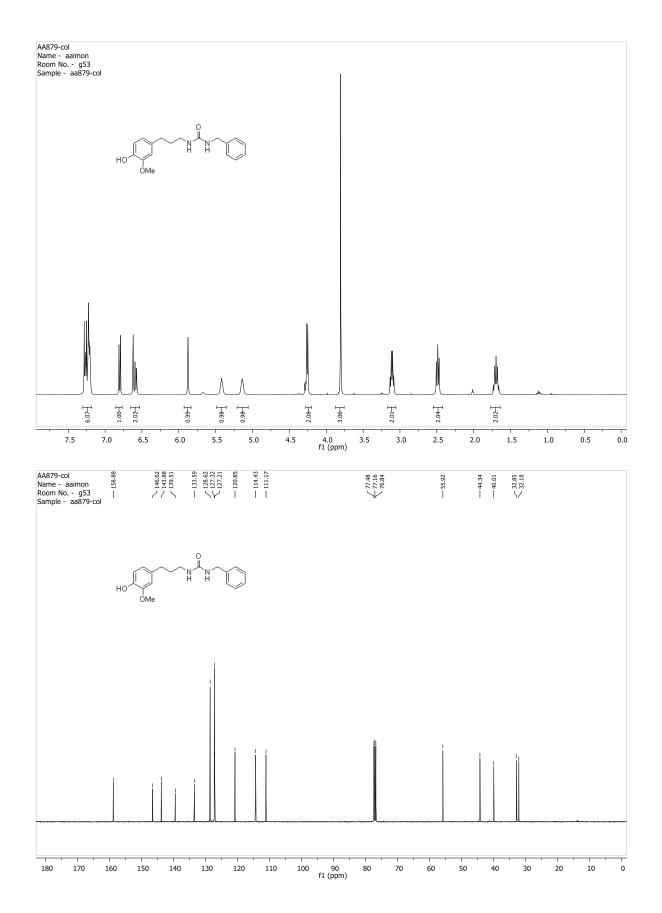
OMe N N N ы€

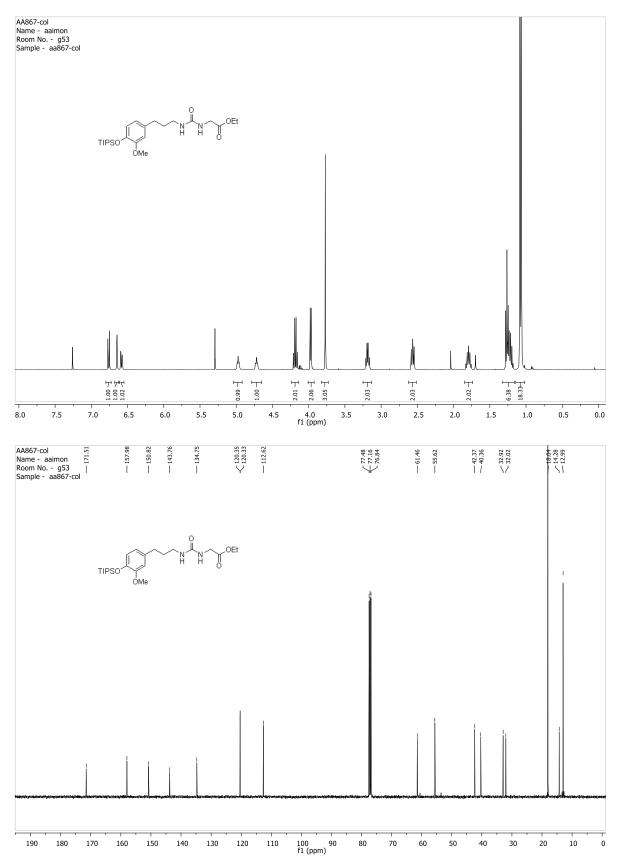


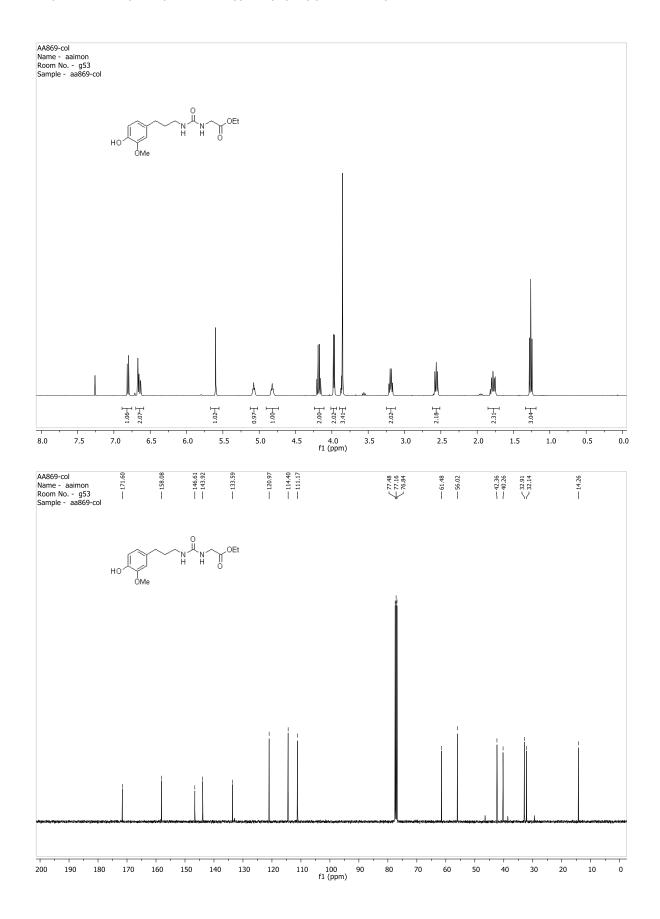



3-[3-(4-Hydroxyphenyl)propyl]-1-[4-(trifluoromethyl)phenyl]urea 1j

3-Methoxy-4-{[*tris*(propan-2-yl)silyl]oxy}benzaldehyde S3

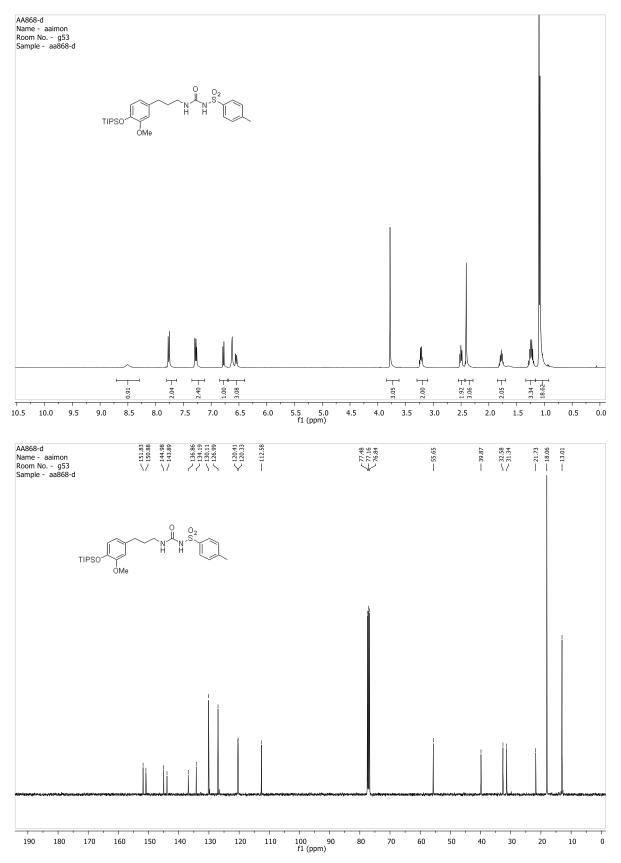

(2E/Z)-3-(3-Methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)prop-2-enenitriles S4

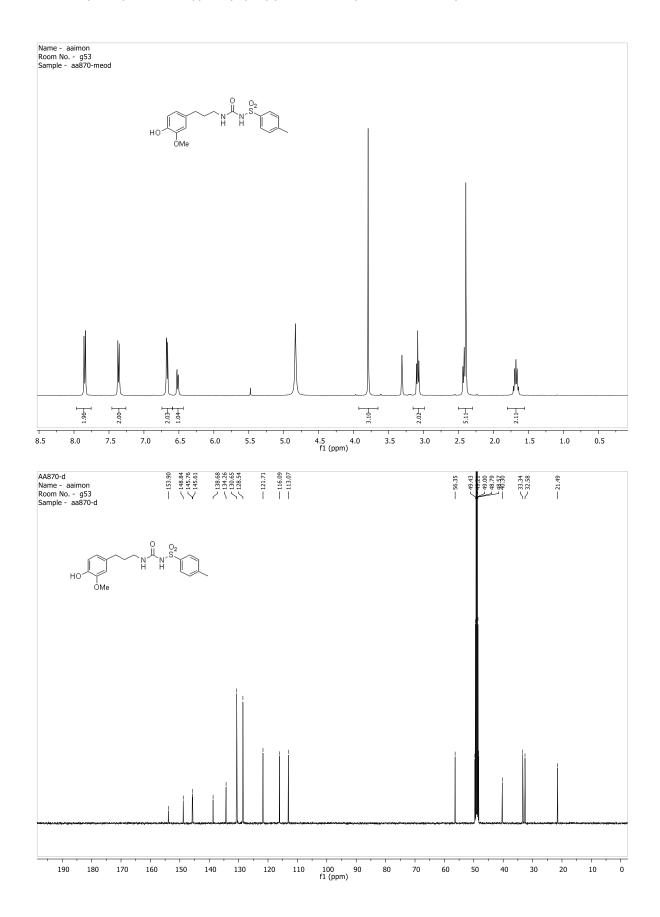

1-Benzyl-3-[3-(3-methoxy-4-{[*tris*(propan-2-yl)silyl]oxy}phenyl)propyl]urea S6



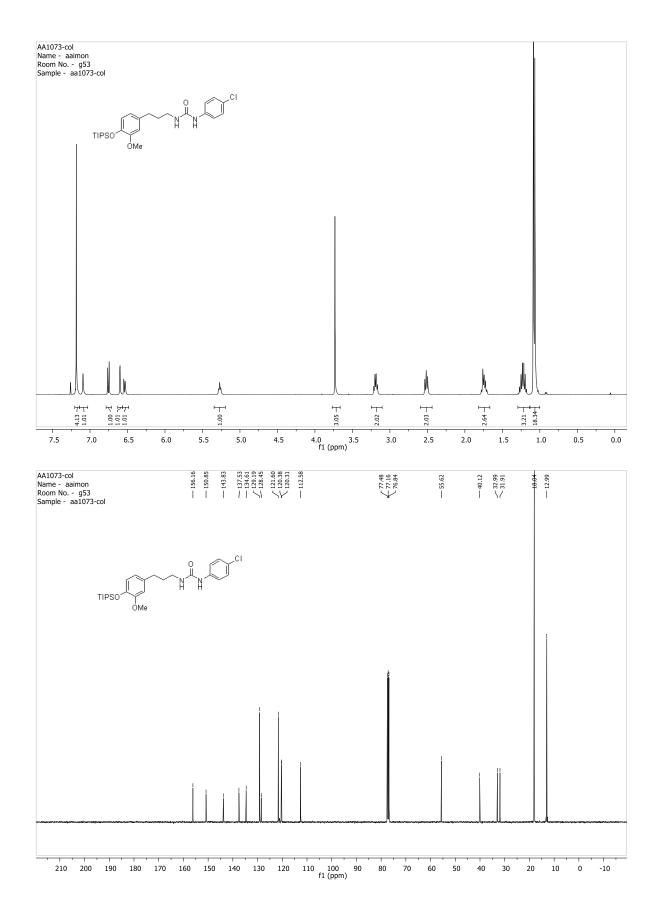
Ethyl 2-({[3-(3-methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]carbamoyl}amino)-

acetate S7

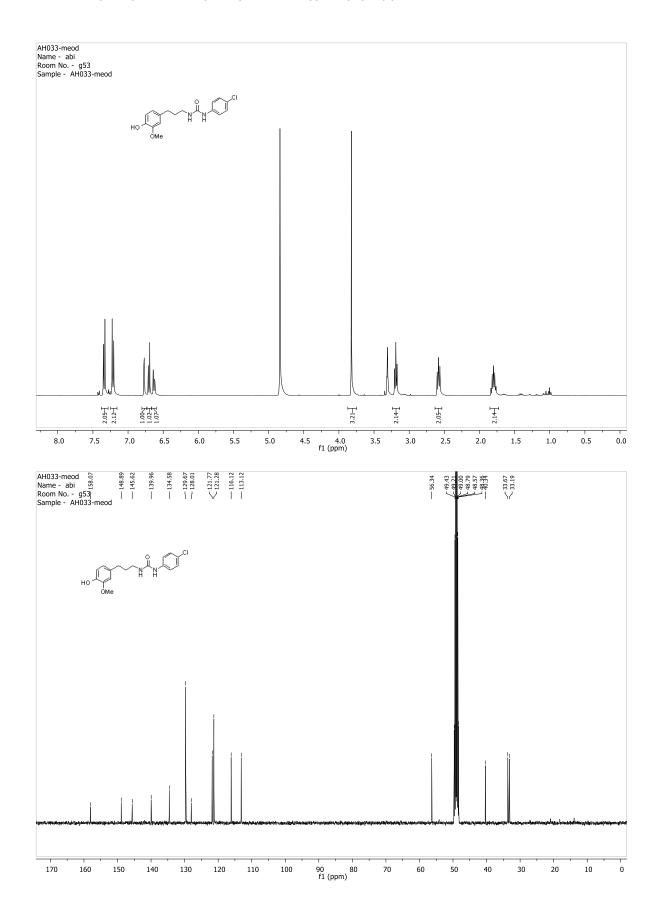


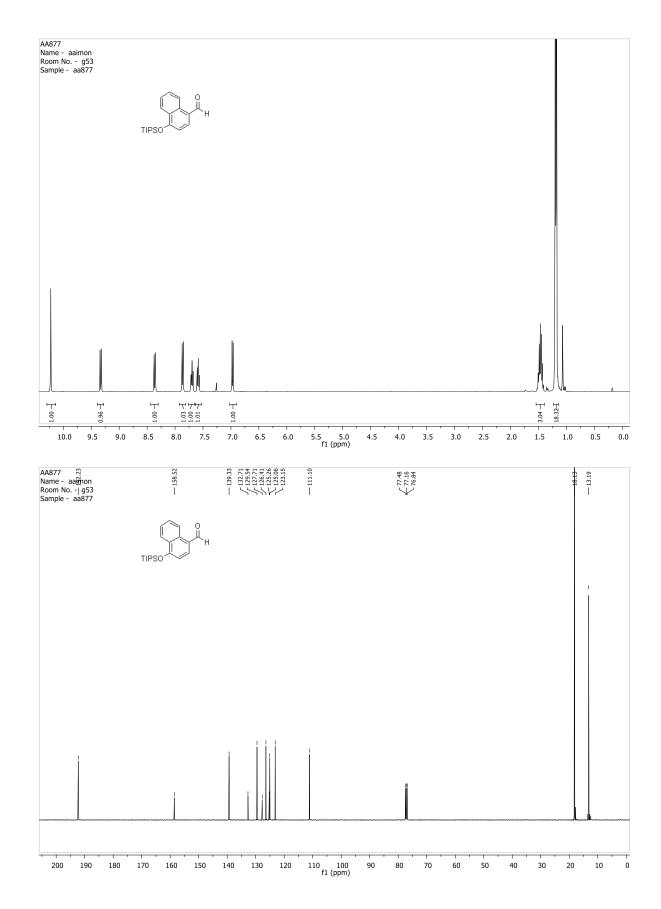


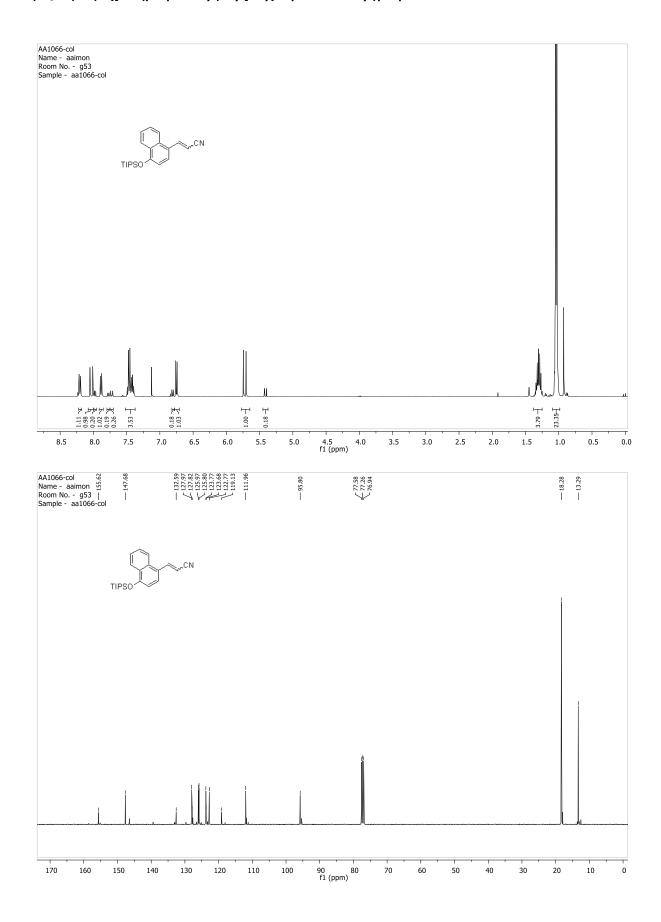
Ethyl 2-({[3-(4-hydroxy-3-methoxyphenyl)propyl]carbamoyl}amino)acetate 11

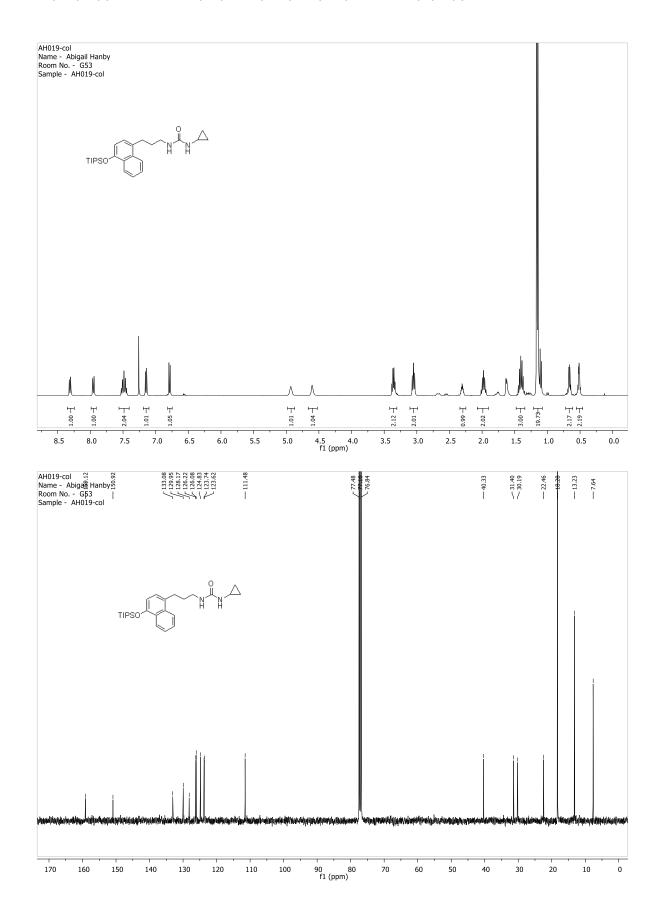

3-[3-(3-Methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]-1-(4-

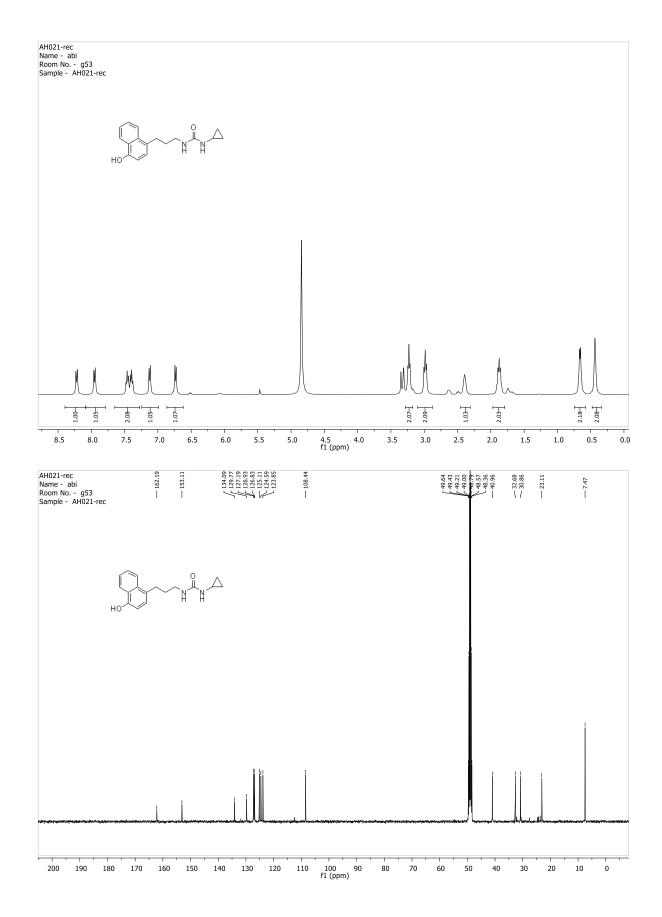
methylbenzenesulfonyl)urea S8



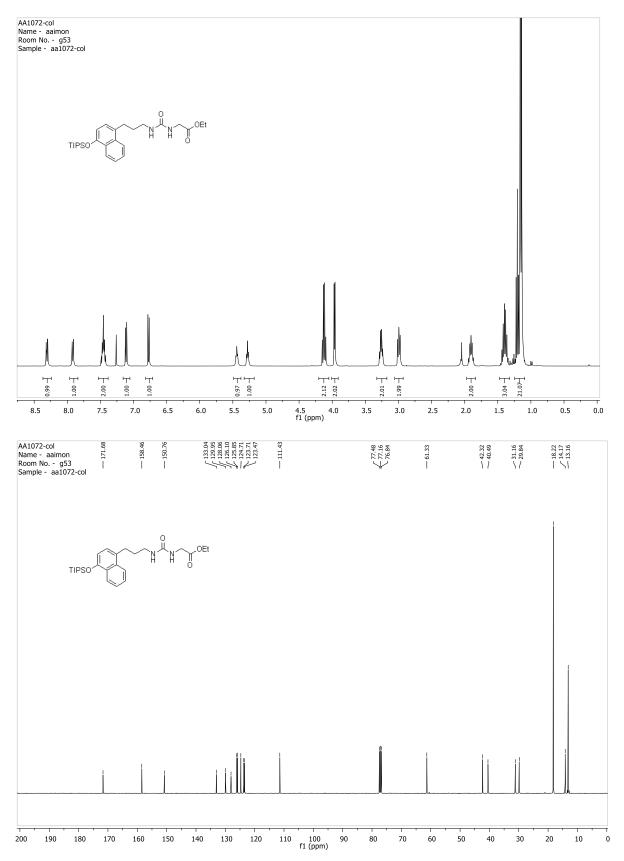

3-[3-(4-Hydroxy-3-methoxyphenyl)propyl]-1-(4-methylbenzenesulfonyl)urea 1m

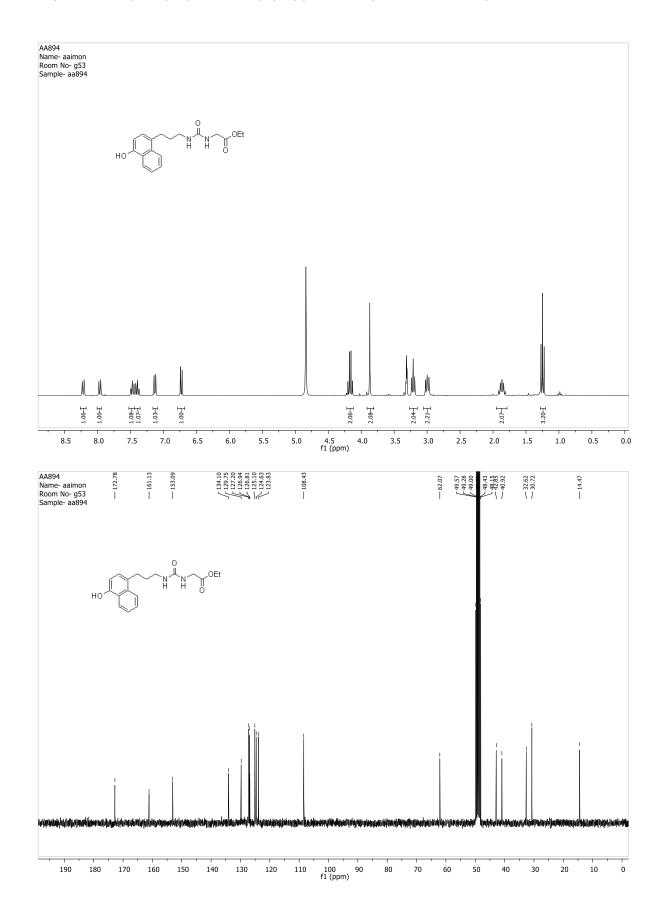

1-(4-Chlorophenyl)-3-[3-(3-methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]urea S9


1-(4-Chlorophenyl)-3-[3-(4-hydroxy-3-methoxyphenyl)propyl]urea 1n

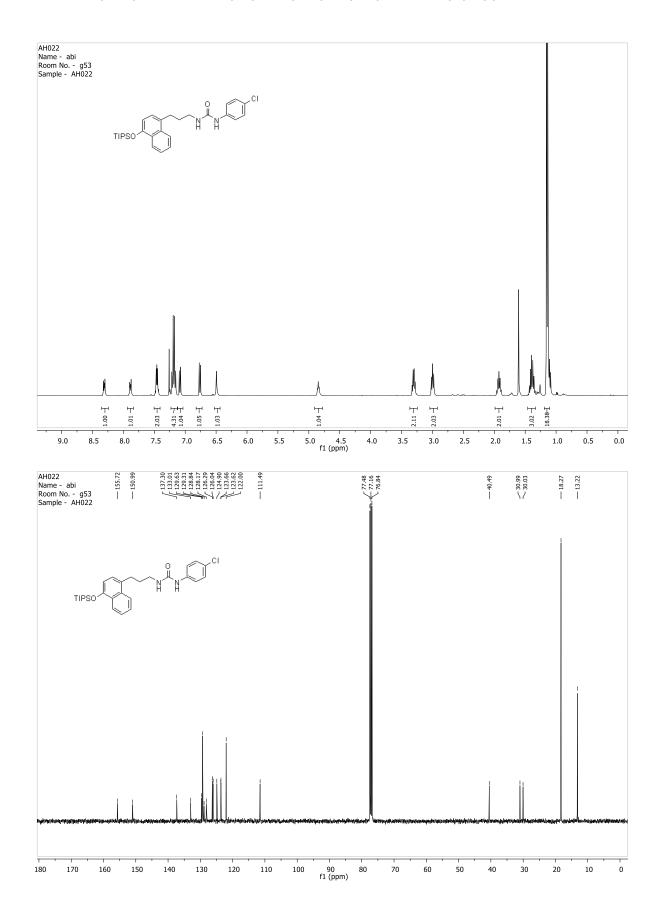

4-{[*Tris*(propan-2-yl)silyl]oxy}naphthalene-1-carbaldehyde S10

(2E/2Z)-3-(4-{[Tris(propan-2-yl)silyl]oxy}naphthalen-1-yl)prop-2-enenitrile S11

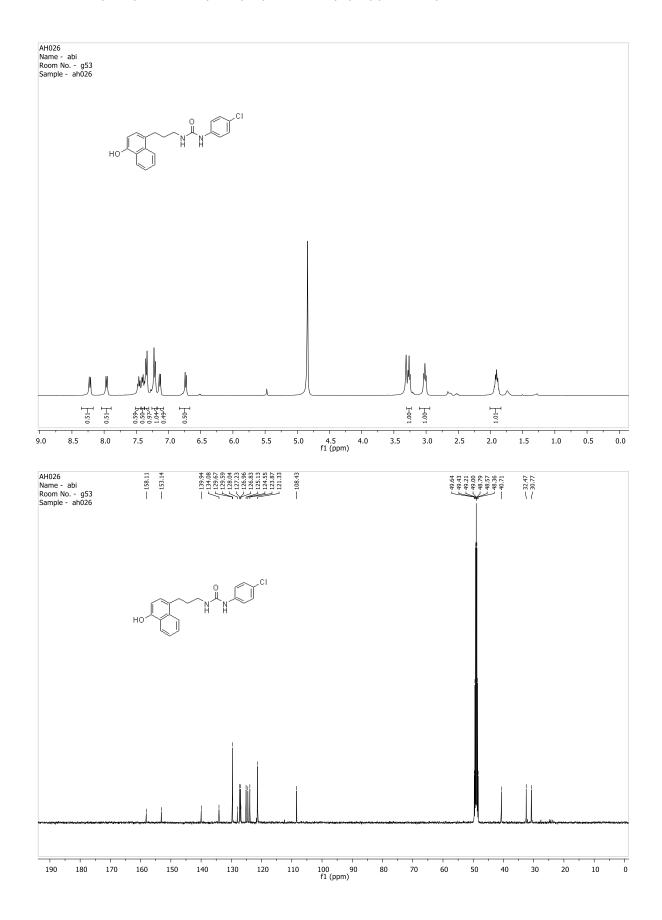

3-Cyclopropyl-1-[3-(4-{[tris(propan-2-yl)silyl]oxy}naphthalen-1-yl)propyl]urea S13

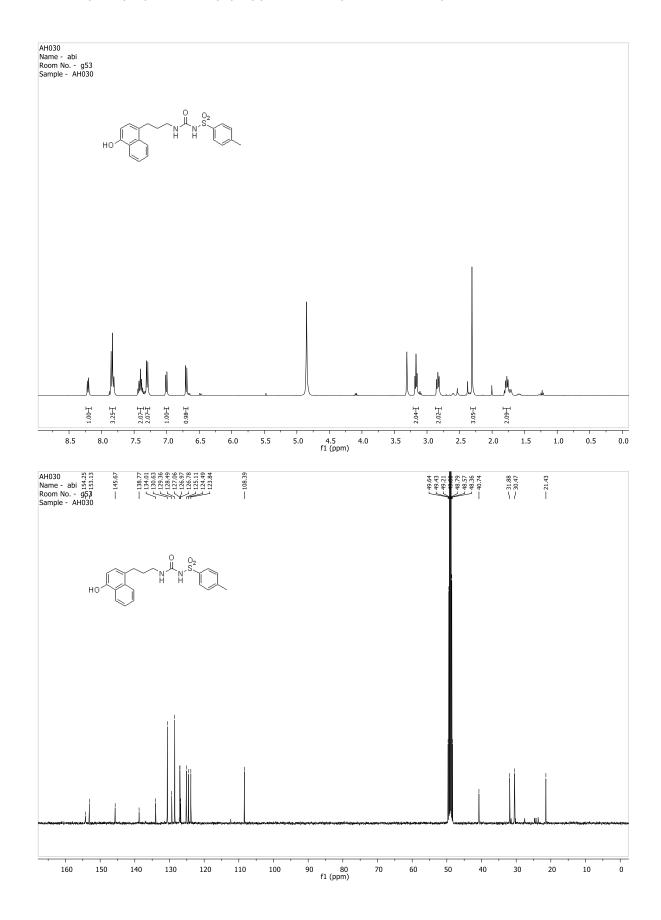


3-Cyclopropyl-1-[3-(4-hydroxynaphthalen-1-yl)propyl]urea 10

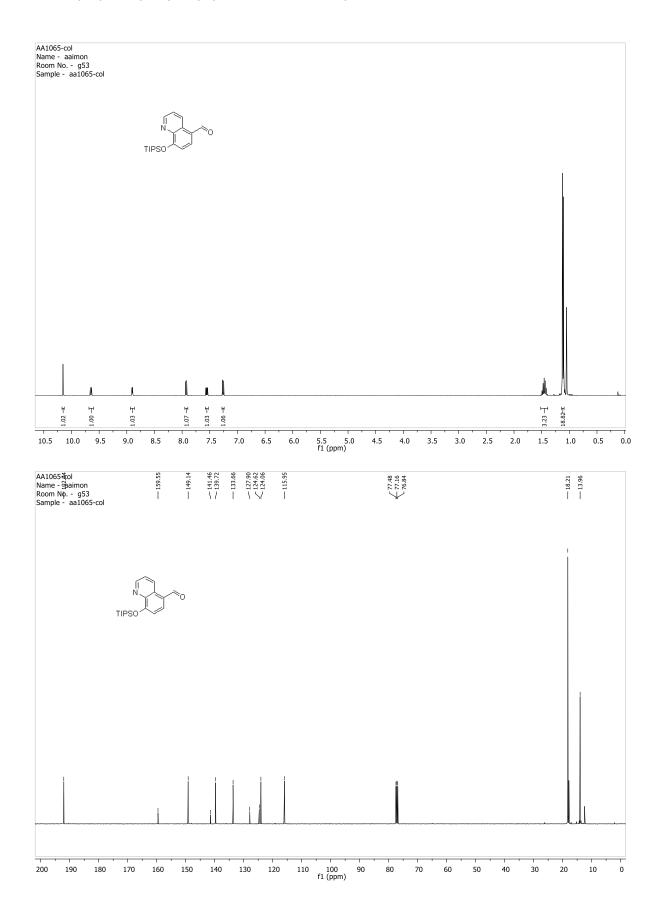

Ethyl 2-({[3-(4-{[*tris*(propan-2-yl)silyl]oxy}naphthalen-1-yl)propyl]carbamoyl}amino)-

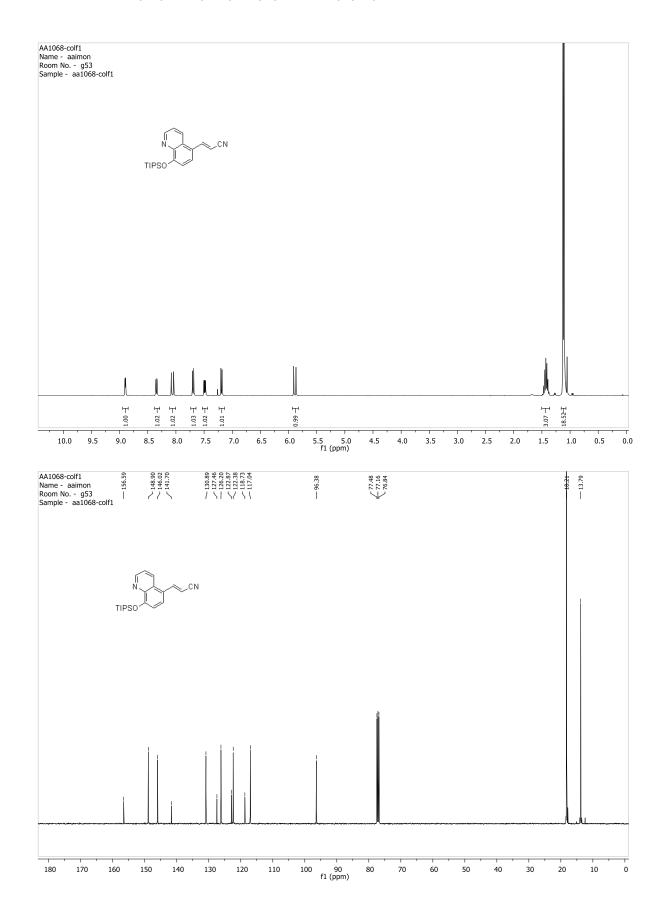
acetate S14

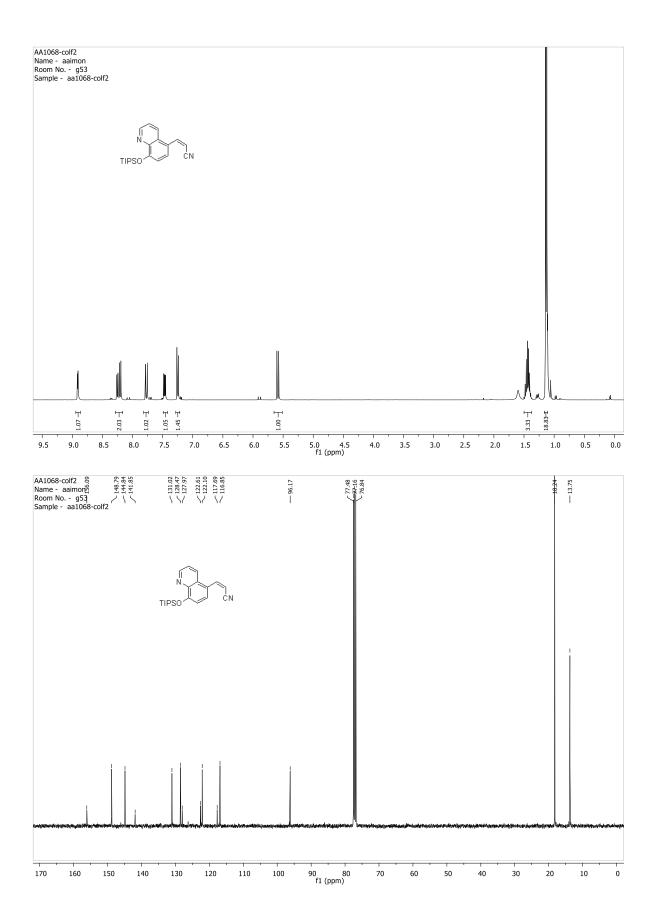



Ethyl 2-({[3-(4-hydroxynaphthalen-1-yl)propyl]carbamoyl}amino)acetate 1p

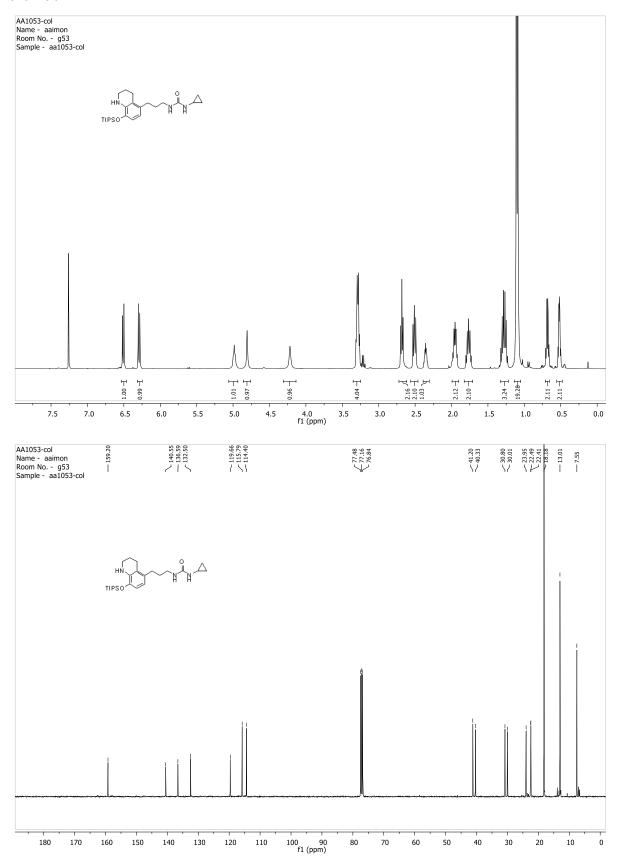
1-(4-Chlorophenyl)-3-[3-(4-{[tris(propan-2-yl)silyl]oxy}naphthalen-1-yl)propyl]urea S15

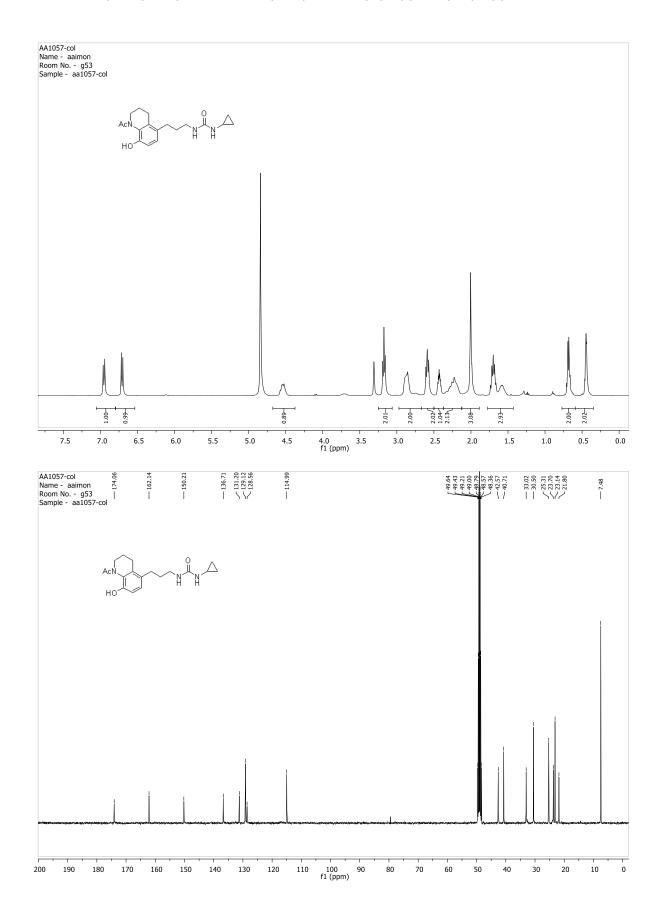


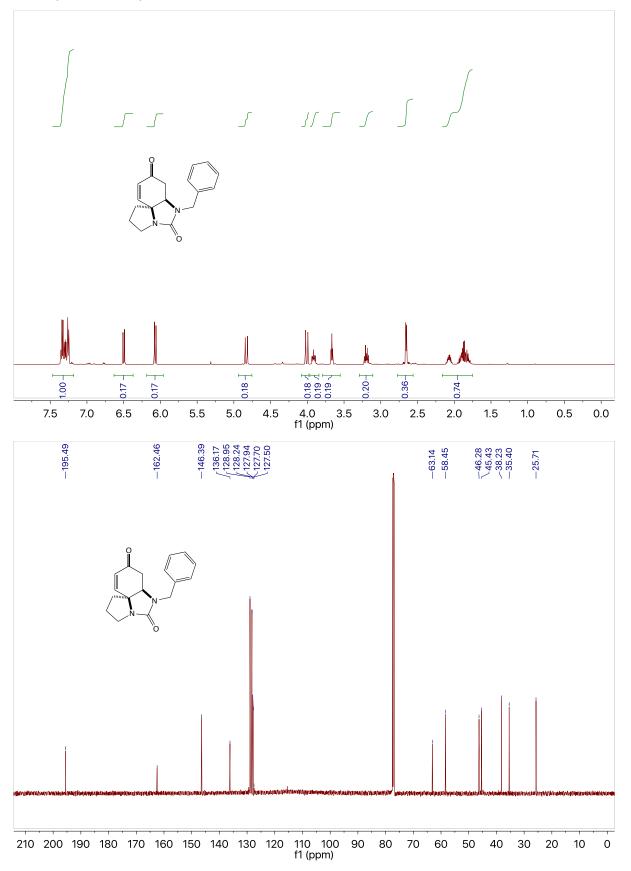

1-(4-Chlorophenyl)-3-[3-(4-hydroxynaphthalen-1-yl)propyl]urea 1q

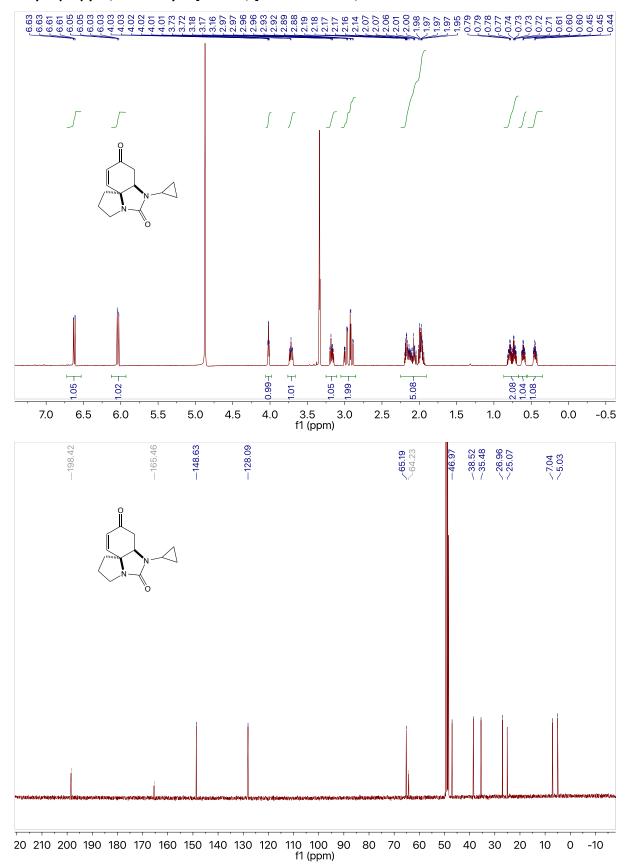

3-[3-(4-Hydroxynaphthalen-1-yl)propyl]-1-(4-methylbenzenesulfonyl)urea 1r

8-{[*Tris*(propan-2-yl)silyl]oxy}quinoline-5-carbaldehyde S16

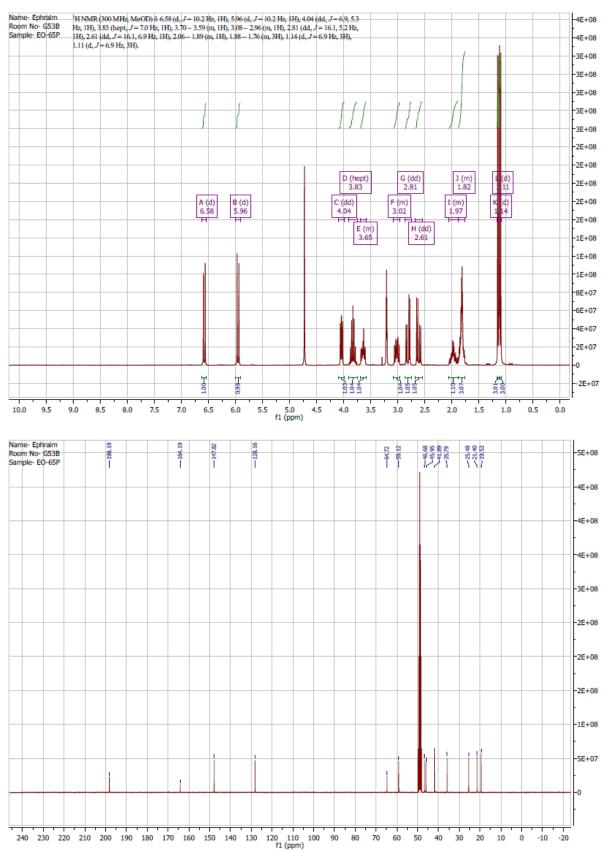


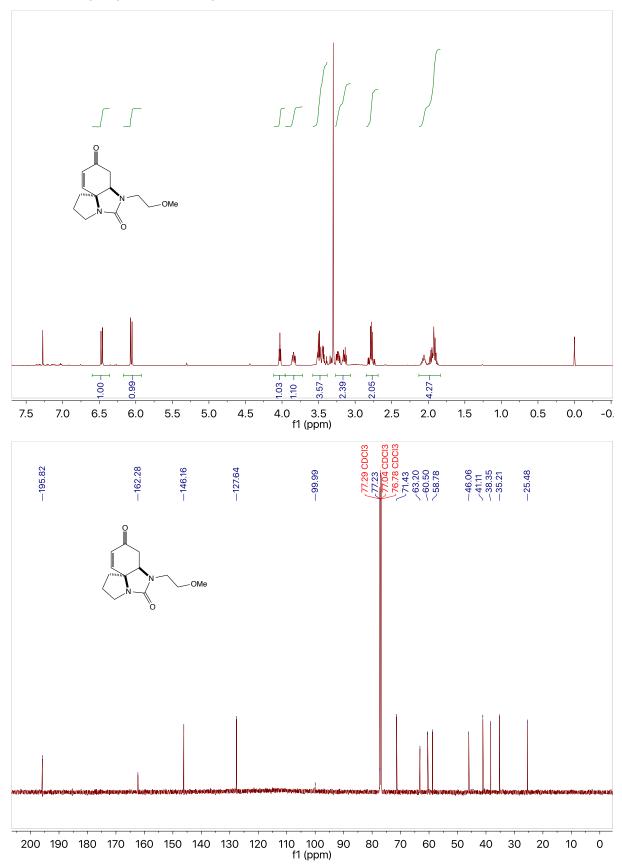

(2E/Z)-3-(8-{[Tris(propan-2-yl)silyl]oxy}quinolin-5-yl)prop-2-enenitrile S17


3-Cyclopropyl-1-[3-(8-{[*tris*(propan-2-yl)silyl]oxy}-1,2,3,4-tetrahydroquinolin-5-


yl)propyl]urea S19

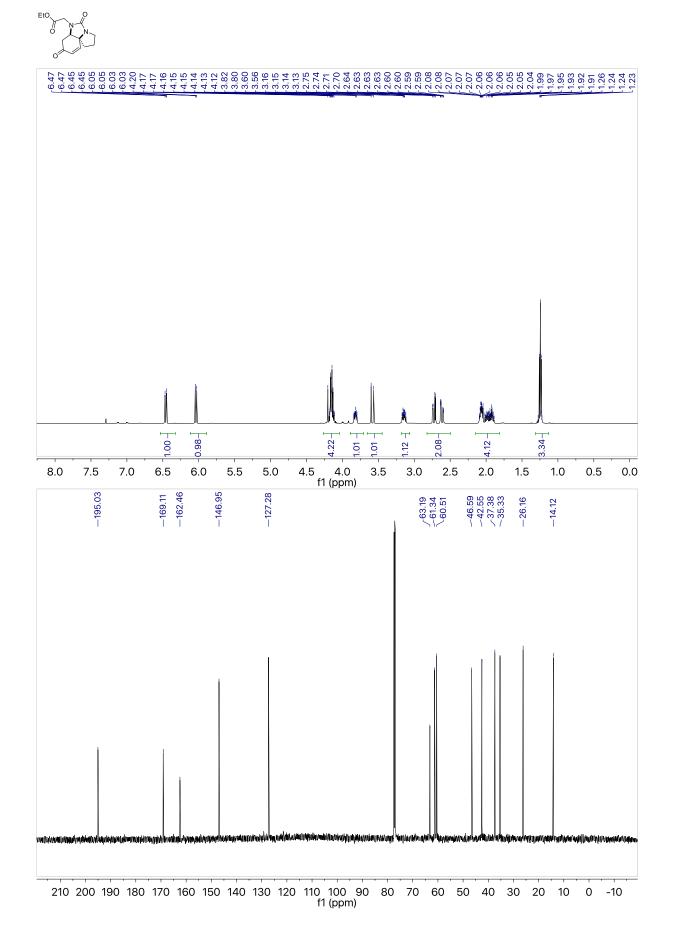
1-[3-(1-Acetyl-8-hydroxy-1,2,3,4-tetrahydroquinolin-5-yl)propyl]-3-cyclopropylurea 1s

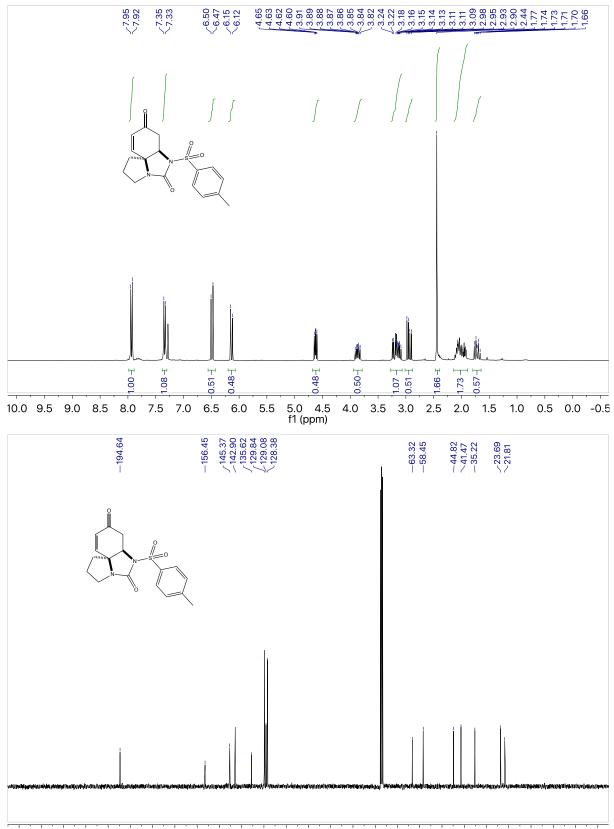




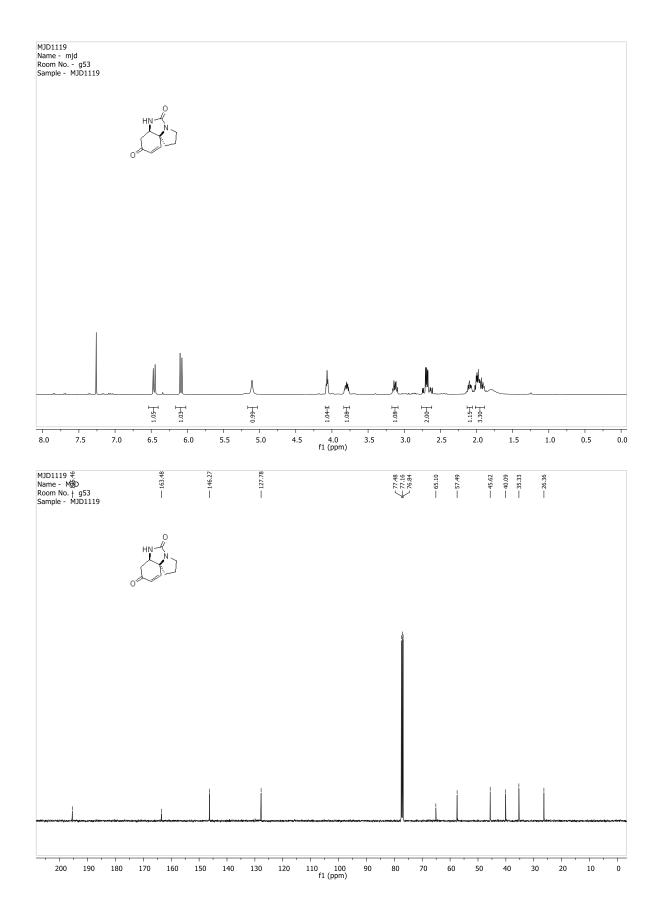
7-Cyclopropyl-5,7-diaztricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2b

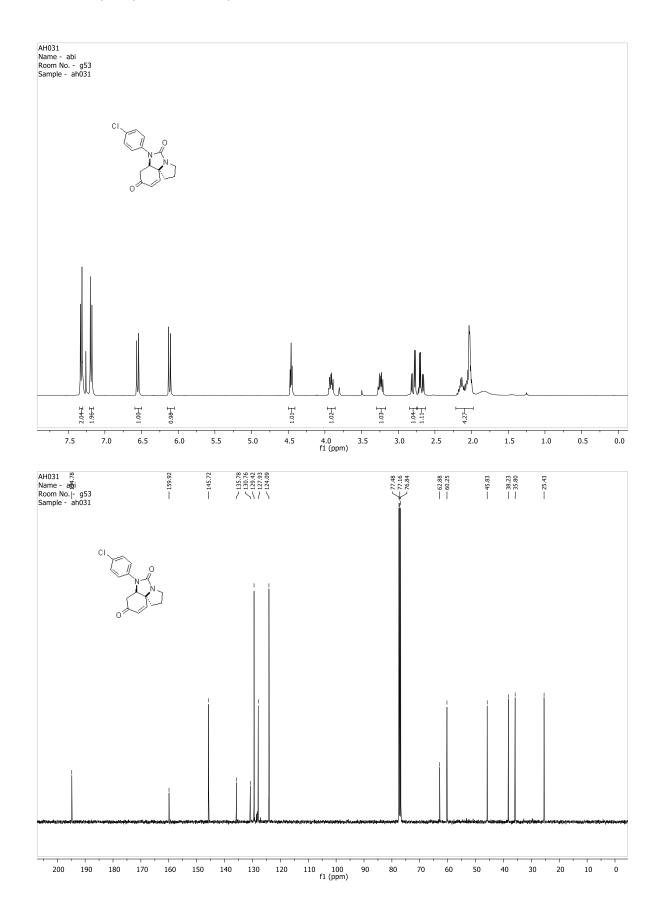
6-Isopropyl-2,3,6a,7-tetrahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 2c





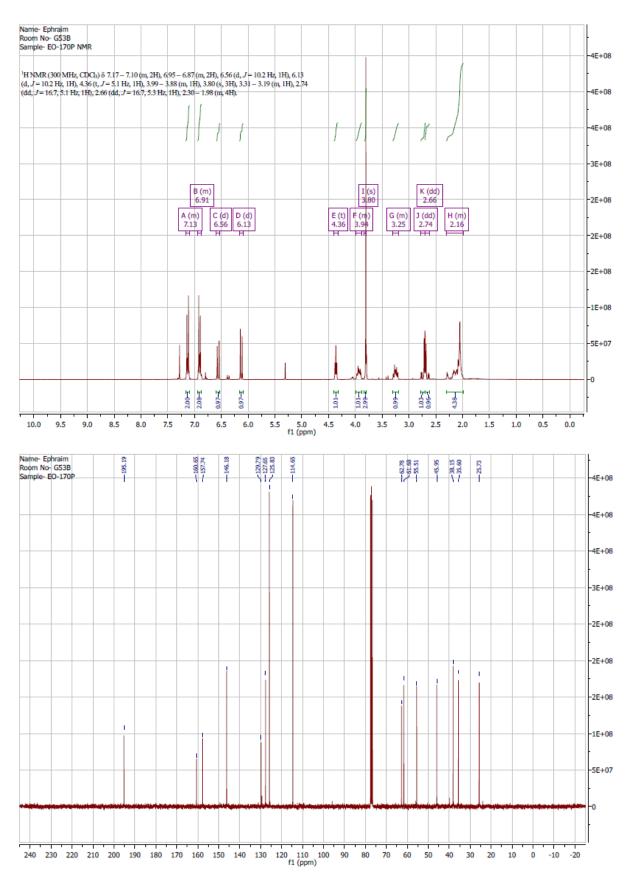
Ethyl 2-{6,10-dioxo-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-en-7-yl}acetate 2e

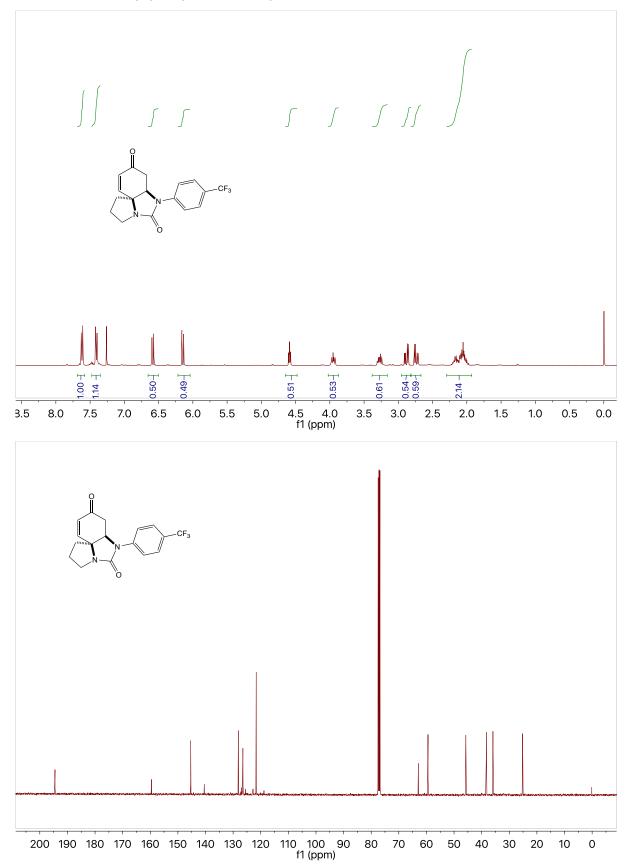


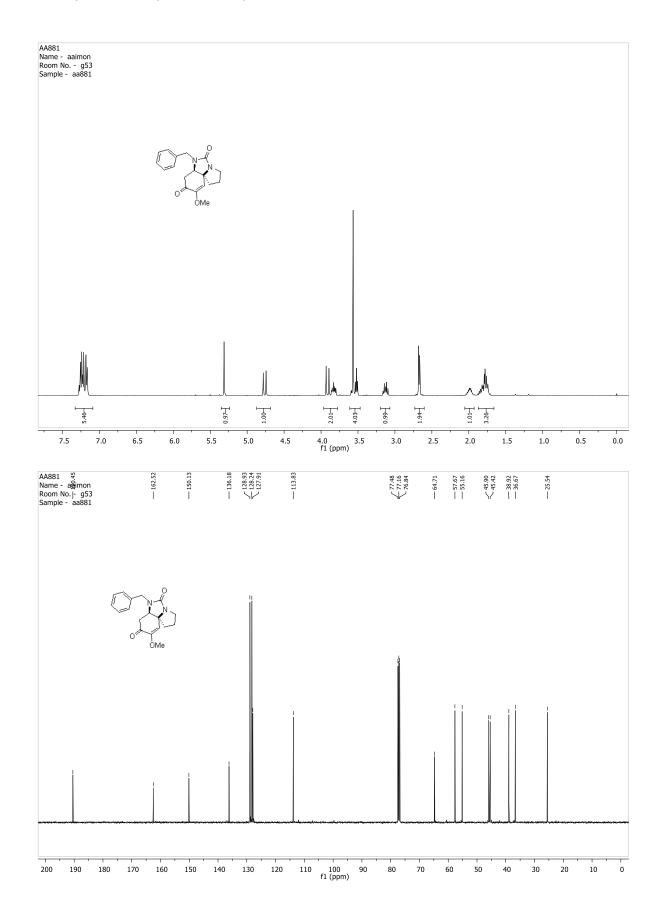


7-(4-Methylbenzenesulfonyl)-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2f

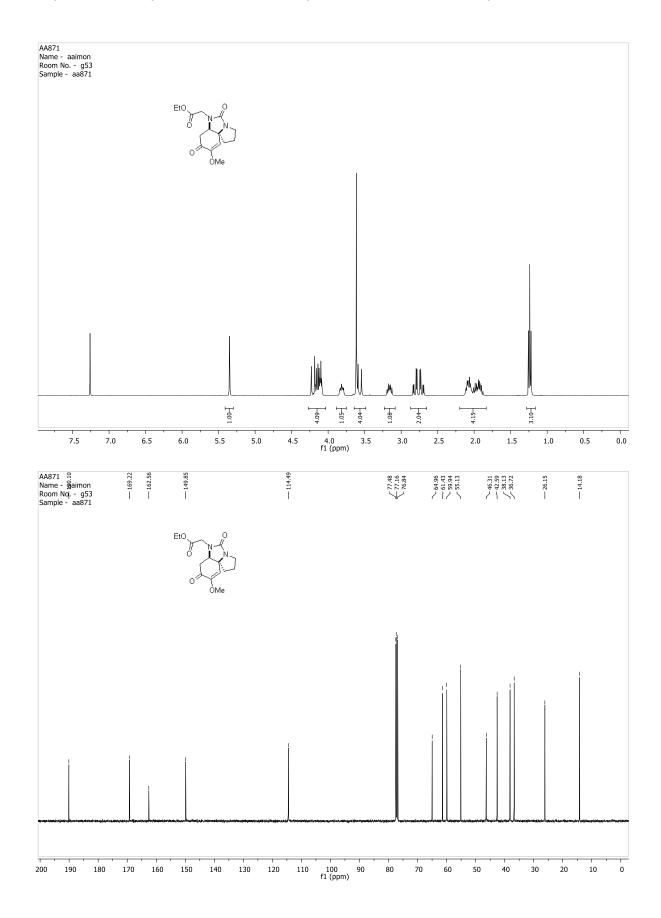
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)


5,7-Diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2g

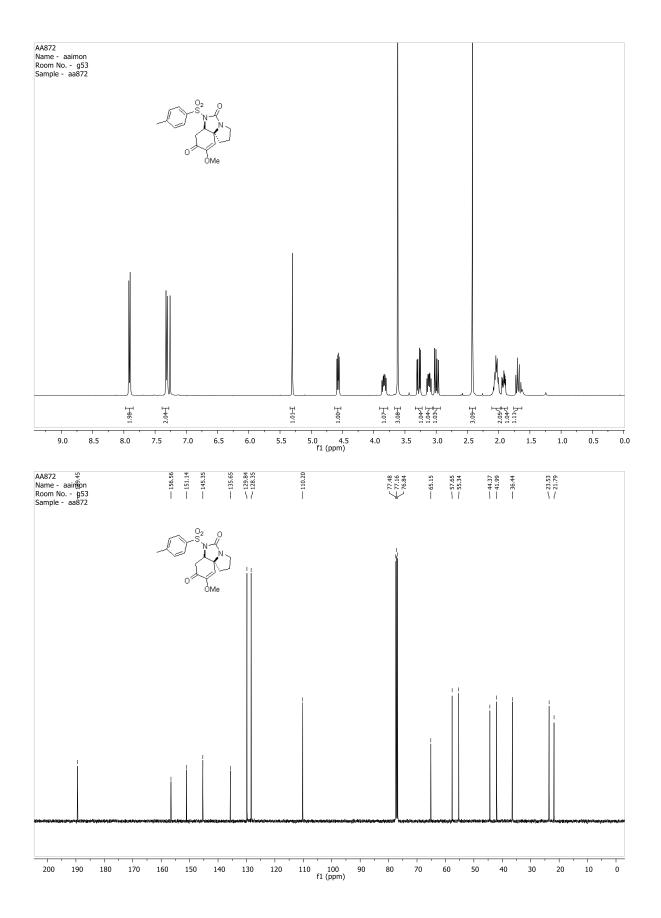



7-(4-Chlorophenyl)-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2h

6-(4-Methoxyphenyl)-2,3,6a,7-tetrahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazole-5,8(6*H*)dione 2i

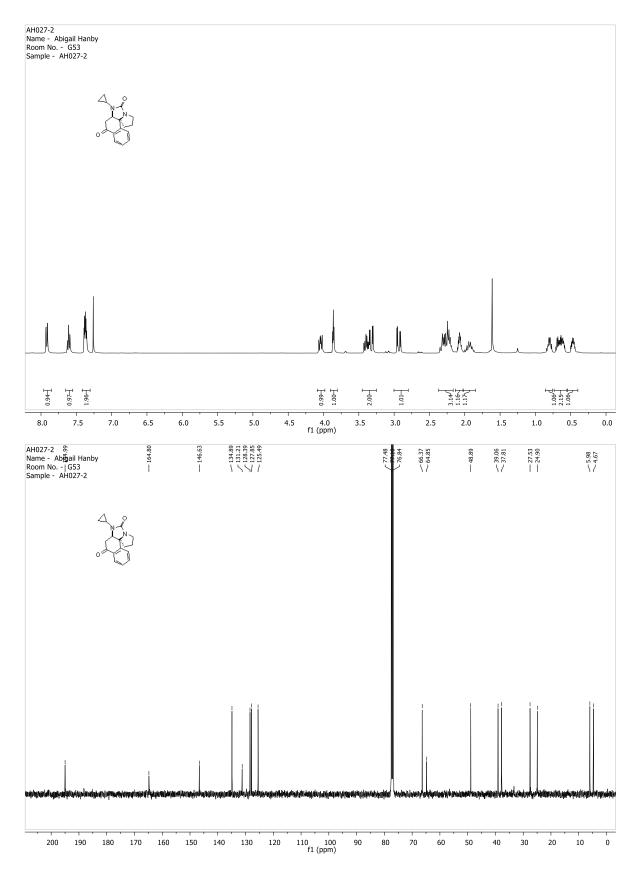


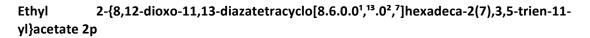
7-[4-(Trifluoromethyl)phenyl]-5,7-diaztricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2J =

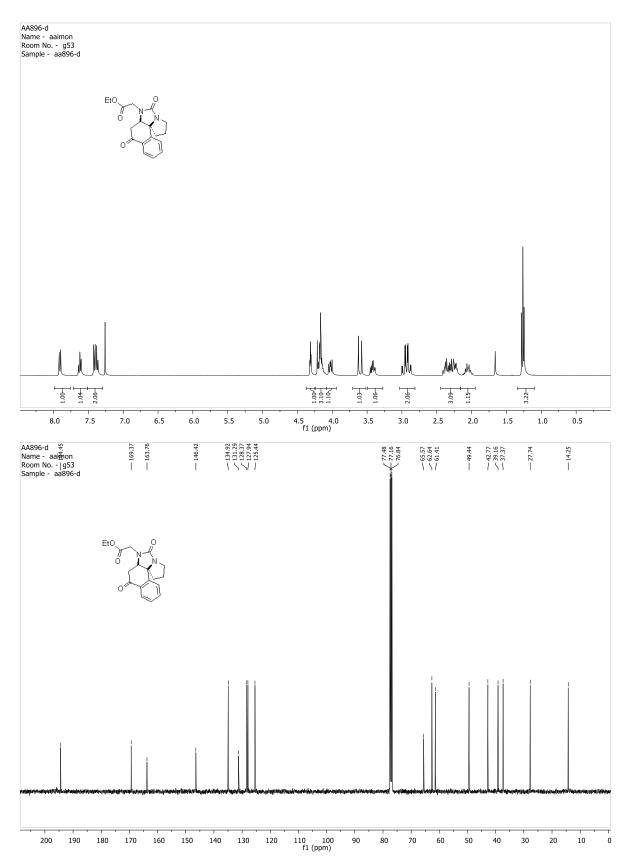

7-Benzyl-11-methoxy-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2k

Ethyl 2-{11-methoxy-6,10-dioxo-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-en-7-yl}acetate 2l

11-Methoxy-7-(4-methylbenzenesulfonyl)-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-

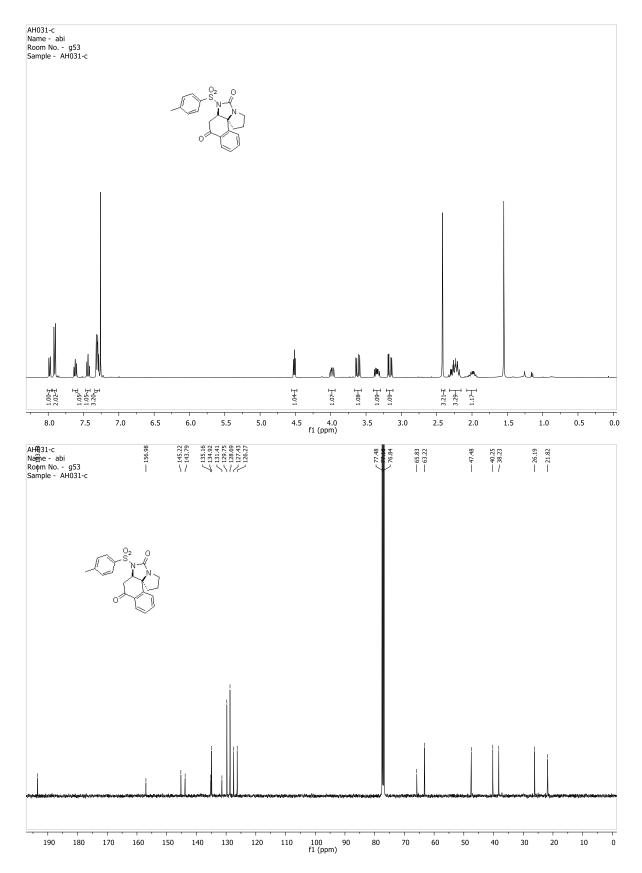

dione 2m

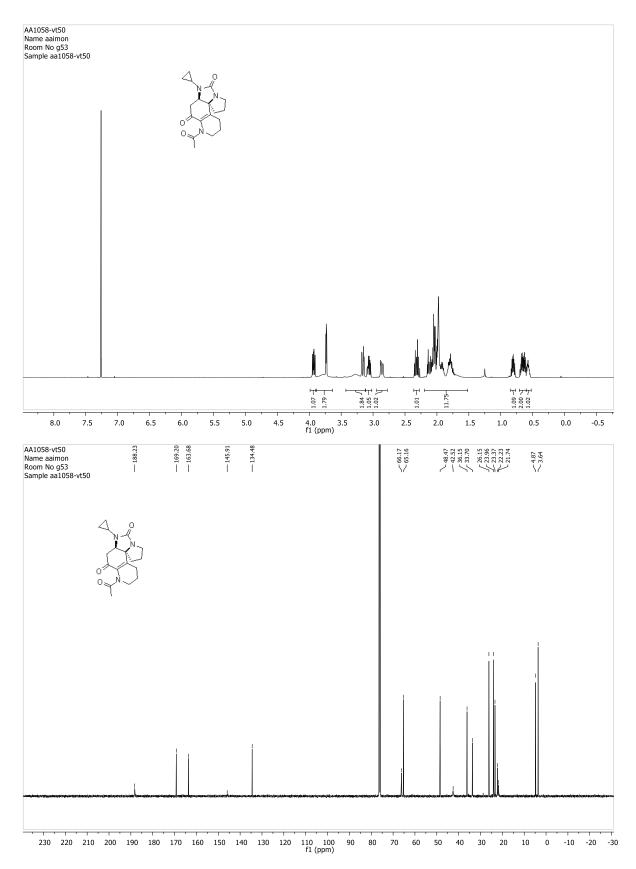


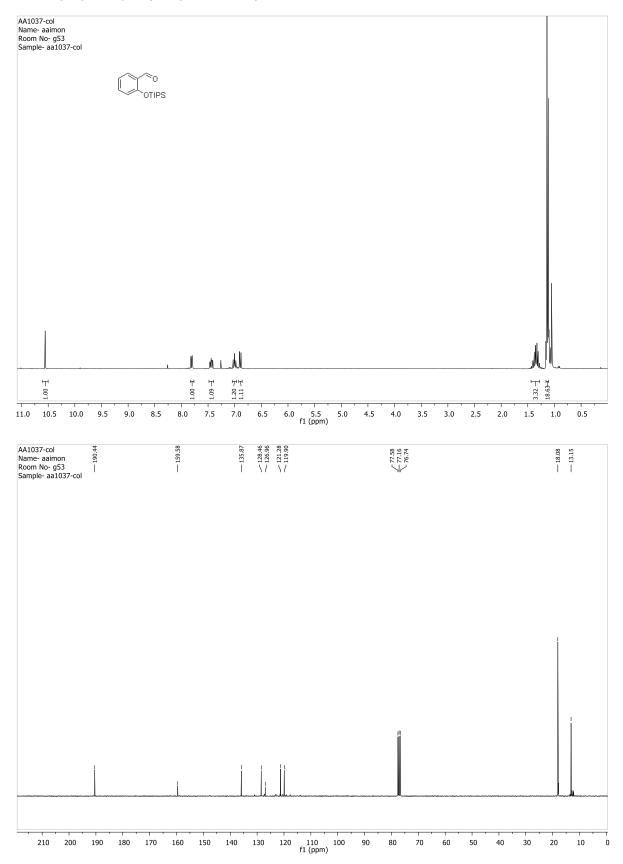


7-(4-Chlorophenyl)-11-methoxy-5,7-diazatricyclo[6.4.0.0^{1,5}]dodec-11-ene-6,10-dione 2n

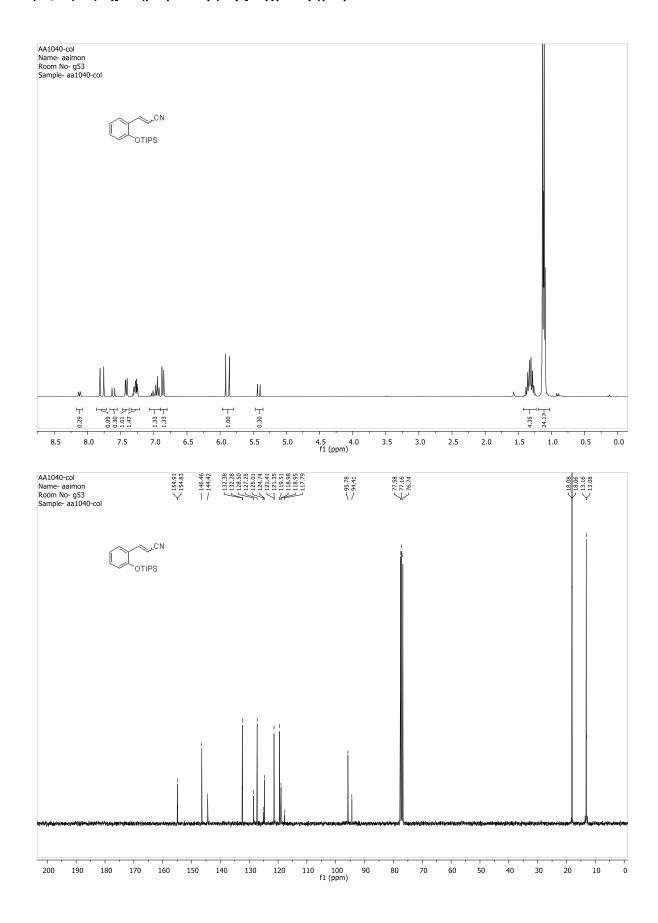
11-Cyclopropyl-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12-dione 20



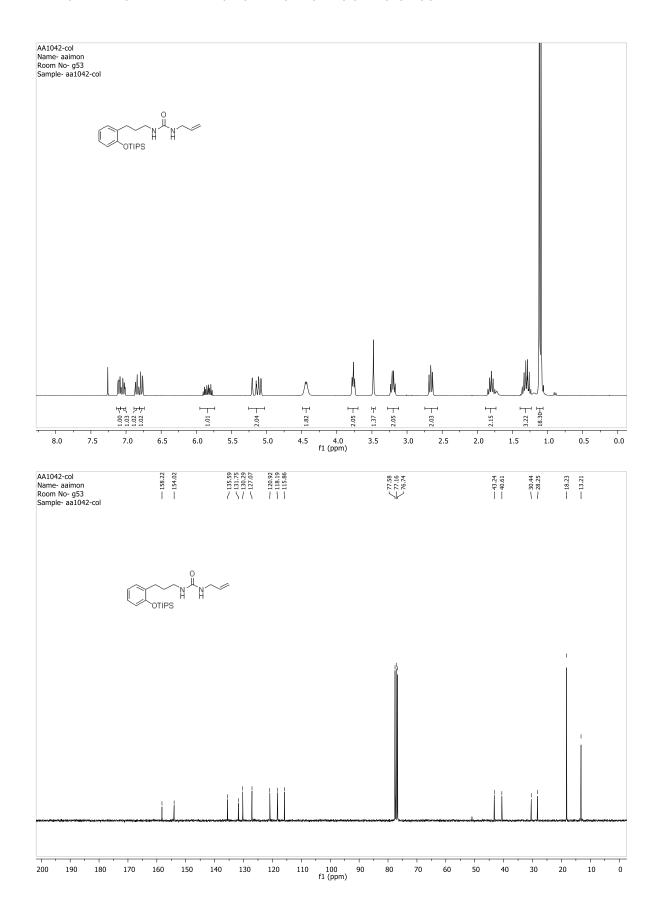

11-(4-Chlorophenyl)-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12dione 2q

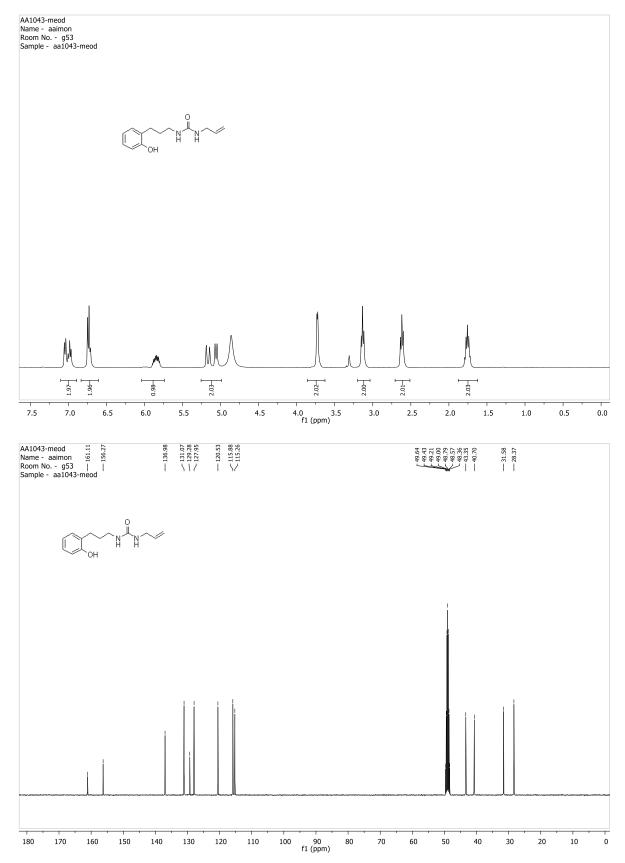


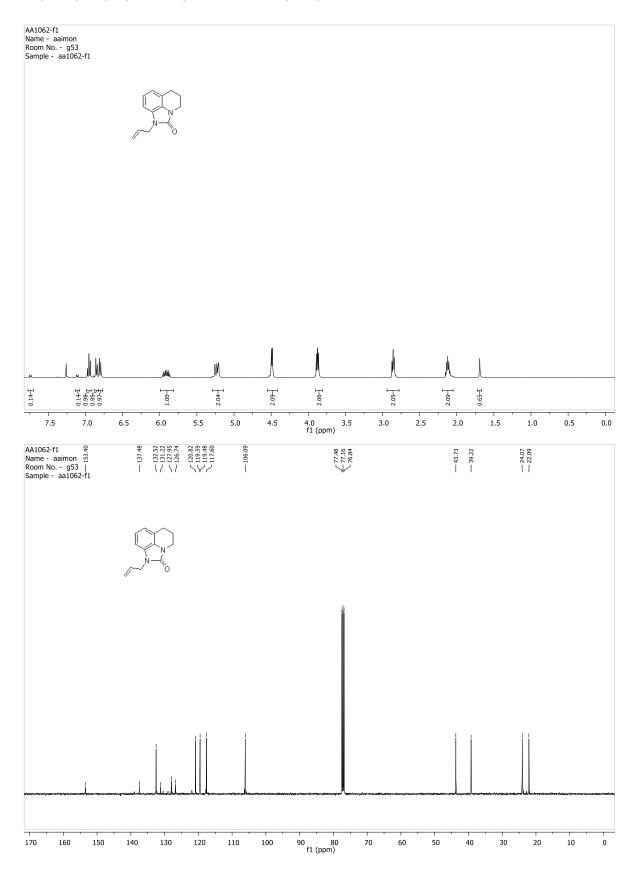
11-(4-Methylbenzenesulfonyl)-11,13-diazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadeca-2(7),3,5-triene-8,12-dione 2r

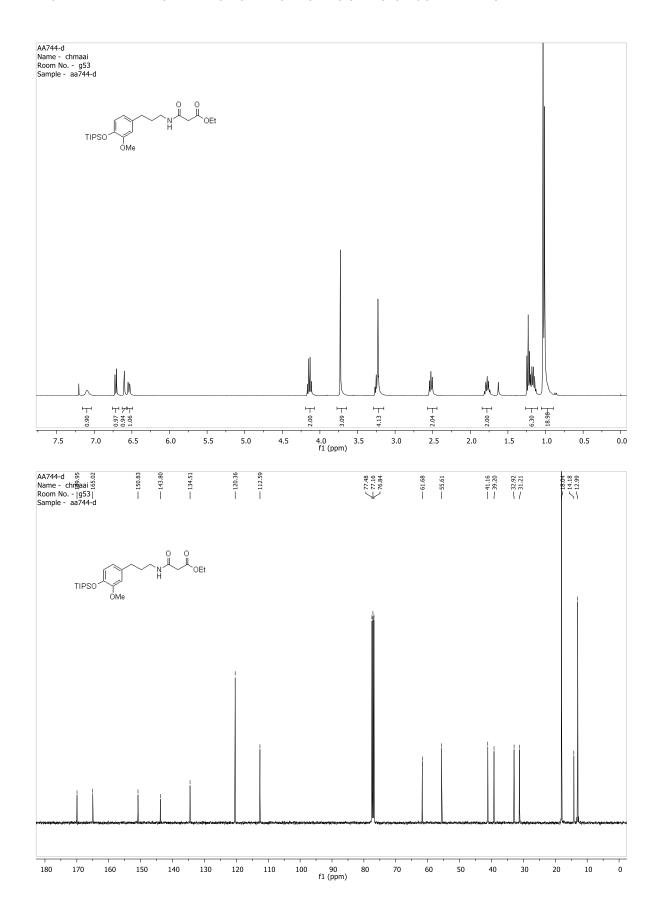


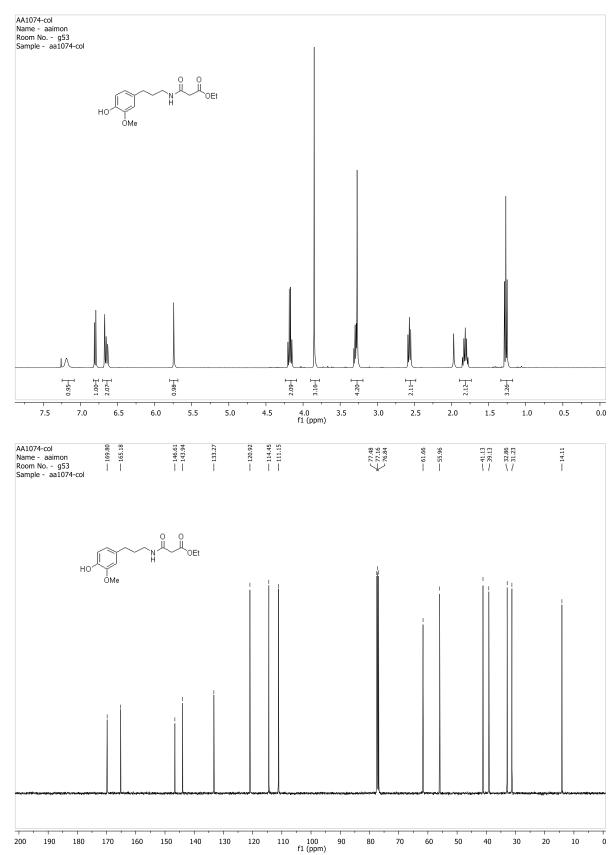
6-Acetyl-11-cyclopropyl-6,11,13-triazatetracyclo[8.6.0.0¹,¹³.0²,⁷]hexadec-2(7)-ene-8,12dione 2s



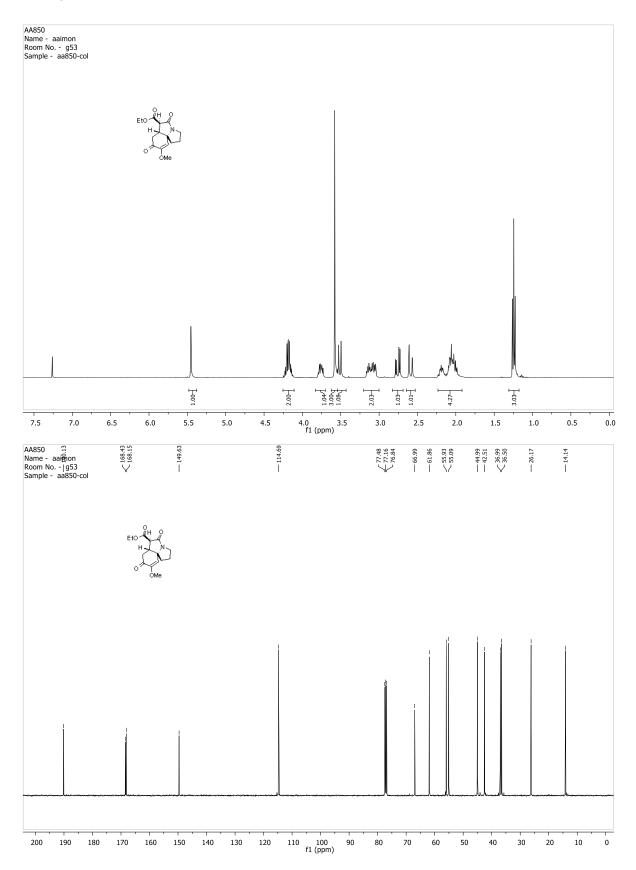

2-{[*Tris*(propan-2-yl)silyl]oxy}benzaldehyde S20


(2E/2Z)-3-(2-{[Tris(propan-2-yl)silyl]oxy}phenyl)prop-2-enenitrile S21

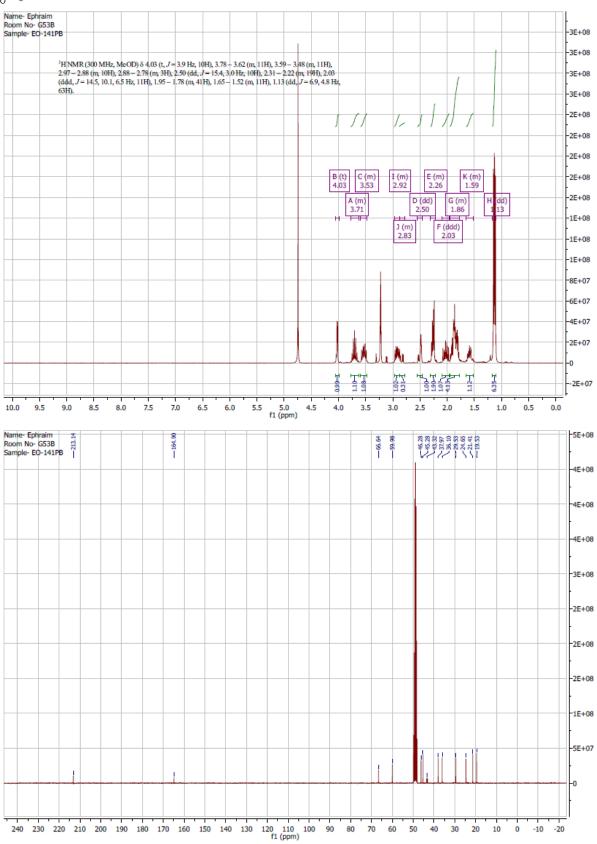

3-(Prop-2-en-1-yl)-1-[3-(2-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]urea S23


1-[3-(2-Hydroxyphenyl)propyl]-3-(prop-2-en-1-yl)urea 3

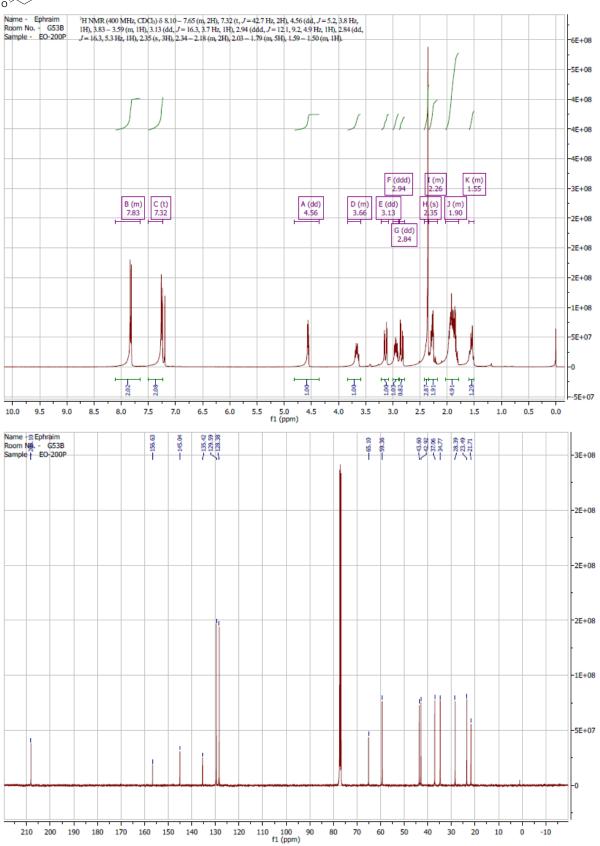
8-Hydroxy-N-(prop-2-en-1-yl)-1,2,3,4-tetrahydroquinoline-1-carboxamide 4

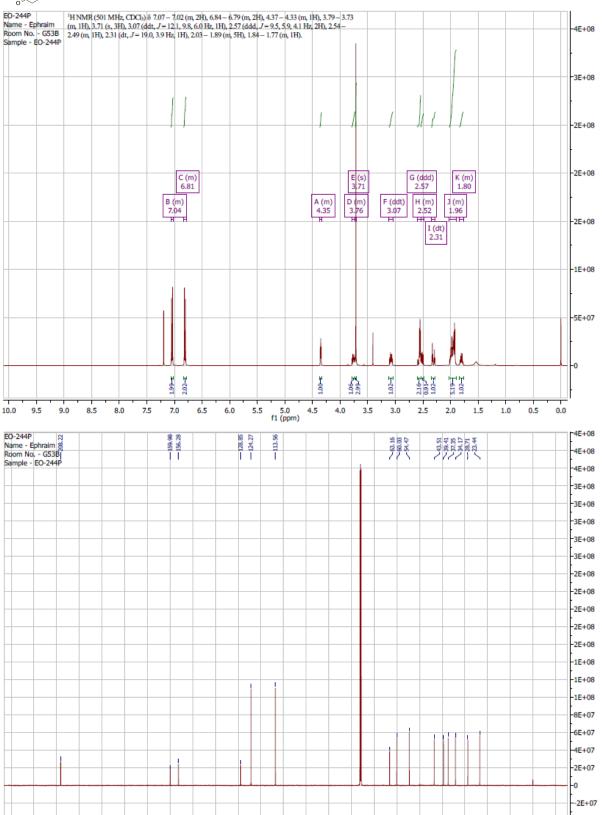


Ethyl 2-{[3-(3-methoxy-4-{[tris(propan-2-yl)silyl]oxy}phenyl)propyl]carbamoyl}acetate S24


Ethyl 2-{[3-(4-hydroxy-3-methoxyphenyl)propyl]carbamoyl}acetate 5

Ethyl 2-methoxy-3,6-dioxo-3*H*,4*H*,5*H*,6*H*,8*H*,9*H*,10*H*,10b*H*-cyclohexa[*h*]pyrrolizine-5-carboxylate 6

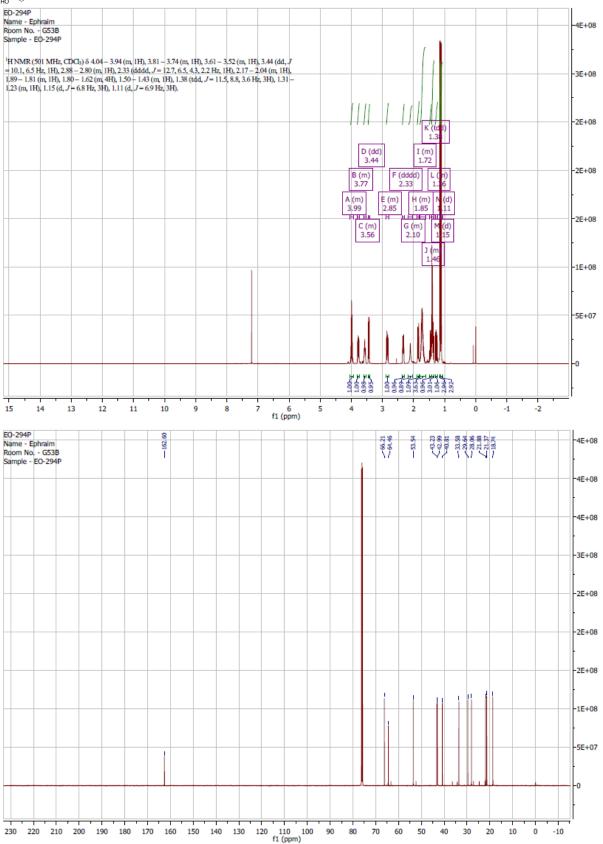

6-Isopropylhexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 7


6-(4-Toluenesulfonyl)hexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 8

6-(4-Methoxyphenyl)hexahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazole-5,8(6H)-dione 9

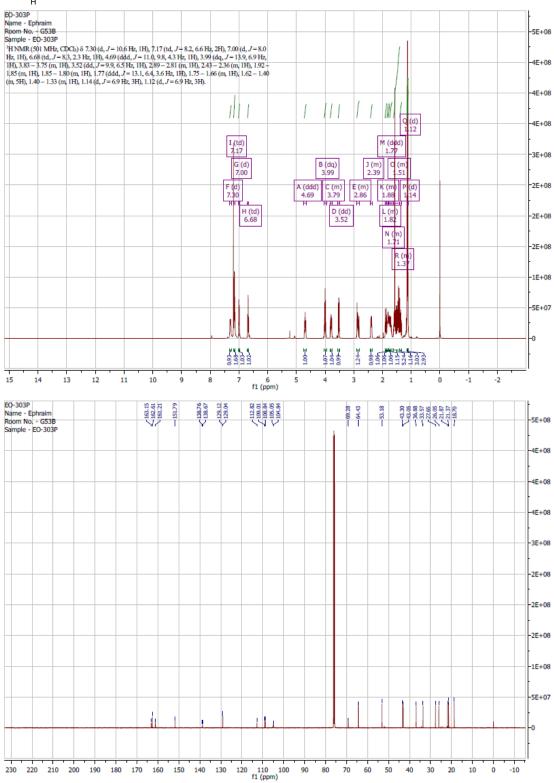
80 70 60 50 40

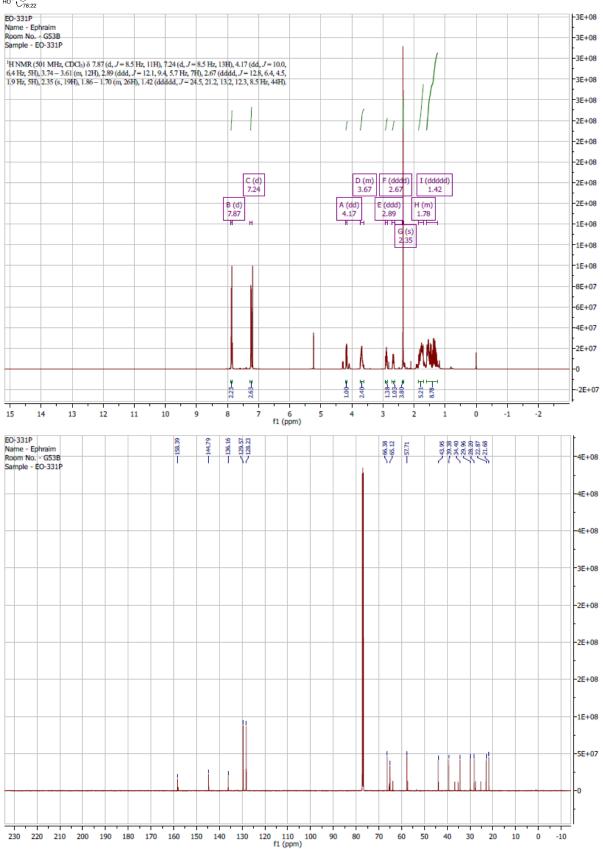
-10


0

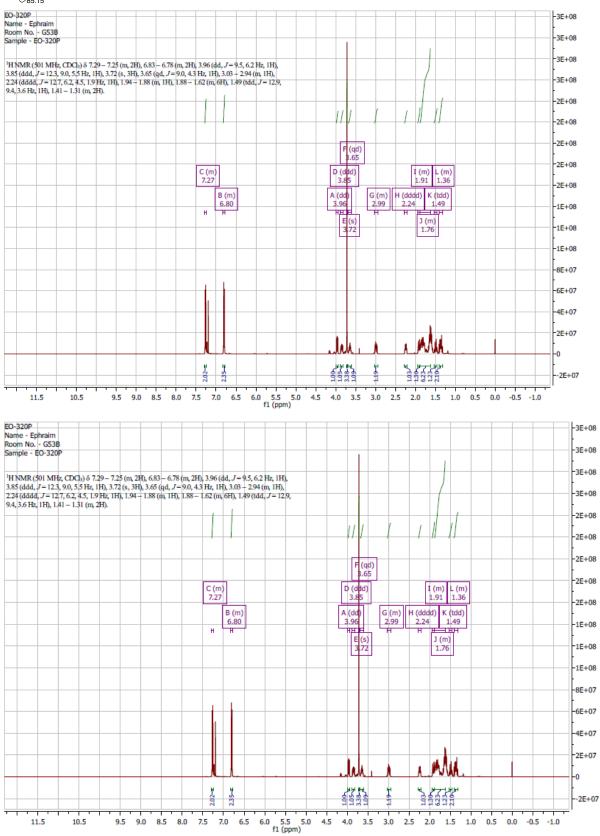
30 20 10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

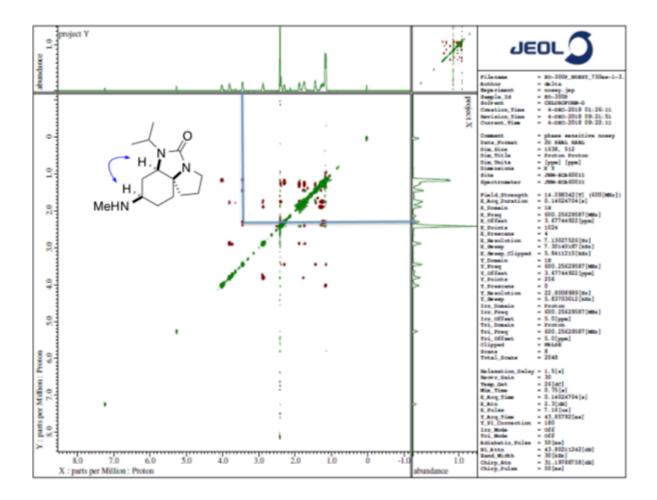

8-Hydroxy-6-isopropyloctahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 10


6-Isopropyl-5-oxooctahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazol-8-yl fluorophenyl)carbamate S25

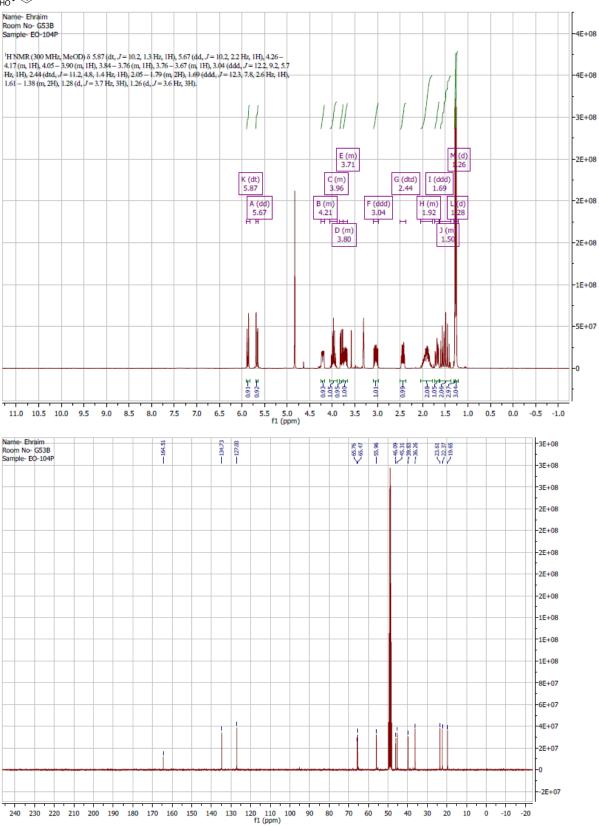
0] 0 `N H

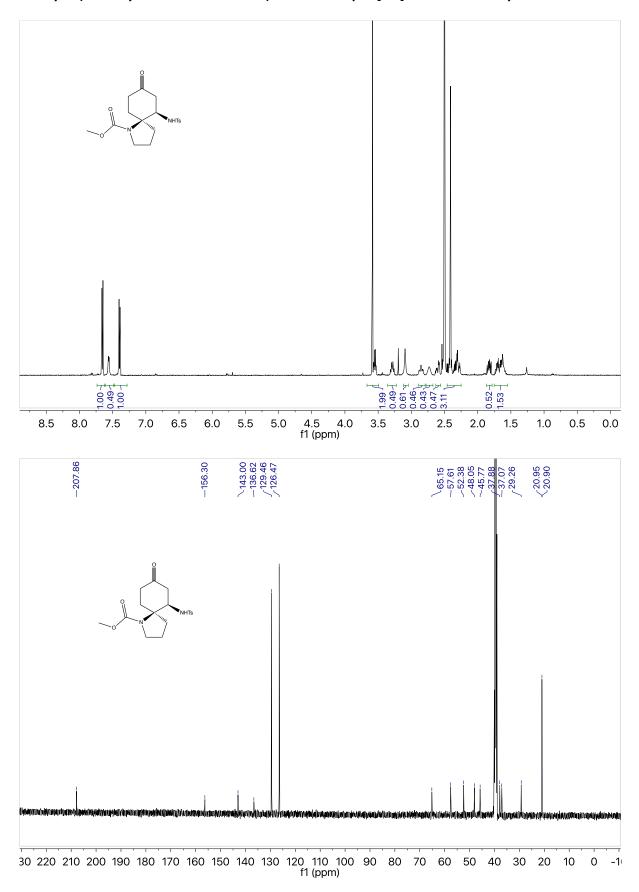

8-Hydroxy-6-(4-toluenesulfonyl)octahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 11

8-Hydroxy-6-(4-methoxyphenyl)octahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 12



6-Isopropyl-8-(methylamino)octahydro-1H,5H-benzo[d]pyrrolo[1,2-c]imidazol-5-one 13





8-Hydroxy-6-isopropyl-2,3,6,6a,7,8-hexahydro-1*H*,5*H*-benzo[*d*]pyrrolo[1,2-*c*]imidazol-5-one 14

Methyl 6-(4-methylbenzenesulfonamido)-8-oxo-1-azaspiro[4.5]decane-1-carboxylate 15