Ring-fused hexahydro-1,2,4,5-tetrazines: synthesis, structure, and mechanistic studies on isolable rotational isomers

Yasunori Toda, Airi Kooguchi, Kimiya Sukegawa, Ayaka Kikuchi and Hiroyuki Suga*

Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

Table of contents

Experimental section (General, Materials, General procedure for the synthesis of hexahydro-1,2,4,5-terrazines and azomethine imines)
Reaction optimization for the synthesis of hexahydro-1,2,4,5-terrazine 2a
Variable temperature ¹³ C NMR spectra of hexahydro-1,2,4,5-terrazine 2a
NOE experiments for hexahydro-1,2,4,5-terrazines 2b, 2e, and 2f
Reaction optimization for the synthesis of hexahydro-1,2,4,5-terrazine 2f
HPLC tracking experiments for rotamers 2e-Open and 2e-Close
NMR tracking experiments for rotamers 2f -Open and 2f -Close
Long-term tracking experiments by ¹ H NMR spectra
X-ray crystallographic analysis
DFT studies
Computational details
References
NMR spectra

Experimental section

General.

Melting points were determined on a Yanaco MP-13 melting point apparatus and are uncorrected. IR spectra were taken with a JASCO FT/IR-4200 spectrophotometer and are reported in wavenumbers (cm⁻ ¹). ¹H NMR spectra were recorded on BRUKER AVANCE III Fourier 300 (300 MHz) and Ascend 500 (500 MHz) spectrometers. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. Data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), and integration. ${}^{13}C{}^{1}H$ NMR spectra were recorded on BRUKER AVANCE III Fourier 300 (75 MHz) and Ascend 500 (125 MHz) spectrometers using broadband proton decoupling. Chemical shifts are expressed in parts per million using the middle resonance of CDCl₃ (77.0 ppm) as an internal standard. Hydrogen multiplicity (C, CH, CH₂, CH₃) information was obtained from carbon DEPT spectra. High-resolution mass spectra were obtained on BRUKER micrOTOF II ESI-TOF spectrometer. Optical rotations were recorded with a JASCO P-1010 polarimeter. X-ray diffraction data were collected at 93 K using a Bruker SMART APEX2 diffractometer [Mo K α radiation ($\lambda = 0.71073$ Å)]. Thin-layer chromatography (TLC) was performed using TLC aluminum sheets from Merck (silica gel 60 F254, 200 µm), and flash chromatography was performed using silica gel from Fuji Silysia Chemical (PSQ60B, 60 µm). Products were visualized by ultraviolet (UV) light and TLC stains. Unless otherwise noted, all reactions were carried out under an argon atmosphere in dried glassware.

Materials.

All reagents and solvents were commercial grade and purified prior to use when necessary. Azomethine imines **1a** and **1b** were prepared by the procedure reported previously.¹

Synthesis of hexahydro-1,2,4,5-terrazine 2a. A solution of azomethine imine 1a (34.8 mg, 0.20 mmol) and AgOTf (5.1 mg, 0.020 mmol, 10 mol%) in 1,2-dichloroethane (2.0 mL) was stirred at 85 °C for 24 h. After cooling the mixture at room temperature, the reaction mixture was filtered through a plug of Celite and silica gel (2 g) with EtOAc/MeOH (10:1, v/v, 30 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (11 g) with EtOAc/Hexane (1:1 – 2:1, v/v) to provide hexahydro-1,2,4,5-terrazine 2a (18.3 mg, 53%).

(5*s**,11*s**)-5,11-diphenyltetrahydrodipyrazolo[1,2-*a*:1',2'-*d*][1,2,4,5]tetrazine-1,9(5*H*,11*H*)-dione (2a):² Colorless plates; mp 222-223 °C; $R_f = 0.30$ (EtOAc:Hexane = 9:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 2925, 1718, 1686, 1380, 1256, 1079, 842, 756, 710 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.77-7.69 (m, 2H), 7.69-7.60 (m, 1H), 7.50-7.27 (m, 7H), 7.24 (s, 1H), 3.98 (s, 1H), 3.11 (ddd, *J* = 10.9, 9.3, 6.1 Hz), 2.82 (dt, *J* = 10.9, 8.6 Hz), 2.62 (ddd, *J* = 16.9, 8.6, 6.1 Hz), 2.45 (ddd, *J* = 16.9, 9.3, 8.5 Hz); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 169.6 (C), 135.9 (C), 133.8 (C), 130.3 (CH), 130.0 (CH), 129.5 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.3 (CH), 91.5 (CH), 62.3 (CH), 46.0 (CH₂), 29.7 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₂₀H₂₀N₄NaO₂ [M+Na]⁺ 371.1478, found 371.1481.

Synthesis of hexahydro-1,2,4,5-terrazine 2b. A solution of azomethine imine 1b (37.6 mg, 0.20 mmol) and Mg(OTf)₂ (6.4 mg, 0.020 mmol, 10 mol%) in 1,2-dichloroethane (2.0 mL) was stirred at 80 °C for 24 h. After cooling the mixture at room temperature, the reaction mixture was filtered through a plug of Celite and silica gel (0.1 g) with EtOAc/MeOH (4:1, v/v, 50 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (10 g) with EtOAc/Hexane (1:1 – 2:1, v/v) to provide hexahydro-1,2,4,5-terrazine 2b (19.5 mg, 52%, *open:close* = 80:20).

(5*s**,11*s**)-5,11-di-*o*-tolyltetrahydrodipyrazolo[1,2-*a*:1',2'-*d*][1,2,4,5]tetrazine-1,9(5*H*,11*H*)-dione (2b): White powder; mp 259-261 °C; $R_f = 0.34$ (EtOAc:Hexane = 2:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 1718, 1685, 1460, 1365, 1284, 1260, 1076, 845, 762, 746 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.13-8.06 (m, 1H×80/100), 7.91-7.86 (m, 1H×20/100), 7.74-7.67 (m, 1H×80/100), 7.38 (s, 1H×80/100), 7.36-7.15 (m, 6H×80/100+8H×20/100), 4.51 (s, 1H×80/100), 4.20 (s, 1H×20/100), 3.16 (dt, *J* = 11.5, 8.7 Hz, 2H), 2.94-2.75 (m, 2H), 2.71-2.38 (m, 10H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 170.3 (C, *open*), 170.2 (C, *close*), 139.4 (C, *close*), 136.81 (C, *open*), 136.78 (C, *open*), 133.6 (C, *open*), 133.5 (C, *close*), 132.8 (CH, *close*), 132.7 (C, *open*), 132.1 (CH, *close*), 131.5 (C, *close*), 130.8 (CH, *open*), 130.3 (CH, *open*), 130.0 (CH, *close*), 129.59 (CH, *open*), 129.57 (CH, *open*), 128.6 (CH, *open*), 128.4 (CH, *close*), 127.8 (CH, *open*), 127.7 (CH, *close*), 127.1 (CH, *open*), 125.6 (CH, *open*), 125.4 (CH, *close*), 93.7 (CH, *close*), 84.6 (CH, *open*), 60.1 (CH, *close*), 59.7 (CH, *open*), 45.7 (CH₂, *close*), 45.3 (CH₂, *open*), 29.6 (CH₂, *open*), 29.1 (CH₂, *close*), 20.5 (CH₃, *close*), 19.9 (CH₃, *open*), 19.4 (CH₃, *open* and *close*). One aromatic tertiary carbon and two methine carbons of a *close* rotamer are overlapped; HRMS (ESI-TOF) m/z: calcd for C₂₂H₂₄N₄NaO₂ [M+Na]⁺ 399.1791, found 399.1810.

Synthesis of hexahydro-1,2,4,5-terrazines 2c and 2d.

(5*s**,11*s**)-5,11-di([1,1'-biphenyl]-2-yl)tetrahydrodipyrazolo[1,2-*a*:1',2'-*d*][1,2,4,5]tetrazine-1,9(5*H*,11*H*)-dione (2*c*). Isolated as white powder (12.7 mg, 25%, *open:close* = >99:1) after silica gel column chromatography (10 g, Hexane:EtOAc = 10:1 – 1:1, v/v) following the procedure for synthesis of 2*b* using azomethine imine 1*c* (50.1 mg, 0.20 mmol). mp 211-213 °C; R_f = 0.26 (EtOAc:Hexane = 1:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3024, 2944, 1726, 1478, 1362, 1276, 1251, 1181, 1069, 844, 759, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.07-7.99 (m, 1H), 7.80-7.73 (m, 1H), 7.50-7.20 (m, 15H), 7.17-7.09 (m, 2H), 4.14 (s, 1H), 3.02 (dt, *J* = 11.7, 9.0 Hz, 2H), 2.81 (ddd, *J* = 11.7, 8.2, 5.7 Hz, 2H), 2.17-1.97 (m, 4H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 170.1 (C), 143.4 (C), 142.0 (C), 140.4 (C), 139.9 (C), 132.8 (C), 132.3 (C), 130.9 (CH), 129.7 (CH), 129.5 (CH), 129.2 (CH), 129.0 (CH), 128.9 (CH), 128.7 (CH), 128.5 (CH), 128.13 (CH₂), 28.9 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₃₂H₂₈N₄NaO₂ [M+Na]⁺ 523.2104, found 523.2100.

(5*s**,11*s**)-5,11-di-*o*-(phenylethynyl)phenyltetrahydrodipyrazolo[1,2-*a*:1',2'-*d*][1,2,4,5]tetrazine-1,9(5*H*,11*H*)-dione (2d). Isolated as white powder (27.6 mg, 50%, *open:close* = >99:1) after silica gel column chromatography (10 g, Hexane:EtOAc = 1:1, v/v) following the procedure for synthesis of 2b using azomethine imine 1d (54.9 mg, 0.20 mmol). mp 163-165 °C; R_f = 0.47 (EtOAc:Hexane = 1:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 1726, 1495, 1443, 1360, 1254, 1179, 1072, 830, 758 cm⁻¹; ¹H NMR (300 MHz, C₆D₆) δ 8.47-8.41 (m, 1H), 8.43 (s, 1H), 8.09-8.03 (m, 2H), 7.83-7.77 (m, 1H), 7.64-7.58 (m, 1H), 7.52-7.46 (m, 2H), 7.43-7.37 (m, 1H), 7.27-7.19 (m, 1H), 7.14-6.91 (m, 9H), 5.03 (s, 1H), 2.54 (dt, J = 11.4, 9.0 Hz, 2H), 2.47-2.23 (m, 4H), 1.80 (ddd, J = 16.3, 8.3, 4.3 Hz, 2H); ¹³C{¹H} NMR (75 MHz, C₆D₆) δ 171.1 (C), 138.8 (C), 136.9 (C), 133.5 (CH), 132.9 (CH), 132.0 (CH), 131.6 (CH), 129.7 (CH), 129.6 (CH), 129.5 (CH), 129.4 (CH), 129.2 (CH), 128.8 (CH), 128.47 (CH), 128.45 (CH), 128.4 (CH), 127.9 (CH), 124.9 (C), 124.1 (C), 123.7 (C), 122.5 (C), 96.9 (C), 96.1 (C), 87.3 (C), 86.7 (C), 85.8 (CH), 61.0 (CH), 45.6 (CH₂), 29.5 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₃₆H₂₈NaO₂ [M+Na]⁺ 571.2104, found 571.2095.

Synthesis of hexahydro-1,2,4,5-terrazine 2e. A solution of azomethine imine 1e (44.8 mg, 0.20 mmol) and Mg(OTf)₂ (6.4 mg, 0.020 mmol, 10 mol%) in 1,2-dichloroethane (2.0 mL) was stirred at 80 °C for 24 h. After cooling the mixture at room temperature, the reaction mixture was filtered through a plug of Celite and silica gel (0.1 g) with EtOAc/MeOH (4:1, v/v, 50 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (10 g) with Hexane/EtOAc (30:1 - 1:2, v/v) to provide hexahydro-1,2,4,5-terrazine 2e (25.2 mg, 56%, *open:close* = 43:57).

 $(5s^*, 11s^*)$ -5,11-di(naphthalen-1-yl)tetrahydrodipyrazolo[1,2-a:1',2'-d][1,2,4,5]tetrazine-

1,9(5*H***,11***H***)-dione (2e): White powder; mp 286-288 °C; R_f (***open***) = 0.57 (EtOAc:Hexane = 2:1, v/v) visualized with phosphomolybdic acid, R_f (***close***) = 0.28 (EtOAc:Hexane = 2:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3049, 2924, 2853, 1717, 1686, 1511, 1372, 1278, 1263, 1090, 1077, 858, 791, 768 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) \delta 9.03-8.95 (m, 1H×57/100), 8.40-8.30 (m, 1H), 8.29-8.24 (m, 1H×43/100), 8.23-8.15 (m, 1H), 8.06-7.80 (m, 5H×57/100+6H×43/100), 7.68-7.40 (m, 6H),**

7.37-7.28 (m, 1H×57/100), 5.25 (s, 1H×43/100), 4.61 (s, 1H×57/100), 3.17-2.67 (m, 6H), 2.56-2.42 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 170.8 (C, *open*), 170.3 (C, *close*), 134.6 (C), 133.9 (C), 133.8 (C), 133.4 (C), 132.4 (C), 131.4 (CH), 131.2 (C), 131.1 (C), 131.0 (C), 130.9 (C), 130.8 (C), 130.3 (CH), 130.0 (C), 129.9 (C), 129.72 (CH), 129.66 (CH), 129.5 (CH), 128.72 (CH), 128.69 (CH), 128.4 (CH), 128.00 (CH), 127.95 (CH), 127.6 (CH), 126.9 (CH), 126.8 (CH), 126.5 (CH), 126.0 (CH), 125.93 (CH), 125.90 (CH), 125.8 (CH), 124.8 (CH), 124.6 (CH), 124.5 (CH), 123.4 (CH), 123.3 (CH), 120.7 (CH), 93.9 (CH, *close*), 83.0 (CH, *open*), 60.3 (CH, *close*), 59.7 (CH, *open*), 45.8 (CH₂, *close*), 45.5 (CH₂, *open*), 29.4 (CH₂, *open*), 29.1 (CH₂, *close*). Four aromatic methine carbons are overlapped; HRMS (ESI-TOF) m/z: calcd for C₂₈H₂₄N₄NaO₂ [M+Na]⁺ 471.1791, found 471.1773.

Synthesis of hexahydro-1,2,4,5-terrazine 2f. A solution of azomethine imine 1f (58.1 mg, 0.20 mmol), 4-oxo-2,3-diazatricyclo[$4.3.1^{6.9}.0$]decane³ (6.0 mg, 0.040 mmol, 20 mol%), and AgOTf (5.1 mg, 0.020 mmol, 10 mol%) in chlorobenzene (2.0 mL) was stirred at 120 °C for 48 h. After cooling the mixture at room temperature, the reaction mixture was filtered through a plug of Celite and silica gel (0.1 g) with EtOAc/MeOH (4:1, v/v, 50 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (7 g) with Hexane/EtOAc (7:3 – 1:2, v/v) to provide hexahydro-1,2,4,5-terrazines 2f-*Open* (8.8 mg, 15%) and 2f-*Close* (11.4 mg, 20%).

 $(1R^*, 4S^*, 4aR^*, 6s^*, 7aS^*, 8R^*, 11S^*, 11aR^*, 14s^*, 16aS^*) - 6, 14 - di(naphthalen-1-yl)dodecahydro-$ 1,4:8,11 - dimethano[1,2,4,5]tetrazino[1,2-*a*:5,4-*a'*]bis(indazole) - 12, 16(6H, 14H) - dione (2f-Open):White powder; mp 290-292 °C; R_f = 0.25 (EtOAc:Hexane = 1:1, v/v) visualized with phosphomolybdicacid; IR (KBr) 3051, 2963, 2874, 1703, 1598, 1514, 1394, 1314, 1279, 1255, 1239, 1080, 865, 801, 778, 637, 555, 447 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.75 (d, J = 7.2 Hz, 1H), 8.58 (d, J = 8.6 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.16 (dd, J = 7.3, 1.1 Hz, 1H), 8.01-7.84 (m, 4H), 7.96 (s, 1H), 7.71-7.55 (m, 5H), 7.53-7.46 (m, 1H), 5.16 (s, 1H), 2.80 (d, J = 8.1 Hz, 2H), 2.68 (d, J = 8.1 Hz, 2H), 2.53 (d, J = 3.8 Hz, 2H), 1.71-1.63 (m, 2H), 1.40-1.24 (m, 2H), 1.14 (d, J = 10.7 Hz, 2H), 1.07-0.92 (m, 4H), 0.82 (d, J = 10.7 Hz, 2H), 0.41-0.26 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 168.2 (C), 133.6 (C), 133.4 (C), 132.6 (C), 132.2 (C), 130.9 (C), 130.3 (CH), 130.0 (C), 129.7 (CH), 129.5 (CH), 129.3 (CH), 128.5 (CH), 127.5 (CH), 126.8 (CH), 126.5 (CH), 125.77 (CH), 125.76 (CH), 125.6 (CH), 124.6 (CH), 123.8 (CH), 121.3 (CH), 85.9 (CH), 64.3 (CH), 57.9 (CH), 49.6 (CH), 43.4 (CH), 39.8 (CH), 33.2 (CH₂), 27.7 (CH₂), 24.7 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₃₈H₃₆N₄NaO₂ [M+Na]⁺ 603.2730, found 603.2726.

 $(1R^*,4S^*,4aR^*,6s^*,7aS^*,8R^*,11S^*,11aR^*,14s^*,16aS^*)-6,14-di(naphthalen-1-yl)dodecahydro-$ 1,4:8,11-dimethano[1,2,4,5]tetrazino[1,2-*a*:5,4-*a'*]bis(indazole)-12,16(*6H*,14*H*)-dione (2f-*Close*):White powder; mp 296-297 °C; R_f = 0.25 (EtOAc:Hexane = 3:1, v/v) visualized with phosphomolybdicacid; IR (KBr) 3050, 2967, 2874, 1702, 1510, 1392, 1315, 1279, 1076, 866, 780, 736, 580 cm⁻¹; ¹H $NMR (300 MHz, CDCl₃) <math>\delta$ 9.16 (d, *J* = 8.7 Hz, 1H), 8.61 (d, *J* = 7.3 Hz, 1H), 8.50 (d, *J* = 8.5 Hz, 1H), 8.00-7.82 (m, 4H), 7.94 (s, 1H), 7.69-7.43 (m, 6H), 7.42-7.34 (m, 1H), 4.50 (s, 1H), 3.04 (d, *J* = 8.2 Hz, 2H), 2.71 (d, *J* = 8.2 Hz, 2H), 2.56 (d, *J* = 3.7 Hz, 2H), 1.42-1.28 (m, 4H), 1.16 (d, *J* = 10.7 Hz, 2H), 1.11-0.87 (m, 4H), 0.76 (d, *J* = 10.7 Hz, 2H), 0.53-0.40 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 168.3 (C), 134.4 (C), 133.7 (C), 132.1 (C), 131.6 (C), 131.3 (CH), 130.91 (C), 130.89 (CH), 130.3 (C), 129.6 (CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 126.82 (CH), 126.75 (CH), 126.4 (CH), 125.9 (CH), 125.3 (CH), 124.31 (CH), 124.29 (CH), 123.9 (CH), 96.9 (CH), 64.4 (CH), 58.6 (CH), 49.6 (CH), 42.5 (CH), 39.7 (CH), 33.3 (CH₂), 27.7 (CH₂), 24.9 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₃₈H₃₆N₄NaO₂ [M+Na]⁺ 603.2730, found 603.2758.

S2a: R = Me **S2b**: R = Ph *Open:Close* = 41:59

(3R*,5s*,7S*,11s*)-3,7-dimethyl-5,11-di(naphthalen-1-yl)tetrahydrodipyrazolo[1,2-a:1',2'-

d][1,2,4,5]tetrazine-1,9(5*H*,11*H*)-dione (S2a): Isolated as white powder (16.7 mg, 35%, *open:close* = 41:59) after silica gel column chromatography (6 g, Hexane:EtOAc = 30:1 - 1:3, v/v, CH₂Cl₂:MeOH = 100:0 - 50:1, v/v, and then Wakogel C-300HG 6 g, CH₂Cl₂:MeOH = 100:0 - 50:1, v/v) following the procedure for synthesis of **2e** using azomethinimine **S1a** (47.7 mg, 0.20 mmol), 5-methyl-3-pyrazolidinone (2.0 mg, 0.020 mmol, 10 mol%), Mg(OTf₂ (6.4 mg, 0.020 mmol, 10 mol%) at 100 °C in chlorobenzene (2.0 mL) for 24 h. mp 277-279 °C; R_f (*open*) = 0.59 (EtOAc:Hexane = 3:1, v/v) visualized with phosphomolybdic acid, R_f (*close*) = 0.24 (EtOAc:Hexane = 3:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3051, 2977, 2927, 1717, 1599, 1512, 1377, 1302, 1265, 1196, 1080, 785, 767, 721, 647, 506 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.98 (d, *J* = 8.6 Hz, 1H×59/100), 8.40-8.21 (m, 2H), 8.14 (d, *J* = 8.4 Hz, 1H×41/100), 8.07 (s, 1H×41/100), 8.03 (s, 1H×59/100), 8.02-7.85 (m, 3H+2H×41/100), 7.81 (d, *J* = 8.1 Hz, 1H×59/100), 7.69-7.39 (m, 6H), 7.31-7.22 (m, 1H×59/100), 5.25 (s, 1H×41/100), 4.68 (s, 1H×59/100), 3.31-3.18 (m, 2H×59/100), 3.12-2.88 (m, 2H×41/100+2H), 2.20-2.09 (m, 2H), 0.77 (d, *J* = 6.5 Hz, 3H×41/100), 0.58 (d, *J* = 6.6 Hz, 3H×59/100); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 170.9 (C, *open*), 170.0 (C, *close*), 134.5 (C), 133.7 (C), 133.6 (C), 133.4 (C), 132.5 (C), 131.3 (CH), 131.2 (C), 131.02 (C), 130.99 (C), 130.9 (C), 130.7 (C), 130.1 (CH), 129.7 (CH), 129.5

(CH), 129.2 (CH), 128.7 (CH), 128.6 (CH), 128.38 (CH), 128.36 (CH), 127.8 (CH), 127.7 (CH), 126.8 (CH), 126.7 (CH), 126.5 (CH), 126.23 (CH), 126.20 (CH), 125.9 (CH), 125.81 (CH), 125.80 (CH), 125.7 (CH), 125.4 (CH), 124.7 (CH), 124.5 (CH), 124.4 (CH), 123.3 (CH), 123.2 (CH), 120.7 (CH), 93.4 (CH, *close*), 82.2 (CH, *open*), 59.2 (CH, *close*), 58.7 (CH, *open*), 51.9 (CH, *close*), 51.3 (CH, *open*), 36.1 (CH₂, *open*), 35.9 (CH₂, *close*), 21.3 (CH₃, *open*), 20.9 (CH₃, *close*). Two aromatic tertiary carbons and one methine carbon are overlapped; HRMS (ESI-TOF) m/z: calcd for C₃₀H₂₈N₄NaO₂ [M+Na]⁺ 499.2104, found 499.2121.

(3R*,5s*,7S*,11s*)-3,7-diphenyl-5,11-di(naphthalen-1-yl)tetrahydrodipyrazolo[1,2-a:1',2'-

d][1,2,4,5]tetrazine-1,9(5H,11H)-dione (S2b): Afforded as white solid (21.0 mg, NMR yield 22%) using 1,1,2,2,-tetrachloroethane as an internal standard, *open:close* = 41:59) after silica gel column chromatography (6 g, Toluene:EtOAc = 15:1 - 3:1, v/v) following the procedure for synthesis of 2a using azomethinimine S1b (60.1 mg, 0.20 mmol), 5-phenyl-3-pyrazolidinone (3.2 mg, 0.020 mmol, 10 mol%), AgOTf (5.1 mg, 0.020 mmol, 10 mol%) at 120 °C in chlorobenzene (2 mL) for 24 h. The authentic sample (*open:close* = 42:58) of **S2b** was obtained by a GPC purification. mp 117-119 °C; R_f (open) = 0.42 (Toluene:EtOAc = 2:1, v/v) visualized with phosphomolybdic acid, R_f (close) = 0.17 (Toluene:EtOAc = 2:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3051, 2977, 2927, 1717, 1599, 1512, 1377, 1302, 1265, 1196, 1080, 785, 767, 721, 647, 506 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.74 (d, J = 8.7 Hz, $1H \times 58/100$), 8.37 (d, J = 8.5 Hz, $1H \times 42/100$), 8.31-8.21 (m, 2H×42/100+1H×58/100), 8.19-8.10 (m, 1H×58/100), 8.17 (s, 1H×58/100), 8.12 (s, 1H×42/100), 8.03 (d, J= 8.2 Hz. 1H×58/100), 7.97-7.83 (m, 2H×42/100+1H×58/100), 7.76-7.37 (m. 8H×42/100+6H×58/100), 7.31-7.16 (m, 2H×58/100), 7.14-7.02 (m, 1H×42/100+1H×58/100), 6.97-6.89 (m, 2H×42/100), 6.84-6.69 (m, 4H×42/100+2H×58/100), 6.62-6.53 (m, 4H×58/100+4H×42/100), 6.49- $6.42 \text{ (m, } 4H \times 58/100), 5.63 \text{ (s, } 1H \times 42/100), 4.93 \text{ (s, } 1H \times 58/100), 4.24 \text{ (dd, } J = 9.0, 5.5 \text{ Hz}, 2H \times 58/100), 100 \text{ Hz}$ 4.11 (dd, J = 9.3, 4.3 Hz, $2H \times 42/100$), 3.26 (dd, J = 17.5, 9.3 Hz, $2H \times 42/100$), 3.24 (dd, J = 17.4, 9.0 Hz, $2H \times 58/100$), 2.67 (dd, J = 17.5, 4.3 Hz, $2H \times 42/100$), 2.66 (dd, J = 17.4, 5.5 Hz, $2H \times 58/100$); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 169.4 (C, open), 168.5 (C, close), 140.2 (C), 138.9 (C), 134.0 (C),

133.8 (C), 133.7 (C), 133.3 (C), 132.5 (C), 131.5 (CH), 131.3 (C), 131.1 (C), 131.0 (C), 130.4 (C), 130.3 (C), 130.2 (CH), 129.8 (CH), 129.6 (CH), 129.4 (CH), 129.32 (CH,), 129.28 (C), 128.7 (C), 128.5 (CH), 128.2 (CH), 127.9 (CH), 127.6 (CH), 127.3 (CH), 127.0 (CH), 126.9 (CH), 126.8 (CH), 126.6 (CH), 126.2 (CH), 126.1 (CH), 126.02 (CH), 125.96 (CH), 125.9 (CH), 125.79 (CH), 125.77 (CH), 125.6 (CH), 125.1 (CH), 124.6 (CH), 124.3 (CH), 123.9 (CH), 123.5 (CH), 123.4 (CH), 120.8 (CH), 95.0 (CH, *close*), 84.0 (CH, *open*), 60.5 (CH, *close*), 60.4 (CH, *close*), 59.7 (CH, *open*), 59.2 (CH, *open*), 37.9 (CH₂, *close*), 37.6 (CH₂, *open*). Four aromatic methine carbons are overlapped; HRMS (ESI-TOF) m/z: calcd for C₄₀H₃₂N₄NaO₂ [M+Na]⁺ 623.2417, found 623.2425.

Synthesis of hexahydro-1,2,4,5-terrazine S2c. A solution of azomethine imine **S1c** (58.1 mg, 0.20 mmol), 4-oxo-2,3-diazatricyclo[4.3.1^{6,9}.0]decane³ (6.0 mg, 0.040 mmol, 20 mol%), AgOTf (10.3 mg, 0.040 mmol, 20 mol%), and 4-bromo-1-naphthaldehyde (18.8 mg, 0.080 mmol, 40 mol%) in chlorobenzene (4.0 mL) was stirred at 120 °C for 24 h. After cooling the mixture at room temperature, the reaction mixture was filtered through a plug of Celite and silica gel (0.1 g) with EtOAc/MeOH (4:1, v/v, 50 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (5 g) with Hexane/EtOAc (5:1 – 1:2, v/v) and then CH₂Cl₂:MeOH (200:1 – 100:1) to provide hexahydro-1,2,4,5-terrazines **S2c** (11.5 mg, 16%, *open:close* = 41:59). **S2c**-*Open* and **S2c**-*Close* could be partly isolated by careful silica gel column chromatography with Hexane/EtOAc (7:3 – 1:2, v/v) as an eluent, respectively.

(1R*,4S*,4aR*,6s*,7aS*,8R*,11S*,11aR*,14s*,16aS*)-6,14-di(4-bromonaphthalen-1-

yl)dodecahydro-1,4:8,11-dimethano[1,2,4,5]tetrazino[1,2-a:5,4-a']bis(indazole)-12,16(6H,14H)-

dione (S2c-*Open*): White powder; mp 226-228 °C; $R_f = 0.41$ (EtOAc:Hexane = 3:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3072, 2962, 2873, 1703, 1567, 1510, 1455, 1388, 1313, 1278, 1255, 1200, 1157, 1080, 992, 913, 897, 843, 820, 790, 758, 708, 647, 546 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.61-8.52 (m, 2H), 8.48-8.40 (m, 1H), 8.35-8.28 (m, 1H), 8.26-8.19 (m, 1H), 7.99-7.88 (m, 3H), 7.90 (s, 1H), 7.78-7.58 (m, 4H), 5.12 (s, 1H), 2.76 (d, *J* = 8.1 Hz, 2H), 2.68 (d, *J* = 8.1 Hz, 2H), 2.53 (d, *J* = 3.6 Hz, 2H), 1.69 (d, *J* = 3.9 Hz, 2H), 1.42-1.20 (m, 2H), 1.13-0.95 (m, 6H), 0.85 (d, *J* = 10.7 Hz, 2H), 0.42-0.29 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 168.3 (C), 133.7 (C), 132.3 (C), 132.1 (C), 131.9 (C), 131.8 (C), 130.1 (C), 130.0 (CH), 129.8 (CH), 129.0 (CH), 128.9 (CH), 128.5 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH), 125.5 (C), 124.3 (C), 124.2 (CH), 121.7 (CH), 85.7 (CH), 64.4 (CH), 57.5 (CH), 49.5 (CH), 43.4 (CH), 39.9 (CH), 33.2 (CH₂), 27.6 (CH₂), 24.8 (CH₂). One aromatic methine carbon is overlapped; HRMS (ESI-TOF) m/z: calcd for C₃₈H₃₄Br₂N₄NaO₂ [M+Na]⁺ 761.0924, found 761.0946.

(1R*,4S*,4aR*,6s*,7aS*,8R*,11S*,11aR*,14s*,16aS*)-6,14-di(4-bromonaphthalen-1-

yl)dodecahydro-1,4:8,11-dimethano[1,2,4,5]tetrazino[1,2-*a*:5,4-*a'*]bis(indazole)-12,16(6*H*,14*H*)dione (S2c-*Close*): White powder; mp 299-300 °C; R_f = 0.28 (EtOAc:Hexane = 3:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3071, 3008, 2967, 2874, 1699, 1567, 1508, 1425, 1386, 1302, 1276, 1255, 1230, 1200, 1119, 1082, 929, 914, 895, 846, 758, 709, 589, 549 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.20 (d, *J* = 8.3 Hz, 1H), 8.53-8.47 (m, 1H), 8.44 (d, *J* = 7.8 Hz, 1H), 8.38-8.28 (m, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.89 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.70-7.60 (m, 3H), 7.52-7.44 (m, 1H), 7.35 (d, J = 7.6 Hz, 1H), 4.46 (s, 1H), 3.01 (d, J = 8.2 Hz, 2H), 2.71 (d, J = 8.2 Hz, 2H), 2.57 (d, J = 3.7 Hz, 2H), 1.44-1.27 (m, 4H), 1.13-0.84 (m, 4H), 1.09 (d, J = 10.7 Hz, 2H), 0.79 (d, J = 10.7 Hz, 2H), 0.57-0.43 (m, 2H); $^{13}C{^{1}H}$ NMR (75 MHz, CDCl₃) δ 168.3 (C), 132.7 (C), 132.5 (C), 132.4 (C), 132.2 (C), 132.1 (C), 131.0 (CH), 130.2 (C), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 127.4 (CH), 127.0 (CH), 126.6 (C), 126.3 (CH), 124.7 (C), 124.3 (CH), 96.4 (CH), 64.5 (CH), 58.2 (CH), 49.5 (CH), 42.5 (CH), 39.7 (CH), 33.4 (CH₂), 27.6 (CH₂), 24.9 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₃₈H₃₄Br₂N₄NaO₂ [M+Na]⁺ 761.0924, found 761.0935.

Synthesis of azomethine imines 1c and 1d. Azomethine imines 1c and 1d were synthesized according to the procedure for synthesis of 1e.

(2*Z*)-2-(biphenyl-2-ylmethylidene)-5-oxopyrazolidin-2-ium-1-ide (1c): Isolated as white powder (167.1 mg, 35%) after silica gel column chromatography (20 g, EtOAc:MeOH = 20:1 - 10:1, v/v) following the procedure for synthesis of 1e using 3-pyrazolidinone¹ (406.7 mg, 4.7 mmol) and 2-phenylbenzaldehyde (350.5 mg, 1.9 mmol) in MeOH (2.4 mL, 2.0 M). mp 145-147 °C; R_f = 0.28 (EtOAc:MeOH = 10:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3060, 3026, 2948, 1672, 1655, 1598, 1584, 1558, 1470, 1455, 1340, 1282, 1119, 1099, 959, 853, 759, 745, 707, 668 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.39-9.31 (m, 1H), 7.57-7.42 (m, 5H), 7.42-7.30 (m, 3H), 7.01 (br s, 1H), 4.41-4.31 (m, 2H), 2.84-2.74 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 184.8 (C), 143.7 (C), 139.1 (C), 131.3 (CH), 131.1 (CH), 131.0 (CH), 130.0 (CH), 129.8 (CH), 128.5 (CH), 128.0 (CH), 127.8 (CH), 126.6 (C), 58.1 (CH₂), 29.1 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₁₆H₁₄N₂NaO [M+Na]⁺ 273.0998, found 273.1020.

(2Z)-5-oxo-2-[2-(phenylethynyl)benzylidene]pyrazolidin-2-ium-1-ide (1d): Isolated as white powder (254.7 mg, 60%) following the procedure for synthesis of 1e using 3-pyrazolidinone¹ (268.1 mg, 3.1 mmol) and 2-(phenylethynyl)benzaldehyde (321.1 mg, 1.5 mmol) in MeOH (1.6 mL, 2.0 M). mp 202-203 °C; $R_f = 0.43$ (CH₂Cl₂:MeOH = 20:1, v/v) visualized with KMnO₄; IR (KBr) 3051, 2210, 1678, 1656, 1591, 1577, 1556, 1493, 1469, 1429, 1338, 1295, 1110, 1088, 957, 761 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.37-9.28 (m, 1H), 7.79 (br s, 1H), 7.64--7.52 (m, 3H), 7.50-7.37 (m, 5H), 4.64-4.55 (m, 2H), 2.88-2.79 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.1 (C), 132.5 (CH), 131.43 (CH), 131.39 (CH), 130.9 (CH), 130.0 (CH), 129.5 (C), 129.0 (CH), 128.8 (CH), 128.5 (CH), 124.1 (C), 122.1 (C), 96.1 (C), 85.9 (C), 58.4 (CH₂), 29.1 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₄N₂NaO [M+Na]⁺ 297.0998, found 297.0997.

Synthesis of azomethine imine 1e. 1-Naphthaldehyde (312.3 mg, 0.28 mL, 2.0 mmol) was added to a solution of 3-pyrazolidinone¹ (289.9 mg, 3.4 mmol) in MeOH (1.6 mL, 2.0 M). The mixture was stirred for 24 h at room temperature and then diluted with Et_2O (10 mL). The precipitate was collected by filtration, washed with Et_2O , and dried under reduced pressure to afford azomethine imine 1e (366.8 mg, 82%).

(2Z)-2-(naphthalen-1-ylmethylidene)-5-oxopyrazolidin-2-ium-1-ide (1e): Yellow powder; mp 184-186 °C; $R_f = 0.33$ (EtOAc:MeOH = 4:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3055, 3011, 1673, 1645, 1580, 1518, 1440, 1356, 1335, 1308, 1293, 1262, 1115, 1102, 957, 807, 794, 783, 768 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.52-9.44 (m, 1H), 8.12-8.05 (m, 1H), 7.97-7.86 (m, 2H), 7.94 (br s, 1H), 7.66-7.50 (m, 3H), 4.72-4.61 (m, 2H), 2.91-2.80 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.3 (C), 133.2 (C), 132.4 (CH), 131.4 (CH), 131.0 (C), 129.4 (CH), 128.5 (CH), 127.5 (CH), 126.1 (CH), 125.5 (CH), 124.1 (C), 121.3 (CH), 58.5 (CH₂), 29.2 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₁₄H₁₂N₂NaO [M+Na]⁺ 247.0842, found 247.0830.

Synthesis of azomethine imine 1f.⁴ Phenyl 2-(naphthalen-1-ylmethylene)hydrazinecarboxylate⁴ (290.3 mg, 1.0 mmol), PhCF₃ (5.0 mL, 0.2 M), Et₃N (4.2 μ L, 3.0 mol%), and 2-norbornene (470.8 mg, 5.0 mmol) were successively added to the sealed tube. The tube was purged with argon and then quickly sealed with a cap. The mixture was heated at 150 °C for 1.5 h while stirring. After cooling the mixture at room temperature, the reaction mixture was concentrated and then filtered through a plug of silica gel (5 g) with CH₂Cl₂ (60 mL), EtOAc (15 mL), and EtOAc/MeOH (4:1, v/v, 50 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (6 g) with EtOAc to provide azomethine imine 1f (129.3 mg, 44%).

Alternative procedure for synthesis of azomethine imine 1f. 1-Naphthaldehyde (62.5 mg, 54 μ L, 0.4 mmol) was added to a solution of 4-oxo-2,3-diazatricyclo[4.3.1^{6,9}.0]decane³ (60.1 mg, 0.4 mmol) in MeOH (0.8 mL, 0.5 M). The mixture was stirred for 18 h at room temperature and then concentrated

under reduce pressure. The residue was purified by silica gel column chromatography (7 g) with EtOAc to provide azomethine imine **1f** (84.9 mg, 73%).

exo-(Z)-2-(naphth-1-ylmethylene)-4-oxo-2,3-diazatricyclo[4,3,1^{6,9},0]decane-2-ium-3-ide (1f):⁴ Yellow powder; mp 235-237 °C; $R_f = 0.25$ (EtOAc:MeOH = 10:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3048, 2967, 2866, 1733, 1653, 1579, 1510, 1430, 1325, 1301, 1211, 1127, 1106, 1087, 1051, 996, 869, 797, 768, 687, 667, 623 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.52 (dd, J = 7.7, 0.8 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 7.98-7.88 (m, 2H), 7.66-7.52 (m, 3H), 4.60 (dd, J = 7.1, 0.7 Hz, 1H), 2.87-2.74 (m, 3H), 1.86-1.61 (m, 2H), 1.55-1.24 (m, 4H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.4 (C), 133.3 (C), 132.3 (CH), 131.4 (CH), 131.1 (C), 129.5 (CH), 127.5 (CH), 127.4 (CH), 126.1 (CH), 125.7 (CH), 124.4 (C), 121.3 (CH), 77.5 (CH), 49.9 (CH), 44.7 (CH), 39.2 (CH), 32.4 (CH₂), 27.5 (CH₂), 24.9 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₁₉H₁₉N₂O [M+H]⁺ 291.1492, found 291.1498.

(2*Z*)-3-methyl-2-(naphthalen-1-ylmethylidene)-5-oxopyrazolidin-2-ium-1-ide (S1a): Isolated as yellow powder (4.68 g, 75%) following the procedure for synthesis of 1c using 5-methyl-3-pyrazolidinone (2.68 g, 27.0 mmol) and 1-naphthaldehyde (4.53 g, 3.9 mL, 29.0 mmol) in MeOH (17.0 mL, 1.5 M). mp 156-158 °C; $R_f = 0.23$ (EtOAc:MeOH = 4:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3057, 2978, 1663, 1581, 1510, 1433, 1330, 1314, 1293, 1252, 1102, 1084, 1017, 957, 803, 772, 667, 531 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.51 (dd, *J* = 7.6, 0.7 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 8.00-7.90 (m, 3H), 7.67-7.53 (m, 3H), 4.93-4.80 (m, 1H), 3.10 (dd, *J* = 16.5, 9.1 Hz, 1H), 2.54 (dd, *J* = 16.5, 4.1 Hz, 1H), 1.79 (d, *J* = 6.7 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 183.8 (C), 133.3 (C), 132.4 (CH), 131.4 (CH), 131.1 (C), 129.4 (CH), 127.6 (CH), 127.5 (CH), 126.1 (CH), 125.5 (CH),

124.2 (C), 121.2 (CH), 66.8 (CH), 37.3 (CH₂), 22.9 (CH₃); HRMS (ESI-TOF) m/z: calcd for $C_{15}H_{14}N_2NaO [M+Na]^+ 261.0998$, found 261.0991.

(2Z)-2-(naphthalen-1-ylmethylidene)-5-oxo-3-phenylpyrazolidin-2-ium-1-ide (S1b): Isolated as yellow powder (613.6 mg, 49%) after silica gel column chromatography (30 g, CH₂Cl₂:MeOH = 100:0 – 97:3, v/v) following the procedure for synthesis of **1c** using 5-phenyl-3-pyrazolidinone (675.7 mg, 4.2 mmol) and 1-naphthaldehyde (656.0 mg, 570 µL, 4.2 mmol) in MeOH (3.0 mL, 1.5 M) for 16 h, and then for additional 32 h after adding 5.0 mL of MeOH. mp 185-187 °C; $R_f = 0.30$ (CH₂Cl₂:MeOH = 20:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3062, 2989, 1670, 1652, 1581, 1513, 1497, 1449, 1306, 1283, 1257, 1095, 1074, 974, 950, 804, 771, 735, 698, 683, 622, 485 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.54 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.93 (d, *J* = 8.2 Hz, 1H), 7.90-7.83 (m, 1H), 7.71-7.65 (m, 1H), 7.69 (br s, 1H), 7.60 (t, *J* = 7.9 Hz, m, 1H), 7.53-7.41 (m, 7H), 5.71 (ddd, *J* = 9.8, 5.7, 0.9 Hz, 1H), 3.36 (dd, *J* = 16.9, 9.8 Hz, 1H), 2.92 (dd, *J* = 16.9, 5.7 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 183.5 (C), 138.4 (C), 133.3 (C), 132.6 (CH), 131.5 (CH), 131.2 (C), 129.8 (CH), 129.7 (CH), 129.4 (CH), 129.1 (CH), 127.5 (CH), 126.8 (CH), 126.1 (CH), 125.6 (CH), 124.1 (C), 121.0 (CH), 74.6 (CH), 38.9 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₂₀H₁₆N₂NaO [M+Na]⁺ 323.1155, found 323.1161.

Synthesis of azomethine imine S1c. 4-Bromo-1-naphthaldehyde (150.2 mg, 1.0 mmol) was added to a solution of 4-oxo-2,3-diazatricyclo[$4.3.1^{6,9}.0$]decane³ (235.1 mg, 1.0 mmol) in MeOH (2.0 mL, 0.5 M). The mixture was stirred for 18 h at room temperature and then concentrated under reduce pressure. The residue was washed with Et₂O/Hexane (1:1, v/v, 50 mL) to provide azomethine imine S1c (326.0 mg, 88%).

exo-(Z)-2-(4-bromonaphth-1-ylmethylene)-4-oxo-2,3-diazatricyclo[4,3,1^{6,9},0]decane-2-ium-3-ide (S1c): Yellow powder; mp 269-270 °C (dec.); $R_f = 0.29$ (EtOAc:MeOH = 10:1, v/v) visualized with phosphomolybdic acid; IR (KBr) 3043, 2972, 2875, 1658, 1582, 1571, 1507, 1454, 1430, 1322, 1302, 1292, 1262, 1128, 1106, 1000, 907, 868, 763, 691, 671, 567 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.40 (d, J = 8.2 Hz, 1H), 8.43-8.33 (m, 1H), 8.16-8.07 (m, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.88 (br s, 1H), 7.72-7.63 (m, 2H), 4.60 (d, J = 7.0 Hz, 1H), 2.88-2.75 (m, 3H), 1.86-1.63 (m, 2H), 1.55-1.22 (m, 4H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.4 (C), 132.1 (C), 132.0 (C), 131.3 (CH), 130.2 (CH), 128.8 (CH), 128.3 (CH), 127.7 (C), 127.5 (CH), 126.2 (CH), 124.3 (C), 121.6 (CH), 77.9 (CH), 49.9 (CH), 44.7 (CH), 39.3 (CH), 32.6 (CH₂), 27.6 (CH₂), 25.0 (CH₂); HRMS (ESI-TOF) m/z: calcd for C₁₉H₁₇BrN₂NaO [M+Na]⁺ 391.0416, found 391.0396.

Reaction optimization for the synthesis of hexahydro-1,2,4,5-terrazine 2a

Table S1. Dimerization reactions of azomethine imine 1a in the presence of Lewis acids^{a)}

2	Mg(OTf) ₂	$(CH_2Cl)_2$	52
3	Zn(OTf) ₂	$(CH_2Cl)_2$	50
4	AgOTf	$(CH_2Cl)_2$	60 (53) ^{c)}
5	AgOTf	Toluene	49
6	AgOTf	PhCl	56
7	AgOTf	1,4-Dioxane	57
8	Sc(OTf) ₃	(CH ₂ Cl) ₂	40
9	Yb(OTf) ₃	(CH ₂ Cl) ₂	40

a) The reaction of azomethine imine **1a** (0.2 mmol) was performed in the solvent (0.1 M) in the presence of Lewis acid (10 mol%) at 85 °C for 24 h. b) NMR yield using 1,1,2,2-tetrachloroethane as an internal standard. c) Isolated yield.

Variable temperature ¹³C NMR spectra of hexahydro-1,2,4,5-terrazine 2a

The C-C bond rotation of an equatorial phenyl group was hindered by the H atoms on a 3pyrazolidinone ring. Thus, *ortho-* and *meta-*carbons of an equatorial phenyl group at the C₃-position were observed as non-equivalent signals in the 13 C NMR experiments.

Figure S1. Variable temperature ¹³C NMR spectra of **2a**

NOE experiments for hexahydro-1,2,4,5-terrazines 2b, 2e, and 2f

Figure S2. Summary of NOE experiments

Reaction optimization for the synthesis of hexahydro-1,2,4,5-terrazine 2f

Table S2. Dimerization reactions of azomethine imine 1f^{a)}

2f-Open

2f-Close

Entry	Lewis acid	SP	Time	Yield	Open:Close ^{c)}	Recovered 1f
	(mol%)	(mol%)	(h)	(%) ^{b)}		(%) ^{d)}
1	Mg(OTf) ₂ (10)	none	24	4 ^{d)}	43:57	88
2	Mg(OTf) ₂ (10)	10	24	3 ^{d)}	39:61	93
3	AgOTf (10)	10	24	28 ^{d)}	40:60	53
4 ^{e)}	AgOTf (10)	10	24	28 ^{f)}	40:60	56
5	AgOTf (10)	20	24	32	42:58	53
6	AgOTf (20)	10	24	29	42:58	41
7	AgOTf (20)	20	24	21	42:58	47
8 ^{g)}	AgOTf (10)	10	24	18	43:57	45
9	AgOTf (10)	10	48	33 ^{h)}	41:59	48
10	AgOTf (10)	20	48	35 ⁱ⁾	42:58	50
11	AgOTf (10)	10	96	34	41:59	41

a) The reaction of azomethine imine **1f** (0.2 mmol) was performed in PhCl (0.1 M) in the presence of Lewis acid and 3-pyrazolidinone **SP** at 120 °C. b) Combined yield. c) Determined by ¹H NMR. d) NMR

yield using 1,1,2,2-tetrachloroethane as an internal standard. e) 0.6 mmol scale. f) Isolated yield of **2f**-*Open*: 11%, **2f**-*Close*: 17%. g) 150 °C. h) Isolated yield of **2f**-*Open*: 14%, **2f**-*Close*: 19%. i) Isolated yield of **2f**-*Open*: 15%, **2f**-*Close*: 20%.

HPLC tracking experiments for rotamers 2e-Open and 2e-Close

Figure S3. HPLC chromatograms for hexahydro-1,2,4,5-terrazine 2e

Figure S4. Results of HPLC tracking experiments

NMR tracking experiments for rotamers 2f-Open and 2f-Close

¹H NMR tracking experiments in CDCl₃ were performed. The spectra at 60 $^{\circ}$ C (15 min interval for both isomers) were shown in Figure S5.

Figure S5. ¹H NMR (500 MHz) spectra in CDCl₃ (8.6 mM) at 60 °C

By plotting logarithms of excess percentages for each rotamer with respect to elapsed times, a rate constant for each temperature could be determined from the slope. The rate constants (*k*) of the isomerization, ΔH^{\ddagger} , ΔS^{\ddagger} , and ΔG^{\ddagger} values were obtained from the Eyring equation. The isomerization rate for *Open* to *Close* is slightly faster than that for *Close* to *Open*. This reflects the difference in the thermodynamic stability of the two isomers.

Figure S6. Kinetic study by NMR experiments and Eyring plot for the isomerization

Long-term tracking experiments by ¹H NMR spectra

Figure S7. The isomerization rate for 2f-Open to 2f-Close at 60 °C

Figure S8. The isomerization rate for 2f-Close to 2f-Open at 50 °C

X-ray crystallographic analysis

Hexahydro-1,2,4,5-terrazine 2a

X-ray analysis was carried out using the single crystal which was grown in EtOAc (Figure S9).

Figure S9. ORTEP drawing (30% probability ellipsoids) of 2a

Bond precision:	C-C = 0.0048 A	Wa	velength=0	.71073
Cell:	a=21.28(2) alpha=90	b=8.194(8) beta=115.876	5(12)	c=22.20(2) gamma=90
Temperature:	88 K			J
	Calculated	R	leported	
Volume	3483(6)	3	483(6)	
Space group	C 2/c	C	C 1 2/c 1	
Hall group	-C 2yc	-	C 2yc	
Moiety formula	C20 H20 N4 O2	?	>	
Sum formula	C20 H20 N4 O2	C	220 H20 N4	02
Mr	348.40	3	348.40	
Dx,g cm-3	1.329	1	.329	
Z	8	8	3	
Mu (mm-1)	0.089	0	.089	
F000	1472.0	1	472.0	
F000′	1472.57			
h,k,lmax	27,10,28	2	27,10,28	
Nref	3877	3	758	
Tmin,Tmax	0.974,0.980	0	.974,0.980)
Tmin'	0.972			
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	' Limits: Tmi	n=0.974 Tm	ax=0.980
Data completene	ss= 0.969	Theta(max	s) = 27.140	
R(reflections) =	0.0555(1854)	wR2(refle	ections)= ().1687(3758)
S = 1.031	Npar	= 244		

Hexahydro-1,2,4,5-terrazine 2b-Open

X-ray analysis was carried out using the single crystal which was grown in MeOH (Figure S10).

Figure S10. ORTEP drawing (30% probability ellipsoids) of 2b

Bond precision:	C-C = 0.0040 A	Wavelength	=0.71073
Cell:	a=18.660(2) alpha=90	b=13.2963(15) beta=90	c=7.8585(9) gamma=90
Temperature:	296 K		2
	Calculated	Reported	
Volume	1949.8(4)	1949.8(4)	
Space group	Pna 21	P n a 21	
Hall group	P 2c -2n	P 2c -2n	
Moiety formula	C22 H24 N4 O2	?	
Sum formula	C22 H24 N4 O2	C22 H24 N	4 02
Mr	376.45	376.45	
Dx,g cm-3	1.282	1.282	
Z	4	4	
Mu (mm-1)	0.084	0.084	
F000	800.0	800.0	
F000′	800.31		
h,k,lmax	22,15,9	22,15,9	
Nref	3469[1873]	3305	
Tmin,Tmax	0.961,0.973	0.790,0.9	70
Tmin'	0.931		
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.790	Tmax=0.970
Data completene:	ss= 1.76/0.95	Theta(max) = 25.08	0
R(reflections) =	0.0418(2686)	wR2(reflections)=	0.1136(3305)
S = 1.253	Npar=	255	

Hexahydro-1,2,4,5-terrazine 2f-Open

S11).

X-ray analysis was carried out using the single crystal which was grown in CH₂Cl₂-Hexane (Figure

Figure S11. ORTEP drawing (30% probability ellipsoids) of 2f-Open

Bond precision:	C-C = 0.0058 A	W	lavelength	n=0.71073
Cell:	a=12.1570(17)	b=12.4397	(18)	c=13.855(2)
Temperature:	alpna=65.487(2) 93 K	peta=84.0	160 (2)	gamma=62.5/1(2)
	Calculated		Reported	
Volume	1682.1(4)		1682.1(4))
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	C38 H36 N4 O2, C H	I2 C12	?	
Sum formula	C39 H38 Cl2 N4 O2		СЗ9 НЗ8 0	Cl2 N4 O2
Mr	665.63		665.63	
Dx,g cm-3	1.314		1.314	
Z	2		2	
Mu (mm-1)	0.234		0.234	
F000	700.0		700.0	
F000′	700.83			
h,k,lmax	14,14,16		14,14,16	
Nref	5859		5752	
Tmin,Tmax	0.924,0.930		0.820,0.9	930
Tmin'	0.924			
Correction metho AbsCorr = MULTI	od= # Reported T Li: -SCAN	mits: Tmir	n=0.820 Tr	max=0.930
Data completene:	ss= 0.982	Theta(ma	x)= 24.89	0
R(reflections)=	0.0456(2449)			wR2(reflections)=
S = 0.841	Npar= 45	52		

Hexahydro-1,2,4,5-terrazine 2f-Close

X-ray analysis was carried out using the single crystal which was grown in CDCl₃-Hexane (Figure

S12).

Figure S12. ORTEP drawing (30% probability ellipsoids) of 2f-Close

Bond precision:	C-C = 0.0032	A	М	Vavelength=	0.71073
Cell:	a=25.3011(11) alpha=90		b=13.3310 beta=110.)(5) 356(3)	c=22.1748(9) gamma=90
Temperature:	93 K				-
	Calculated			Reported	
Volume	7012.2(5)			7012.2(5)	
Space group	C 2/c			C 1 2/c 1	
Hall group	-C 2yc			-C 2yc	
Moiety formula	C38 H36 N4 O2	[+ s	olvent]	?	
Sum formula	C38 H36 N4 O2	[+ s	olvent]	C76 H72 N8	04
Mr	580.71			1161.41	
Dx,g cm-3	1.100			1.100	
Z	8			4	
Mu (mm-1)	0.069			0.069	
F000	2464.0			2464.0	
F000′	2464.93				
h,k,lmax	30,15,26			30,15,26	
Nref	6203			6160	
Tmin, Tmax	0.971,0.979			0.920,0.98	0
Tmin'	0.971				
Correction metho AbsCorr = MULTI-	d= # Reported 3 SCAN	r Lin	nits: Tmir	n=0.920 Tma	x=0.980
Data completenes	s= 0.993		Theta(ma	ax) = 25.050	
R(reflections)=	0.0445(3914)				wR2(reflections)= 0.1509(6160)
S = 0.933	Npar	= 39	7		

DFT studies

As shown in Figure S13, there are four possible isomers of a chair conformation of **2** based on the direction of the two aromatic rings. Owing to DFT calculations, *Open* and *Close* isomers were satisfactorily found to explain the result of NMR experiments.

Figure S13. Relative Gibbs free energy (kcal mol⁻¹) of four possible isomers based on C-C bond rotation around two naphthyl groups. The calculations were performed at the PCM (CHCl₃)-B3LYP-D3(BJ)/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

One rotamer would be predominantly formed than the other if the isomers display large energy gap. The calculated ratios of rotamers based on the energy gaps are shown in Figure S14.

Figure S14. Relative Gibbs free energy (kcal mol⁻¹) of the rotamers. The calculations were performed at the PCM (CHCl₃)-B3LYP-D3(BJ)/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Figure S15. Computed energy profile for the isomerization. The calculations were performed at the PCM (CHCl₃)-B3LYP-D3(BJ)/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Figure S16. Computed energy profile for the isomerization. The calculations were performed at the SMD (CHCl₃)- ω B97X-D/6-311+G(d,p)// ω B97X-D/6-31G(d) level of theory.

Computational details

Quantum mechanical calculations were performed using Gaussian 16 (Revision C.01)⁵ and Reaction plus Pro 2 (ver. 1.0)⁶ software packages. The molecular geometries for the transition states were first estimated by Reaction plus based on the nudged elastic band (NEB) method⁷ and were subsequently reoptimized using Gaussian. All geometries were optimized at the B3LYP/6-31G(d) level of theory with an ultrafine integration grid in the gas phase. For hexahydro-1,2,4,5-terrazine **2e**, the quasi-intrinsic reaction coordinate (qIRC) approach was used to search for reactants and products. In the qIRC calculations, the geometry of transition states was first shifted by perturbing the geometries very slightly along the reaction coordinate, and then released for equilibrium optimization. Single point energies were calculated using B3LYP-D3(BJ),⁸ the 6-311+G(d,p) basis set, and an ultrafine integration grid with the PCM model (CHCl₃).⁹ The refined energies were converted to zero-point energy-corrected free energies at 298.15 K and 1 atm with use of the B3LYP/6-31G(d) harmonic frequencies. In the case of hexahydro-1,2,4,5-terrazine **2f**, transition states, reactants, and products were directly calculated using the same level of theory on the basis of the results obtained by DFT calculations on hexahydro-1,2,4,5terrazine **2e**. 2e-Open

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1450.85461095 a.u.

Thermal correction to Gibbs Free Energy = 0.413834 a.u.

Sum of electronic and thermal Free Energies = - 1450.440777 a.u.

The lowest frequency = 18.4691 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1451.38971433 a.u.

N	-2.6636687585	0.4426901419	0.0619323977
N	-2.1187923791	1.1627824295	-1.0721423888
С	-0.6649636502	1.3537364282	-0.8697732847
Н	-0.5076906738	1.9151866718	0.0682171183
N	-0.0801605495	-0.0124829405	-0.7515114067
N	-0.6382414114	-0.6435899589	0.4076543082
С	-2.0763477016	-0.8471945928	0.3945987061
Н	-2.3715521148	-1.0417116364	1.4284894208
С	1.3743916424	-0.0291851427	-0.4433429904
Н	1.8699193779	0.7938502402	-0.9586640019
С	0.1397060129	-0.5467990221	1.5432060008
С	1.4858998707	0.0183534247	1.0893600431
Н	1.5941365005	1.0341776321	1.488229849
0	-0.197180838	-0.9000529484	2.6609730724
С	-3.9482530765	0.8185613002	0.3716448543
С	-2.8758007863	2.440942396	-1.0264491833
Η	-2.4093009834	3.1443978159	-0.3180315223
С	-4.2551756469	2.0277597608	-0.5101478019
Н	-4.7717310186	2.8093629061	0.0503905396
0	-4.6719810789	0.256386841	1.1739069394
Н	-0.7485472829	0.5017420925	-3.3474542814
С	-0.2341180778	1.4556404098	-3.3046306599
С	-0.0853649694	2.0700703462	-2.073576497
С	0.92780151 3	.2478352718 -4	.4269058566
С	0.5988708185	3.3277936579	-1.9783696737
С	0.2708073835	2.041302101 -	4.4854459149
С	1.1096188935	3.9165938407	-3.1883327471
С	0.8109721664	4.0372539526	-0.7603545209
Н	0.1372648389	1.5326554202	-5.4359953635
Н	2.1691078336	5.5900772727	-4.0523977412

Η	1.3208257867	3.7088958539	-5.3299150542
С	1.4777940392	5.2421814773	-0.7375738496
Н	0.4425655591	3.6304413082	0.1749207713
Η	1.6227338692	5.7577708153	0.2078795098
С	1.9749529484	5.8151797586	-1.9310722989
Η	2.4986280021	6.7663925963	-1.89867634
С	1.7916904517	5.1619023543	-3.1267979947
Η	-3.2009553976	-0.7822352775	-2.0868601857
С	-3.0677119834	-1.7982269724	-1.7334936097
С	-2.4943318771	-2.0155318472	-0.4984429775
С	-3.2909734528	-4.1709382238	-2.1362832009
С	-2.2935418668	-3.3570746057	-0.0297866041
С	-3.4679911841	-2.8760476412	-2.5575095925
С	-2.7049050961	-4.4454360157	-0.872030381
С	-1.7108846592	-3.6703783355	1.2317297297
Η	-3.9170531937	-2.668737483	-3.525096846
Н	-2.8414789595	-6.5930862456	-1.0737582589
Η	-3.5979897009	-5.0056017192	-2.7622694992
С	-1.5501310269	-4.979122788	1.6330025148
Η	-1.3770618075	-2.8792334764	1.8949408396
Η	-1.1044248669	-5.1905164915	2.6012660882
С	-1.9574420214	-6.0473757173	0.8012613074
Η	-1.8244258272	-7.0737478054	1.1326449508
С	-2.5223137737	-5.781028768	-0.4243264751
Η	-4.9163765679	1.6944405074	-1.3196540683
Н	-2.8780189263	2.8926503201	-2.0193658799
Н	1.7749372736	-0.972271429	-0.827825793
Н	2.3061254079	-0.5823372606	1.4893417843

TS1_{2e}

Optimization: B3LYP-D3/6-31G(d)

E(RB3LYP) = -1450.83106360 a.u.

Thermal correction to Gibbs Free Energy = 0.415199 a.u.

Sum of electronic and thermal Free Energies = - 1450.415864 a.u.

The lowest frequency = -3.4524 cm⁻¹

Number of imaginary frequencies = 1

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1451.36618929 a.u.

Ν	-2.5637874788	0.6482139763	-0.1233357607
N	-1.5688742357	1.6957827431	-0.0631529425
С	-0.2015534537	1.3716457127	-0.4607606763
Η	0.427678066	1.9951466453	0.1897843619
N	0.1262950316	-0.0768251648	-0.2403671679
Ν	-0.7680666749	-0.624060436	0.7197820684
С	-2.1444930609	-0.7296680483	0.3022104689
---	---------------	---------------	---------------
Н	-2.7197988734	-0.9993427662	1.1933999946
С	1.4512152916	-0.2994355412	0.3866843928
Н	2.1577582669	0.4487517004	0.020957444
С	-0.2827539457	-0.6506899148	2.0078977963
С	1.196272224	-0.2598561761	1.9046922487
Н	1.3298523064	0.7359235737	2.3449496922
0	-0.9180147103	-0.9707454891	2.9991662391
С	-3.7072027535	1.1325677483	0.5306882637
С	-1.8649505781	2.4777643738	1.1453102077
Н	-1.5555417444	1.9856042321	2.0848284919
С	-3.3932920789	2.5402259759	1.04052075
Н	-3.9171996362	2.7170159339	1.981451506
0	-4.7032481831	0.4690024552	0.7285581287
Н	-0.0878679964	-0.2710624446	-2.5990540374
С	0.0850671448	0.7563968339	-2.8946763384
С	0.0844058253	1.7358424662	-1.9218836731
С	0.544196078	2.3622836638	-4.6418389338
С	0.3347999637	3.100914289	-2.294312323
С	0.3086485806	1.0659521714	-4.2570161875
С	0.568594068	3.4064434749	-3.6789768879
С	0.3766082771	4.1816856168	-1.3689854067
Н	0.2941557606	0.2669233404	-4.9932335432
Н	0.996200577	4.9577478476	-5.1205113303
Н	0.7190645252	2.6104170521	-5.6860936285
С	0.6319726622	5.473153405	-1.7767549873
Н	0.2081886762	3.9972255402	-0.3144051628
Н	0.6594685406	6.2742083845	-1.0428117783
С	0.8552043932	5.7653518969	-3.1411419405
Н	1.0517148066	6.7874920222	-3.4525281053
С	0.8236569127	4.7486946272	-4.0672769729
Н	-2.8614577256	-0.3496663656	-2.2804369274

С	-2.724306832	-1.4021672373	-2.0605374926
С	-2.3614444895	-1.7754708273	-0.7848718025
С	-2.7676318697	-3.700962996	-2.8059528793
С	-2.2136107671	-3.1656840761	-0.4605603853
С	-2.9258747207	-2.3644515014	-3.0782748184
С	-2.4154663146	-4.1358102879	-1.4999095181
С	-1.8912129131	-3.6396671396	0.843322605
Η	-3.2089903469	-2.0349556598	-4.0742187375
Η	-2.4244107435	-6.2382792155	-2.0012528209
Η	-2.9199171744	-4.4478036708	-3.5817306277
С	-1.7667377528	-4.9887190004	1.0977349872
Η	-1.7477757165	-2.9416941619	1.6612182814
Η	-1.5267651652	-5.3240324934	2.1031953993
С	-1.950955089	-5.9394130903	0.0677933597
Η	-1.8465020409	-6.9993739355	0.283313166
С	-2.2706655449	-5.5169539821	-1.2018429935
Η	-3.7041244114	3.2917427566	0.3054493505
Η	-1.3850717423	3.4575361276	1.0813309895
Н	1.8070236511	-1.2887369183	0.0815114713
Н	1.8138101348	-0.9577610464	2.474611123

2e-Twist-boat

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1450.83106407 a.u.

Thermal correction to Gibbs Free Energy = 0.411611 a.u.

Sum of electronic and thermal Free Energies = -1450.419453 a.u.

The lowest frequency = 4.1901 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1451.36631605 a.u.

N	-0.100559727	1.5438489851	-0.0660613048
N	0.9071734896	2.577962799	0.0036028384
С	2.2614819926	2.2439549317	-0.4247953621
Н	2.9092164287	2.8650370193	0.2097178829
N	2.5861938346	0.7930338937	-0.2086298881

Ν	1.6897233989	0.2437334763	0.7488435867
С	0.3098766748	0.155768886	0.3376156775
Н	-0.2617857015	-0.1211366047	1.2289316494
С	3.9104472256	0.5610233565	0.4159178719
Н	4.6196934101	1.3089354192	0.0548277512
С	2.1768228406	0.2064064441	2.0361382221
С	3.6573782732	0.5908913931	1.9343020312
Н	3.7954421798	1.5831024952	2.3812820741
0	1.5407755787	-0.116215474	3.0261454599
С	-1.2305695144	2.0305888142	0.6106907559
С	0.6372670919	3.3369198265	1.2329266586
Н	0.9497764739	2.8202327243	2.157868827
С	-0.8912638096	3.4226304385	1.1471273922
Н	-1.4021879516	3.5858885828	2.0976035185
0	-2.2335490678	1.3770682886	0.8056588226
Н	2.3718667724	0.5928806554	-2.5594804353
С	2.5234769839	1.6217716439	-2.8613361709
С	2.5172454688	2.6050459335	-1.8926359384
С	2.9326210391	3.2279071483	-4.6208088576
С	2.7390025922	3.9726755201	-2.2739802543
С	2.7247287012	1.9294222333	-4.2277423338
С	2.950436201	4.2764575827	-3.6624620906
С	2.7731069895	5.0575128155	-1.3533625748
Η	2.7150191634	1.1270123491	-4.9603505117
Η	3.3332131232	5.8290744035	-5.1151840986
Η	3.0902473914	3.4745980936	-5.6681520704
С	3.0011882795	6.351549177	-1.7691424832
Н	2.620126211	4.8739934249	-0.2963865757
Н	3.0236429474	7.1559626724	-1.0386954396
С	3.2025850534	6.6420769543	-3.1372670638
Н	3.3774900477	7.6662102563	-3.4549459242
С	3.1772741005	5.6213095584	-4.0591064846

Η	-0.4276368652	0.5759242435	-2.23308432
С	-0.2959816497	-0.4803212008	-2.0285834028
С	0.0764955985	-0.8733117282	-0.7616578547
С	-0.361445491	-2.7684751286	-2.8046233356
С	0.2176451047	-2.2688093804	-0.4574620198
С	-0.5135177891	-1.4273966456	-3.0572562653
С	-0.000097678	-3.2233692016	-1.5079280902
С	0.5479970705	-2.7626362618	0.8370231975
Н	-0.8036936712	-1.0824921661	-4.0459170163
Н	-0.027460858	-5.3187155812	-2.0376230136
Н	-0.5258051266	-3.5036875381	-3.5890011163
С	0.6655638826	-4.1158124752	1.0720870486
Н	0.7026616322	-2.0767667073	1.6630486011
Н	0.9117688713	-4.4663700285	2.0708215201
С	0.4661927399	-5.0511613138	0.030984755
Н	0.5654845852	-6.1146171484	0.2311774173
С	0.1381713525	-4.6093552392	-1.2299225173
Н	-1.1997605846	4.1941103272	0.432047648
Н	1.1304558753	4.3110592874	1.1852108256
Н	4.2625550647	-0.4274530893	0.1036846466
Н	4.2724552091	-0.1135108218	2.4988621344

TS2_{2e}

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1450.81864102 a.u.

Thermal correction to Gibbs Free Energy = 0.415051 a.u.

Sum of electronic and thermal Free Energies = - 1450.403590 a.u.

The lowest frequency = -36.5112 cm⁻¹

Number of imaginary frequencies = 1

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1451.35691425 a.u.

N	-0.0901711556	2.051823463	-0.2465296356
N	1.1679376936	2.7647209571	-0.1492228064
С	2.3487188679	2.2009123566	-0.7642281864
Η	3.1718540654	2.5581499554	-0.1298112373
N	2.3357444526	0.6712088122	-0.737314716

Ν	1.3146606937	0.2188078772	0.1515879637
С	-0.040730801	0.5566223117	-0.2010526669
Н	-0.6677200614	0.2440071347	0.6394538796
С	3.5440051821	0.0331693316	-0.1432963679
Н	4.4345781302	0.6167291785	-0.371187605
С	1.741871977	-0.12553128 1	.4153065262
С	3.2674752357	-0.1011903431	1.3624560906
Н	3.6278794286	0.7524288556	1.9504377922
0	1.0150714676	-0.4233570083	2.3493447108
С	-0.9797306708	2.6528273159	0.654542163
С	1.2141447794	3.369576752	1.1880449507
Н	1.4894857882	2.659198575	1.9875998225
С	-0.245814776	3.8096043542	1.3371063287
Н	-0.5948231847	3.9090333616	2.3661958827
0	-2.0960922481	2.2367815814	0.8825953548
Н	4.6076988316	1.7452123124	-1.9633556498
С	3.9571779546	2.2992559599	-2.6311397024
С	2.6934963157	2.671531163	-2.2014589986
С	3.6868929661	3.3208472286	-4.789279611
С	1.8790300708	3.4615730119	-3.0910811292
С	4.4603157268	2.6053505119	-3.9115293989
С	2.3997525469	3.7695072151	-4.4022949226
С	0.5916400156	3.9918234988	-2.7766912195
Н	5.4566151457	2.2730097396	-4.1894526242
Н	2.0427991467	4.7450400702	-6.2945608497
Н	4.0507462156	3.5665809558	-5.7839294399
С	-0.1298646905	4.7378880661	-3.6824949822
Н	0.1769431659	3.8070640481	-1.800344047
Н	-1.1067794211	5.1201161416	-3.3979846668
С	0.3818806583	5.0142401899	-4.9699466263
Н	-0.1993422776	5.601481311	-5.6755958932
С	1.6232930875	4.5378978422	-5.3127800061

Η	-0.6001173416	1.6603518971	-2.6262373965
С	-0.7420904982	0.5868913803	-2.6283198466
С	-0.5110678374	-0.1284338009	-1.4753566636
С	-1.3706347582	-1.409785756	-3.8362312251
С	-0.7330875053	-1.5468048258	-1.4555785055
С	-1.1699811729	-0.0520027239	-3.8159900987
С	-1.1651091324	-2.188076027	-2.6652517929
С	-0.5623075623	-2.3547997324	-0.2951640662
Η	-1.3350908465	0.5440235102	-4.7091502789
Н	-1.7144607943	-4.06034679	-3.5944335703
Н	-1.6976524779	-1.9098751424	-4.7449623507
С	-0.7974300292	-3.7125606972	-0.3334388452
Н	-0.2508688761	-1.9083274397	0.6431129768
Н	-0.6660946746	-4.3045990684	0.5683888416
С	-1.209503582	-4.3416434204	-1.5303635114
Н	-1.3880733138	-5.4134594624	-1.5460478049
С	-1.3899373206	-3.590402858	-2.6687489331
Н	-0.4335603878	4.7492676438	0.8037566774
Н	1.9271614239	4.1987108606	1.1865620555
Η	3.652283931	-0.953903832 -	0.6042552096
Н	3.6822228736	-1.0082233043	1.8082130708

2e-Close

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1450.85588575 a.u.

Thermal correction to Gibbs Free Energy = 0.414572 a.u.

Sum of electronic and thermal Free Energies = - 1450.441314 a.u.

The lowest frequency = 18.3841 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1451.39141009 a.u.

Ν	0.4500873923	0.9066514539	-0.6924133648

С	1.910246805	0.6092495094	-0.7374091755
Н	2.3411708045	0.6791564242	0.2824663349
N	1.99999999163	-0.7947809043	-1.2290394554
N	1.377096125	-1.6551831378	-0.2668960312
С	-0.039420417	-1.4143524644	-0.0041431947
Н	-0.2519687772	-1.8886936656	0.9589816472
С	3.3786091995	-1.3443299849	-1.2985658826
Н	4.0728981127	-0.5582620415	-1.5953594111
С	2.2574479311	-2.2616904103	0.6068212312
С	3.6605573439	-1.9581149393	0.0813687644
Н	4.1538457917	-1.2665431377	0.7750553834
0	1.9408726811	-2.9428964407	1.56773079
С	-0.4061624855	0.5541416062	1.4904893478
С	0.097155657	2.2393333522	-0.1368365642
Н	0.8612341639	2.9653301214	-0.4142356279
С	-0.0772382508	2.0420709255	1.3761015432
Н	0.8355260098	2.241485818	1.9504207515
0	-0.8118001048	-0.0599425156	2.4584254447
Н	3.8617081495	2.2354284672	-0.0068181159
С	3.6422204099	2.3524764313	-1.0657179133
С	2.6485483921	1.5780545592	-1.6394637797
С	4.1140361021	3.4598652364	-3.1537098579
С	2.3547818056	1.7258795047	-3.0389400519
С	4.3801620807	3.2954871166	-1.8158516988
С	3.1075103964	2.6896079886	-3.794812086
С	1.3602008171	0.9670082193	-3.7190448722
Н	5.1517597198	3.8843718103	-1.3282738724
Н	3.4112639132	3.5905392193	-5.7371362471
Н	4.6723534629	4.182916573	-3.7436109307
С	1.1249875408	1.1558967866	-5.0631820232
Н	0.7967819197	0.2292458089	-3.1643047376
Н	0.3627981475	0.5626120114	-5.5610823222

С	1.8636540808	2.1086538886	-5.8032155747
Н	1.6642221823	2.2448673505	-6.8627229584
С	2.8340250099	2.8569687194	-5.1792574585
Н	-1.514925612	-0.0590913471	-1.8402461115
С	-1.6377835287	-1.1305963837	-1.9424166008
С	-0.9508141234	-1.9733700635	-1.0935520007
С	-2.6540633047	-2.9915312443	-3.1022611182
С	-1.1146272609	-3.3943452058	-1.2140359722
С	-2.4908297235	-1.6365644124	-2.951222501
С	-1.9802460958	-3.8997935697	-2.243076631
С	-0.47633408	-4.3344485015	-0.3553128761
Н	-3.0140973325	-0.9425831335	-3.6034778373
Н	-2.8158142064	-5.6679501412	-3.163551204
Н	-3.3066335415	-3.3899073663	-3.8757395693
С	-0.6770697032	-5.6889245006	-0.5133225369
Н	0.1774789926	-3.9955317093	0.4412417205
Н	-0.1808391588	-6.3843623571	0.158258631
С	-1.5206462994	-6.1827076865	-1.5347798994
Н	-1.6669937902	-7.2536726916	-1.6470128272
С	-2.1580320685	-5.3026144473	-2.3781121548
Н	-0.8781249819	2.6458814416	1.8089362959
Н	-0.8498923844	2.5422822515	-0.595132756
Н	3.378266142	-2.1195439615	-2.071098722
Н	4.2586658092	-2.8714769774	0.0436677143

2f-Open

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1839.14714592 a.u.

Thermal correction to Gibbs Free Energy = 0.607033 a.u.

Sum of electronic and thermal Free Energies = - 1838.540113 a.u.

The lowest frequency = 16.2113 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1839.836104 a.u.

N	0.4925107197	0.5673343143	0.0365715809	Н	3.9577031762	3.3524657039	-0.3959303022
N	0.8238622712	1.3901262837	-1.0923788178	Н	5.3846300958	5.3220199258	-0.4817728434
С	2.2994311547	1.3718580887	-1.3049956364	С	5.1545202929	5.6324613189	-2.6156186692
Н	2.8064319822	1.7591409058	-0.403504779	Н	5.7943654232	6.5101184094	-2.6367090027
N	2.6862872786	-0.0528935438	-1.5145628643	С	4.5686366684	5.1703558579	-3.770498406
N	2.3535656802	-0.7844215624	-0.3303998229	Н	-0.6675025404	-0.2155919232	-2.062244872
С	0.9456758389	-0.8103542246	0.0397776417	С	-0.6648918748	-1.2789751596	-1.8553822018
Н	0.9084484585	-1.1164594728	1.0886916021	С	0.1164814768	-1.7618413032	-0.8251363078
С	4.1646209843	-0.2379180984	-1.6665366283	С	-1.4481176119	-3.4961699623	-2.4138605478
Н	4.6165195056	0.738224344	-1.8511088763	С	0.1438818614	-3.1717013011	-0.5529764454
С	3.4099987041	-1.1947135925	0.4389614967	С	-1.448768768	-2.1441372845	-2.6535965501
С	4.6753649374	-0.920427323	-0.3605390424	С	-0.6606450111	-4.042353979	-1.3661728214
Н	5.365471185	-0.3214034658	0.2421211496	С	0.9215064458	-3.7592395533	0.4865760726
0	3.3231474072	-1.7589928191	1.5217343245	Н	-2.0521571755	-1.7276928964	-3.4558182469
С	-0.0034700444	1.2246266336	1.1359407505	Н	-1.2763878283	-6.0816050371	-1.7303339648
С	0.2991796683	2.7494008021	-0.7383145764	Н	-2.0504942578	-4.1688767012	-3.02009431
Н	1.0970000735	3.478878962	-0.891882534	С	0.898095747	-5.1197868384	0.7073320503
~	0 1077526002	0 (001 5 4 (5 4 4	0.707070001		1 5507707724	2 1 42 (520 (21	1 111 6 4 5 1 0 0
С	-0.1977536082	2.6801546744	0.7373729021	Η	1.558//0//54	-3.1426539621	1.111645108
С Н	-0.1977536082 0.3473914065	2.6801546744 3.3181736559	0.7373729021 1.4403845287	H H	1.5014580067	-3.1426539621 -5.5405906808	1.111645108 1.5071562905
С Н О	-0.1977536082 0.3473914065 -0.2895119556	2.6801546744 3.3181736559 0.6978764051	0.7373729021 1.4403845287 2.1993085472	H H C	1.5387707734 1.5014580067 0.1018332936	-3.1426539621 -5.5405906808 -5.971347975	1.5071562905 -0.092070912
С Н О Н	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648	2.6801546744 3.3181736559 0.6978764051 0.8814714784	0.7373729021 1.4403845287 2.1993085472 -3.7330077877	H H C H	1.5014580067 0.1018332936 0.0932534656	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182	1.111645108 1.5071562905 -0.092070912 0.0966285189
С Н О Н С	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495	H H C H C	1.5014580067 0.1018332936 0.0932534656 -0.6590600477	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029
С Н О Н С С	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463	H H C H C C	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088
С Н О Н С С С	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625	H H C H C C H	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208
C H O H C C C C C	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234	H H C H C H C H	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759
H O H C C C C C C	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134	н н с н с н с н	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021
H O H C C C C C C C C	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572 3.728913741	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647 4.0239518757	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134 -3.7626654433	н н С н С н С н С	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066 4.4052808301	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876 -2.6076674946	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021 -2.0506650032
H O H C C C C C C C C C	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572 3.728913741 4.1125350176	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647 4.0239518757 3.8438719478	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134 -3.7626654433 -1.3501388931	н Н С Н С С Н С Н С Н	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066 4.4052808301 3.3789071999	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876 -2.6076674946 -2.8410165653	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021 -2.0506650032 -1.754094922
H O H C C C C C C C H	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572 3.728913741 4.1125350176 1.8637313728	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647 4.0239518757 3.8438719478 2.0865446235	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134 -3.7626654433 -1.3501388931 -5.8705465647	н Н С Н С С Н С Н С Н Ц Н	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066 4.4052808301 3.3789071999 4.794914076	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876 -2.6076674946 -2.8410165653 -3.4434263311	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021 -2.0506650032 -1.754094922 -2.6427746772
C H O H C C C C C C C C C H H	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572 3.728913741 4.1125350176 1.8637313728 4.7397531121	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647 4.0239518757 3.8438719478 2.0865446235 5.6783725695	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134 -3.7626654433 -1.3501388931 -5.8705465647 -4.7166485162	н н С н С н С н С н с н н С	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066 4.4052808301 3.3789071999 4.794914076 6.6323528842	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876 -2.6076674946 -2.8410165653 -3.4434263311 -1.8368778436	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021 -2.0506650032 -1.754094922 -2.6427746772 -1.6199674412
C H O H C C C C C C C C C H H H	-0.1977536082 0.3473914065 -0.2895119556 1.4361972648 2.0720718026 2.6319282599 3.1297425874 3.4851245728 2.3185069572 3.728913741 4.1125350176 1.8637313728 4.7397531121 3.326177303	2.6801546744 3.3181736559 0.6978764051 0.8814714784 1.7599698127 2.1788303452 3.5536846045 3.3325296476 2.4436078647 4.0239518757 3.8438719478 2.0865446235 5.6783725695 4.089026147	0.7373729021 1.4403845287 2.1993085472 -3.7330077877 -3.7405298495 -2.5463393463 -4.9600955625 -2.5239273234 -4.9508100134 -3.7626654433 -1.3501388931 -5.8705465647 -4.7166485162 5.8859883224	н н С н С н С н С н с н н С н н С н н С н С н С н С н С н С н С н С н С С н С Н С С Н Н С С С Н Н С С С Н Н Н С С Н Н Н С С Н Н Н С С Н Н Н С С Н Н Н С С Н Н С С Н Н Н С С Н Н Н Н Н Н С Н С Н Н Н Н Н Н Н Н Н Н Н Н Н	1.5014580067 0.1018332936 0.0932534656 -0.6590600477 5.3346076102 5.4624539285 4.557195304 3.9938130066 4.4052808301 3.3789071999 4.794914076 6.6323528842 7.2660155589	-3.1426539621 -5.5405906808 -5.971347975 -7.0415627182 -5.4388728279 -2.2292725613 -2.9740647855 -1.2481460224 -1.1091756876 -2.6076674946 -2.8410165653 -3.4434263311 -1.8368778436 -1.1692317549	1.111645108 1.5071562905 -0.092070912 0.0966285189 -1.106680029 -0.8752317088 -0.0861691208 -2.7680615759 -3.6933095021 -2.0506650032 -1.754094922 -2.6427746772 -1.6199674412 -1.0256667891

С	6.0964348139	-1.1606019817	-2.9269836818
Н	6.445362275	-0.1281485515	-3.0437496792
Н	6.4172468147	-1.7117591163	-3.8172080512
С	-1.6945108661	3.0767058724	0.6337285454
Н	-2.2711450154	2.7743438625	1.511011406
С	-0.9747201603	3.1473221076	-1.5176471115
Н	-0.9086129084	2.9245353573	-2.5850202419
С	-2.0925259016	2.4415329275	-0.7172233052
Н	-3.0966446957	2.73536379	-1.0433316196
Н	-2.028234132	1.349551228	-0.7300828466
С	-1.2589806287	4.6346159744	-1.1862600895
Н	-0.3722738155	5.2657710295	-1.3148179572
Н	-2.0342804936	5.0292815593	-1.8513282366
С	-1.7578894132	4.5849456281	0.2973011665
Н	-1.1403964536	5.1867574301	0.9731671283
Н	-2.7856864906	4.9543169015	0.3825363789

TS1_{2f}

Optimization: B3LYP-D3/6-31G(d)

E(RB3LYP) = -1839.11399215 a.u.

Thermal correction to Gibbs Free Energy = 0.609145 a.u.

Sum of electronic and thermal Free Energies = - 1838.504847 a.u.

The lowest frequency = -11.9264 cm⁻¹

Number of imaginary frequencies = 1

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1839.804311 a.u.

N	1.0492771437	1.1093686123	-0.3617422063

- N 2.1000748318 2.083598539 -0.2274257063
- C 3.2925396596 1.7755605672 -0.9996052161

Η	4.0771012955	2.4027341867	-0.5583804624	Η	3.6495949775	7.1104332325	-4.402741948
N	3.6933232109	0.3226191911	-0.8656487748	С	3.2445479937	5.0572707147	-4.8590489775
N	2.9052948235	-0.2812520177	0.1577486625	Н	0.2635648463	0.2133477409	-2.3880825169
С	1.4720944803	-0.3155429413	-0.0338700914	С	0.3787382937	-0.8534031284	-2.2433898305
Н	1.0734288443	-0.6046505572	0.9452525056	С	0.9783813598	-1.305797033	-1.086973596
С	5.1059235451	0.1180423554	-0.442784328	С	0.0362834786	-3.1056545106	-3.0498916379
Н	5.6376273781	1.0648763624	-0.5746449662	С	1.0852725145	-2.7185324983	-0.8471769278
С	3.5755152024	-0.5752315427	1.3163104435	С	-0.0902964065	-1.7509450058	-3.2312143492
С	5.0604162081	-0.3777336351	1.0375678664	С	0.6144781383	-3.6228340278	-1.8598647875
Н	5.4837763742	0.30780857 1	.7789408214	С	1.6122284655	-3.2791027567	0.3518948939
0	3.0617105485	-1.0021841991	2.3439888565	Н	-0.5525465337	-1.3558116984	-4.1316595233
С	0.0307566543	1.5355150706	0.5386373342	Н	0.3595938406	-5.6916453732	-2.4288717692
С	2.1451588246	2.5862496558	1.1718199033	Н	-0.3179733699	-3.8038629671	-3.8048037731
Н	2.8296038654	2.0220390656	1.821488594	С	1.6866086776	-4.6453448053	0.5260656942
С	0.6533726672	2.4503797183	1.5898456824	Н	1.9497471325	-2.6358752843	1.1573115848
Н	0.5217484426	1.9184188592	2.5387915529	Н	2.0861218548	-5.0440282595	1.4547844796
0	-1.0962867063	1.0989813547	0.5345643254	С	1.2445247397	-5.5300070428	-0.4832828783
Н	2.8533400339	0.0884879403	-3.0514878157	Н	1.3130743512	-6.6040226222	-0.3326668773
С	2.9103778095	1.1084659159	-3.4066844389	С	0.7170391713	-5.0234981603	-1.6485677966
С	3.1565564057	2.1150967649	-2.4940192764	С	5.82730053 -1	.7273134855 0	.9848513364
С	2.8259685676	2.6580693342	-5.2587198818	Н	5.6280334461	-2.3586863158	1.8540726739
С	3.2878545179	3.4657697936	-2.9694349659	С	5.8484025616	-1.0247415966	-1.1729461499
С	2.7350856292	1.3736331051	-4.7847938627	Н	5.6782500977	-1.0219744427	-2.2519993754
С	3.1135076872	3.7291602929	-4.3723903079	С	5.3994809899	-2.279799082	-0.3936967828
С	3.6125477315	4.57090834 -2	2.1361972192	Н	4.3321003791	-2.4998671722	-0.4789044536
Н	2.5286275959	0.5487561294	-5.4613707889	Н	5.9614586302	-3.1763279982	-0.6787781925
Н	3.1026218247	5.2327829401	-5.9229815489	С	7.3206162206	-1.4058136489	0.7396632489
Н	2.6926885778	2.8745124318	-6.3161276268	Н	7.7019674369	-0.648584375	1.4337510044
С	3.7432880041	5.8472210139	-2.639213512	Н	7.9322829668	-2.3045391535	0.8737755516
Н	3.7664263605	4.4121298104	-1.0782247264	С	7.3368268774	-0.9260367149	-0.7512241169
Н	3.9961329284	6.6659768565	-1.9706082509	Н	7.7372316043	0.0880243964	-0.8654864279
С	3.5503766134	6.1000270698	-4.0157884575	Н	7.9511189163	-1.5862149707	-1.3722399987

С	0.1517763083	3.9133064417	1.7127968353
Н	-0.9302010333	4.0110662738	1.5959905327
С	2.3662842392	4.1133936406	1.2732183813
Η	3.2914870816	4.4685995273	0.8149444659
С	1.042935276	4.6579546994	0.6938160389
Η	0.9551678733	5.7470090187	0.7761057811
Η	0.879494323	4.3615397209	-0.3449683851
С	2.2523025423	4.5013877135	2.7732411358
Η	2.816893143	3.8176114965	3.417767274
Η	2.655383997	5.5056470256	2.9392201725
С	0.713471383	4.4517901066	3.0481846628
Η	0.4525098311	3.8158616451	3.9008184968
Н	0.3179868721	5.4528987816	3.2524457105

2f-Twist-boat

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1839.11438147 a.u.

Thermal correction to Gibbs Free Energy = 0.607032 a.u.

Sum of electronic and thermal Free Energies = - 1838.507349 a.u.

The lowest frequency = 9.6481 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1839.807246 a.u.

N	-0.4007960441 0.4082254293 -0.0000397924	Н	1.
N	0.7245061415 1.3210573397 0.0065718536	Н	1.
С	1.8509535605 0.895516351 -0.808871285	С	1.
Н	2.6666269874 1.570021434 -0.5158469	Н	0.
N	2.2840766835 -0.5161327025 -0.5085489839	С	1.
N	1.3724477178 -1.1163332012 0.4155600081	Н	-1
С	-0.0462409854 -1.056010409 0.1306981689	С	-1
Н	-0.5213065452 -1.4446436723 1.0377397638	С	-0
С	3.634762078 -0.674260383 0.0979314087	С	-1
Н	4.1273771041 0.3036203284 0.1094668766	С	-0
С	1.9171190974 -1.4919158308 1.6138776601	С	-1
С	3.4202887214 -1.2794973741 1.5193513209	С	-0
Н	3.7430226018 -0.644219554 2.3509884749	С	0.
0	1.2928972112 -1.9786705106 2.5503575481	Н	-2
С	-1.2519752107 0.8218516204 1.0552022347	Н	-1
С	0.9499646168 1.8189834816 1.3922694457	Н	-1
Н	1.7188836411 1.2505556401 1.9344281863	С	0.
С	-0.4623044048 1.6955559413 2.0245706038	Н	0.
Н	-0.4626498665 1.1332361827 2.9649508517	Н	0.
0	-2.3743846005 0.3984124556 1.2163220434	С	-0
Н	1.8878614139 -1.0146378927 -2.7131443896	Н	-(
С	1.7141837477 -0.04403773 -3.1572465491	С	-0
С	1.6369340011 1.0578003394 -2.3286042379	С	4.
С	1.3573077053 1.2815440963 -5.1454826574	Н	3.
С	1.4447994022 2.3550579769 -2.9208597335	С	4.
С	1.566522888 0.0589679201 -4.5603192068	Н	4.
С	1.3010031671 2.4549179187 -4.3479730495	С	3.
С	1.41666987 3.5659074335 -2.1773932303	Н	2.
Н	1.6192064152 -0.8419747588 -5.1652441098	Н	4.
Н	1.0070243992 3.7794352123 -6.0286381258	С	5.
Н	1.2441564548 1.3741008603 -6.223192278	Н	5.
С	1.2515899985 4.7896814468 -2.7898073916	Н	6.

Η	1.5147606918	3.5258828502	-1.1037951878
Η	1.2373647489	5.6945327894	-2.1876925773
С	1.0947947806	4.8778552832	-4.1909716237
Н	0.9583710807	5.8464858647	-4.6640293125
С	1.1200019264	3.7296556591	-4.9480235337
Н	-1.2356587583	-0.198160725	-2.1334092572
С	-1.1150561971	-1.2742181412	-2.1422027384
С	-0.5153586655	-1.8846590789	-1.0620302545
С	-1.4201957139	-3.3865758627	-3.275123796
С	-0.399915062	-3.3162203481	-1.0269309732
С	-1.5674892746	-2.0219845237	-3.2544816364
С	-0.8457766581	-4.0669275257	-2.1679356997
С	0.1051015589	-4.0414134657	0.0906198301
Н	-2.0257085669	-1.5033301353	-4.0918369413
Η	-1.0633199175	-6.0326168076	-3.0385157818
Η	-1.7570904487	-3.969939602	-4.1290154685
С	0.1927121048	-5.4177176564	0.0650831563
Η	0.4024549831	-3.5202042026	0.9938543546
Η	0.5720555778	-5.9450868817	0.9363316611
С	-0.2139567754	-6.1487080603	-1.0739605016
Η	-0.1337334159	-7.2324039101	-1.0810765793
С	-0.7272404393	-5.4822211102	-2.1626042721
С	4.2158161374	-2.6118754462	1.4675376403
Η	3.9111914303	-3.3148696362	2.2465219185
С	4.5217782725	-1.7303527794	-0.6009707849
Η	4.5104905697	-1.6433094616	-1.6900357296
С	3.9990237255	-3.0521360842	0.0020989339
Η	2.9581955085	-3.2736308307	-0.2507784232
Η	4.6146441193	-3.9159306675	-0.2729675997
С	5.7203009526	-2.2536203821	1.4636369361
Н	5.9853688871	-1.5618481534	2.2708550235
Н	6.3281922881	-3.1549980417	1.5972249171

С	5.929614946	-1.6354218205	0.0401650602
Н	6.3019146576	-0.6048916792	0.0772002455
Н	6.6519967727	-2.2169300415	-0.541857788
С	-0.9110939918	3.1599180922	2.2598292306
Н	-1.9956622356	3.2739059148	2.3264817799
С	1.2041260106	3.3438515072	1.4611489803
Н	2.0450726872	3.6888023992	0.8533387289
С	-0.1929207827	3.9078568651	1.1160919499
Н	-0.2521091558	4.9970904184	1.2208097488
Н	-0.5363898798	3.6247923732	0.1178785383
С	1.34424481	3.7227643063 2	.9605459691
Н	2.0103150542	3.0365898687	3.4965481401
Н	1.7684756036	4.726840222	3.0622893493
С	-0.1265514207	3.6685370125	3.4907800864
Н	-0.2420250949	3.0144252812	4.3614975307
Н	-0.4765452896	4.6652444445	3.7811154921

TS2_{2f}

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1839.10654542 a.u.

Thermal correction to Gibbs Free Energy = 0.609305 a.u.

Sum of electronic and thermal Free Energies = - 1838.497241 a.u.

The lowest frequency = -14.6255 cm⁻¹

Number of imaginary frequencies = 1

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1839.799173 a.u.

N	-1.5931372429	3.0162075335	-0.6435459175	Н	-1.7141185004	4.6119623019	-2.2799655455
N	-0.4244715267	3.8697739779	-0.5950221534	Н	-3.234595028	5.7629601685	-3.7896485941
С	0.7578145438	3.4542934514	-1.3116656255	С	-1.804163658	5.9270993853	-5.4109550024
Н	1.5702958195	3.9474342281	-0.7621297778	Н	-2.4927530614	6.4370980268	-6.0790750596
N	0.9856111797	1.9450539796	-1.2335739057	С	-0.5232507751	5.6400443849	-5.8142184129
N	0.0696038091	1.3891869196	-0.2911137465	Н	-2.0775325787	2.5002931867	-3.0102509553
С	-1.3358330869	1.5326065983	-0.577942087	С	-2.1201317365	1.4202699758	-2.9785734502
Н	-1.8580414782	1.1456762415	0.3015861733	С	-1.7907273586	0.7648142861	-1.8137783822
С	2.3339378473	1.5452027641	-0.7173733584	С	-2.6163062724	-0.6554721551	-4.110675999
Н	2.9696009396	2.4335742921	-0.6803978861	С	-1.8939209711	-0.66718293	-1.7486719621
С	0.6091582619	0.8766437549	0.8570426759	С	-2.5291008979	0.7138796803	-4.1337606535
С	2.1195997269	0.9043048938	0.6891082854	С	-2.3109702045	-1.3774462656	-2.9258623015
Н	2.5703120356	1.4499319958	1.5247258962	С	-1.6213834062	-1.4272508533	-0.5744897607
0	-0.0303024359	0.407156438	1.7912203377	Н	-2.7724785579	1.268506478	-5.0356587187
С	-2.4713720084	3.4643274126	0.3672245591	Н	-2.7385491312	-3.3123567367	-3.7868338776
С	-0.2847090112	4.4713510367	0.7492090141	Н	-2.9292743851	-1.2083765019	-4.9933983918
Н	0.4456117509	3.9378948448	1.3771770021	С	-1.7465270744	-2.8008248922	-0.5708747488
С	-1.7307501948	4.4153687601	1.3036743362	Н	-1.3149375739	-0.9344058306	0.3420963463
Н	-1.7972536454	3.9390736855	2.2876319277	Н	-1.5379014852	-3.353471433	0.3413236526
0	-3.5880853414	3.0200897618	0.5252438062	С	-2.1458410264	-3.4951317168	-1.7350145242
Н	2.959287312	3.2308022523	-2.6498872703	Н	-2.2384748193	-4.5777422888	-1.7169596283
С	2.2124751683	3.7010179808	-3.2808201739	С	-2.4226644106	-2.792605266	-2.8850671386
С	0.9373262708	3.9173352244	-2.7814957044	С	2.7214685878	-0.5183046411	0.5305604026
С	1.7068912566	4.6999503989	-5.4082705768	Н	2.37484146 -	1.2098080868	1.3022136809
С	-0.0190914849	4.5832942098	-3.6268845826	С	3.008817134	0.4099503211	-1.5207382533
С	2.6050322163	4.0730026217	-4.5822424989	Н	2.9305539143	0.5473351064	-2.6013482421
С	0.392994409	4.9735873317	-4.9543150778	С	2.3495507223	-0.8557474612	-0.9306330912
С	-1.3596458994	4.9008119025	-3.2551745134	Н	1.274656358	-0.9237380825	-1.1179140006
Н	3.6186815511	3.868101753	-4.915467343	Н	2.8218840791	-1.7798719875	-1.2822085217
Н	-0.1814934397	5.919178355	-6.8082849283	C	4.2575140097	-0.3658436658	0.4321985299
Н	1.9881988599	5.0026219481	-6.4139756362	Н	4.6669164233	0.2507272544	1.2401484815
С	-2.2203474344	5.5470735392	-4.1151570792	Н	4.7440919482	-1.3452284259	0.4944085927

С	4.456465485	0.2764292425	-0.9824062594
Н	4.9781775721	1.2400051779	-0.9388016984
Η	5.044448108	-0.3776592922	-1.6345792926
С	-2.1607355638	5.9034275965	1.3886457013
Η	-3.2443858014	6.0433416145	1.3957457948
С	-0.0039255742	5.9915976152	0.6848248388
Η	0.8599891077	6.2577700769	0.0685773225
С	-1.3711789946	6.5447931282	0.2275182836
Η	-1.4118428301	7.639719912	0.2464335785
Η	-1.6658308307	6.2004202347	-0.7657229699
С	0.0733706194	6.5065723567	2.1461936469
Η	0.7095182023	5.8722382386	2.7744427923
Η	0.4964397522	7.5157705261	2.1754643116
С	-1.4225361525	6.5025623309	2.610194536
Н	-1.5835900315	5.9205984768	3.5238926728
Н	-1.7759231203	7.5210395415	2.8047988993

2f-Close

Optimization: B3LYP/6-31G(d)

E(RB3LYP) = -1839.14802752 a.u.

Thermal correction to Gibbs Free Energy = 0.607985 a.u.

Sum of electronic and thermal Free Energies = - 1838.540042 a.u.

The lowest frequency = 16.3529 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: PCM(CHCl₃)- B3LYP-D3(BJ)/6-311+G(d,p)

E(RB3LYP) = -1839.838386 a.u.

 $N \quad -2.1058839642 \quad -0.3021117733 \quad 0.3991467525$

Н	-1.9278598285	0.2361009938	-5.4138645424
С	-0.4003514914	1.7375280669	-5.7529823236
Н	-0.6703180498	1.8894111115	-6.7945772216
С	0.6367273525	2.4477215161	-5.1951759522
Н	-3.3964198853	-0.2889083166	-1.7384876455
С	-3.6513238272	-1.3404538252	-1.7872933604
С	-3.0441365264	-2.2227521558	-0.9167655946
С	-4.9175550444	-3.1105645168	-2.8376139215
С	-3.3725026229	-3.6196085774	-0.9779649263
С	-4.5882564773	-1.7805256601	-2.7514883185
С	-4.3269545367	-4.0575438679	-1.9596400762
С	-2.8123616456	-4.5993245908	-0.1082670036
Н	-5.0448051672	-1.0552046427	-3.4196502509
Н	-5.397311165	-5.7458846387	-2.7806432477
Н	-5.6379253811	-3.4588457706	-3.5742211485
С	-3.1734394693	-5.9260858851	-0.2083341408
Н	-2.0846100278	-4.3145648405	0.6441739017
Н	-2.7312821645	-6.651419745	0.4693157817
С	-4.1099514789	-6.3524460988	-1.1774316204
Н	-4.3842726741	-7.401980895	-1.2424248373
С	-4.6724693948	-5.4333487771	-2.032307503
С	1.8603062751	-4.1112258599	-0.9568853165
Н	1.7325049631	-4.9921251484	-0.3233185458
С	1.5007799904	-2.631035309	-2.6396166017
Н	1.0577680421	-2.1781511916	-3.5291642114
С	0.9456013555	-4.0031963086	-2.197922949
Н	-0.1234631469	-3.9980922059	-1.9683627325
Н	1.1393950217	-4.7927489802	-2.9327478166
С	3.2629758695	-3.9609438624	-1.5919326764
Н	4.0087954629	-3.6076151089	-0.8711738272
Н	3.6152162615	-4.9247049375	-1.9755118052
С	3.0144385676	-2.9433848204	-2.7564053559

N	-1.4813387971	0.5960246383	-0.5315909121
С	-0.052225934	0.2041405903	-0.7045948488
Η	0.4598195436	0.2405919527	0.2790742588
N	-0.0510347287	-1.200741596	-1.2055443115
N	-0.660280862	-2.0262055441	-0.2071124194
С	-2.044596174	-1.725349675	0.1308957928
Η	-2.2351733941	-2.2039566155	1.0958336031
С	1.3243209239	-1.7662465577	-1.3702520706
Η	2.0355123075	-0.9391360866	-1.3596623078
С	0.1914193798	-2.841605649	0.4923838733
С	1.5390646626	-2.7870544057	-0.2114290779
Η	2.3178865231	-2.5211387801	0.510384177
0	-0.1229453975	-3.5472648684	1.4417830218
С	-2.4884991627	0.2448992106	1.6001794255
С	-1.6570760864	1.9527237337	0.0798401437
Η	-0.6879850583	2.4541083177	0.0852489862
С	-2.2536081305	1.7448281475	1.5042274544
Η	-1.6047566053	2.0573168106	2.3288360834
0	-2.9847118894	-0.3758188719	2.5266318005
Η	2.0131374748	1.7465465587	-0.1162436877
С	1.7215669309	1.8805345075	-1.1553541622
С	0.6600352934	1.1475717478	-1.657705811
С	2.0806060733	2.9890286642	-3.2651577448
С	0.2743740066	1.3162823288	-3.0317416647
С	2.4374394158	2.8024633486	-1.9518045884
С	1.0033755576	2.2597211378	-3.8350758991
С	-0.7894677613	0.5948686877	-3.6451270951
Η	3.2636910117	3.3584283031	-1.518047542
Η	1.1972128171	3.1662252174	-5.7886455408
Н	2.6198385178	3.6971131902	-3.8899397369
С	-1.114195968	0.8019569662	-4.9681363826
Н	-1.331032241	-0.1342480825	-3.0587581067

Η	-4.2786779922	1.2779127281	-0.2138951972
С	-2.6184934806	4.2423681117	-0.0106807472
Н	-1.5887797997	4.6176475543	-0.0064950282
Н	-3.2170580946	4.9513569253	-0.5922083585
С	-3.2026317038	4.0579544928	1.4307449421
Н	-2.4870835446	4.3251890208	2.2162172548
Н	-4.0933141735	4.6779769609	1.5799754215

Н	3.6338919894	-2.0430676679	-2.6723187593
Н	3.233552066	-3.3952436622	-3.7295102359
С	-3.5750447887	2.5570360191	1.4647144314
Н	-4.2685131199	2.270693298	2.2588692955
С	-2.7244455031	2.8226232137	-0.6235265242
Н	-2.6514128779	2.7903668068	-1.7129481255
С	-4.0418877691	2.3217862525	0.0111359377
Н	-4.9043078494	2.9404366407	-0.26170598

References

- (a) C. Li, C.-S. Wang, T.-Z. Li, G.-J. Mei, F. Shi, Org. Lett. 2019, 21, 598-602; (b) R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 6330-6331; (c) R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778-10779.
- 2) H. Dorn, T. Kreher, Tetrahedron Lett. 1988, 29, 2939-2942.
- A. Bongers, C. Clavette, W. Gan, S. I. Gorelsky, L. Betit, K. Lavergne, T. Markiewicz, P. J. Moon, N. Das Neves, N. K. Obhi, A. B. Toderian, A. M. Beauchemin, J. Org. Chem. 2017, 82, 1175-1194.
- W. Gan, P. J. Moon, C. Clavette, N. Das Neves, T. Markiewicz, A. B. Toderian, A. M. Beauchemin, Org. Lett. 2013, 15, 1890-1893.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- Software to optimize reaction paths along the user's expected ones, HPC Systems Inc., http://www.hpc.co.jp/chem/react1.html (written in Japanese).
- 7) (a) H. Jónsson, G. Mills, K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. In *Classical and Quantum Dynamics in Condensed Phase Simulations*, Eds. B. J. Berne, G. Ciccotti, D. F. Coker, World Scientific, 1998; (b) G. Henkelman, H. Jónsson, *J. Chem. Phys.* 2000, *113*, 9978-9985.

- 8) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- 9) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of $\mathbf{2b}$

 1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of 2c

1H NMR (300 MHz, C6D6) and $^{13}C\{^1H\}$ NMR (75 MHz, C6D6) of 2d

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of 2e

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of **2f**-Open

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of **2f**-Close

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) of S2a

1H NMR (300 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl_3) of ${\bf S2b}$

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of **S2c**-Open

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of **S2c**-Close

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of 1c

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of 1d

^1H NMR (300 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl_3) of 1e

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of 1f

1H NMR (300 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of ${\bf S1a}$

1H NMR (300 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl_3) of ${\bf S1b}$

1H NMR (300 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (75 MHz, CDCl_3) of ${\bf S1c}$

