Supporting Information

Axial optimization of biomimetic nanoenzymes catalysts applied to oxygen reduction reactions

Jingjing Liu,^{#,a} Jingjing Jia,^{#,b} Huiying Wen,^{#,a} Siqi Li,^a Yingjie Wu,^a Qi Wang,^a Ziwang Kan,^a Yan Li,^a Xia Wu,^a Jingxiang Zhao^{*,b} Song Liu,^{*,a} Bin Li,^{*,a}

a College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China

b College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

To whom correspondence should be addressed. Email: zhaojingxiang@hrbnu.edu.cn (J. Zhao), carlosliusong@nefu.edu.cn (S. Liu) and libinzh62@163.com (B. Li).

Jingjing Liu, Jingjing Jia and Huiying Wen contribute equally to this work.

Computational Details:

The spin-polarized density functional theory (DFT) calculations within the Vienna Ab initio Simulation Package (VASP)^{1,2} were carried out to obtain the stable configurations, energies, and the correspondingelectronic properties. We employed the projector-augmented plane wave (PAW)^{3,4} method to treat the ion-electron interaction. The generalized gradient approximation (GGA) in the of form Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional⁵ was adopted to obtain the electronic properties, including band structures and density of states. A kinetic energy cutoff of 500 eV was adopted, and the convergence criteria for the total energy and the atomic force were set to be 10^{-5} eV and 10^{-4} eV/Å, respectively. During the geometry relaxation, a $5 \times 5 \times 1$ Γ -centered Monkhorst–Pack kpoint grid was utilized to sample the Brillouin zone. To better determine the van der Waals (vdW) interactions, we employed the DFT + D3 correction.⁶ The 2D FeN₄-SAzyme monolayer was placed in the xy plane with the z direction perpendicular to the layer plane, and a vacuum distance of ~15Å was employed to avoid the interaction between adjacent layers. To study the properties of the FeN₄-SAzyme layer, a 5 \times 5 supercell was employed.

To estimate the ORR catalytic performance of our FeN₄-SAzyme monolayer, we computed the Gibbs free energy (Δ G) of each reaction step in ORR for acquiring the corresponding free energy profile using the computational electrode model (CHE).^{7,8} On the basis of this model, the Δ G of each elementary step can be determined by: Δ G = Δ E + Δ ZPE - T Δ S, where Δ E can be directly determined from DFT computations. Δ ZPE refers to the change in zero-point energy, while Δ S denotes the energy difference of entropy, and T is the room temperature (298.15 K). Notably, the ZPE and S of oxygenated intermediates in ORR were obtained by computing their vibrational frequencies, while those of free H₂ and H₂O molecules were obtained from the NIST database. The potential of (H⁺⁺ e⁻) in solution at standard conditions was assumed as the potential of 1/2 H₂. To simulate a strong acid environment in this work, pH = 0 was chosen, thus the contribution of free energy (Δ GpH) from H concentration will be neglected (Δ GpH = -kBTln10 × pH). The Gibbs free energy of O₂ (G₀₂) was determined according to the following equation: G₀₂= G_{H20} - 2G_{H2} + 4.92 eV. After obtaining the Δ G values of each elementary step in ORR, the limiting potential (U_L) an be obtained: U_L = -max (Δ G₁, Δ G₂, Δ G₃, Δ G₄)/e, which has been widely-accepted as the descriptor for thermodynamically evaluating the catalytic performance of ORR on a given electrocatalyst.

Synthesis of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme.

16 g of melamine, 4 g of α -cellulose, 0.289 g of Fe(NO₃)₃ and 1 g of thiourea were added to the ball mill jar for 1.5 h. Subsequently, hydrofluoric acid (HF), hydrochloric acid (HCl), hydrobromic acid (HBr) and hydroiodic acid (HI) diluted with 3 mol/L ethanol were added to the ball mill jar, respectively. Then, 60 °C oven drying was performed and the dried powder was continued to be ball milled for 1.5 h. Subsequently, the powder was subjected to pyrolysis at temperature of 550 °C for 1 h with a heating rate of 2 °C/min and 1000 °C for 2 h with a heating rate of 2 °C/min. The obtained product was add to 2 mol/L HNO₃ and 1 mol/L HCl in a water bath with 90 °C for 10 h. To make the Fe metal particles without coordination were removed. Then, the solution was extracted and dried. Finally, the sample were fixed by reheating in a tube furnace at 900 °C to obtain the final catalyst.

Experimental Material

Melamine (C₃H₆N₆, Aladdin, 99% purity), α-Cellulose (50 μm, Aladdin), Iron nitrate nonahydrate (FeN₃O₉·9H₂O, Aladdin), Thiourea (CH₄N₂S, Aladdin), Hydrofluoric acid (Tianjin), Hydrochloric acid, Hydrobromic acid (Macklin), Hydroiodic acid (Macklin), Nitric acid, 20 wt.% commercial Pt/C (Hesen), Argon gas, Isopropyl Alcohol (C₃H₈O, 99.9% purity), Nafion117 solution (Aladdin).

Electrochemical Measurement

The catalyst ink was prepared by dissolve 5 mg of the black powder in 1 ml of solution with the ratio of isopropyl alcohol: water: nafion = $480 \ \mu$ L: $480 \ \mu$ L: $40 \ \mu$ L followed by perform sonication for 1 h. The obtained black homogeneous solution was dropped on the surface of the rotating disc electrode (RDE) and then dried naturally. Afterwards, the electrochemical properties were tested.

The catalyst performance was tested using a three-electrode system including a working electrode (rotating disk electrode), a counter electrode (carbon electrode) and a reference electrode (saturated calomel electrode) in oxygen-saturated 0.1 M KOH as the electrolyte. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were measurements using a CHI 760E (Chenhua, Shanghai) electrochemical workstation to obtain the catalyst performance parameters.

Characterizations

The scanning electron microscope (SEM) was recorded using a EM-30plus with electron acceleration energy of 20 kV. TEM images were performed on a JEM-2100 transmission electron microscope with electron acceleration energy of 200 kV. AFM was tested by Multimode8. Raman spectra were carried out by DXR2. Structural and morphological information was obtained by X-ray diffraction (XRD-6100) with Cu Ka, $\lambda = 1.5406$ Å. XPS Photoelectric emission spectroscopy measurement was recorded by THERMO. Elemental analysis of Fe in the catalyst was detected by an avio200 inductively coupled plasma optical emission spectrometry (ICP-OES).

Koutecky-Levich equation:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_k} = \frac{1}{\frac{1}{B\omega^2}} + \frac{1}{J_k}$$
$$B = 0.62nFC_0 D_0^{2/3} V^{-1/6}$$

where *J* is the measured current density, J_{κ} and J_L are the kinetic and limiting current densities, ω is the angular velocity of the disk, n is the electron transfer number, F is the Faraday constant (96485 C·mol⁻¹), C_0 is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol·cm⁻³), D_0 is the diffusion coefficient of O₂ (1.9 × 10⁻⁵ cm²·s⁻¹), and *V* is the kinematic viscosity of the electrolyte (0.01 cm²·s⁻¹).

Tafel slopes were obtained according to the Tafel equation:

$$\eta = a + b \log j$$

where η was the overpotential, *j* was the measured current density, and *b* was the Tafel slope.

Electrochemically active surface areas (ECSA):

The ECSA of a material with similar composition is proportional to its electrochemical double-layer capacitance (C_{dl}) , which was measured by CV in a non-Faradaic region at different scan rates (V_b) of 20, 40, 60, 80, and 100 mV s⁻¹. Then the double-layer capacitance (C_{dl}) was estimated by plotting the $\Delta j = (ja-jc)$ at 1.14 V vs. RHE as a function of the scan rate. It can be calculated using the equation:

$$C_{dl} = \frac{dl(\Delta j)}{2dlv_{h}}$$

The ECSA can be calculated from the C_{dl} according to:

$$ECSA = \frac{C_{dll}}{C_S}$$

Where Cs is the specific capacitance of a flat surface with 1 cm² of real surface area.

Fig. S1 The SEM image of (a) FeN₄-SAzyme, (b)FeN₄F-SAzyme, (c) FeN₄Br-SAzyme and (d) FeN₄I-SAzyme, respectively. The TEM image of (e) FeN₄-SAzyme (f) FeN₄F-SAzyme, (g) FeN₄Br-SAzyme and (h) FeN₄I-SAzyme, respectively.

Fig. S2 FTIR spectrum of FeN₄F-SAzyme (green line), FeN₄Cl-SAzyme (blue line), FeN₄Br-SAzyme (red line) and FeN₄I-SAzyme (black line), respectively.

Fig. S3 XRD patterns of (a) FeN₄F-SAzyme (b) FeN₄Cl-SAzyme (c) FeN₄Br-SAzyme

and (d) FeN₄I-SAzyme.

Fig. S4 Raman spectra of the (a) FeN₄F-SAzyme, (b) FeN₄Cl-SAzyme, (c) FeN₄Br-SAzyme and (d) FeN₄I-SAzyme.

FeN ₄ F-SAzyme	FeN ₄ Cl-SAzyme
$I_D/I_G = 0.9896$	$I_D/I_G = 0.9561$
FeN ₄ Br-SAzyme	FeN ₄ I-SAzyme
$I_D/I_G = 1.0000$	$I_D/I_G = 1.1366$

Table 1. The I_D/I_G of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme, respectively.

Fig. S5 N_2 adsorption-desorption isotherms and the corresponding pore size distribution of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme.

	BET(m² g⁻¹)	Pore diameter
FeN ₄ F-SAzyme	480.47	2.5524
FeN ₄ Cl-SAzyme	333.87	2.8084
FeN ₄ Br-SAzyme	526.34	2.7654
FeN ₄ I-SAzyme	564.73	3.0940

Table 2. The BET and Pore diameter of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme, respectively.

Fig. S6 The survey spectrum of FeN₄Cl-SAzyme.

Fig. S7 The C 1s district of FeN₄Cl-SAzyme.

Fig. S8 The Cl 2p district of FeN₄Cl-SAzyme.

Fig. S9 XPS spectroscopy analysis of catalyst (a) survey spectrum (b) the C 1s (c) the O 1s (d) the N 1s (e) the Fe 2p and (f) the Cl 2p district of FeN_4F -SAzyme.

Fig. S10 XPS spectroscopy analysis of catalyst (a) survey spectrum (b) the C 1s (c) the O 1s (d) the N 1s (e) the Fe 2p and (f) the Cl 2p district of FeN₄Br-SAzyme.

Fig. S11 XPS spectroscopy analysis of catalyst (a) survey spectrum (b) the C 1s (c) the O 1s (d) the N 1s (e) the Fe 2p and (f) the Cl 2p district of FeN_4I -SAzyme.

Fig. S12 XPS spectroscopy analysis of catalyst (a) survey spectrum (b) the C 1s (c) the O 1s (d) the N 1s and (e) the Fe 2p district of FeN_4 -SAzyme.

Fig. S13 Fe K-edge EXAFS for Fe foil, FePc and FeN₄Cl-SAzyme, shown in k^2 -weighted k-space.

Fig. S14 EXAFS fitting curves of FeN4Cl-SAzyme in (a) k space and (b) R space.

Fig. S15 EXAFS fitting curves of FeN4Cl-SAzyme in (a) k space and (b) R space.

	Scattering	CN	R (Å)	σ^2	ΔE_0	R factor
Sample	Pair				(eV)	
	Fe-N	4.4	1.93	0.00105		
FeN ₄ Cl-SAzyme	Fe-Cl	1.2	2.37	0.00182	7.467	0.01203
	Fe-Fe ₁	8	2.48	0.00278		
Fe foil	Fe-Fe ₂	6	2.86	0.00370	8.371	0.00695

Table 3. Structural parameters of FeN₄Cl-SAzyme extracted from the EXAFS fitting. CN is the coordination number, R is interatomic distance; σ^2 is DebyeWaller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edgeenergy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.

Fig. S16 WT contour plots of (a) FeN₄Cl-SAzyme in comparison with (b) Fe foil and (c) FePc samples.

Fig. S17 Cyclic voltammograms with the FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme in O₂-saturated 0.1 M KOH.

Fig. S18 The (a) linear sweep voltammetry (LSV) curves of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme, Pt/C and FeN₄-SAzyme (b) The tafel slope of FeN₄F-SAzyme, FeN₄Cl-SAzyme, FeN₄Br-SAzyme, FeN₄I-SAzyme, Pt/C and FeN₄-SAzyme.

Fig. S19 LSV scans with different rotational speeds of (a) Pt/C, (b) FeN₄F-SAzyme, (c) FeN₄Br-SAzyme and (d) FeN₄I-SAzyme.

Fig. S20 CV curves of (a) FeN₄F-SAzyme, (b) FeN₄Cl-SAzyme, (c) FeN₄Br-SAzyme and (d) FeN₄I-SAzyme at 100 mV s⁻¹, 80 mV s⁻¹, 60 mV s⁻¹, 40 mV s⁻¹ and 20 mV s⁻¹, respectively.

Fig. S21 Electrical double-layer capacitor of FeN₄F-SAzyme, FeN₄Cl-SAzyme,

FeN₄Br-SAzyme and FeN₄I-SAzyme, respectively.

Fig. S22 The ORR polarization curves before and after 5000 for (a) FeN_4Cl -SAzyme and (b) Pt/C in 0.1 M KOH.

Fig. S23 The (a) SEM and (b) XRD of FeN4Cl-SAzyme after long-term testing.

Fig. S24 O-spectrum test before and after the reaction of FeN_4F -SAzyme.

Fig. S25 O-spectrum test before and after the reaction of FeN_4Br -SAzyme.

Fig. S26 O-spectrum test before and after the reaction of FeN₄I-SAzyme.

	Area (Fe-O)	Area (C-O-H)	Area (C-O-C)	Area (C=O)
FeN ₄ F-SAzyme	1970.196	13100.16	10928.63	13214.03
	2422 726	(070.022	5((7))(5	5704 020
Fein ₄ CI-SAZyme	2432.720	6979.023	500/.305	5/84.839
EaN Dr. CA Trans	190 5074	750 0007	(21.0669	(02 2220
ren ₄ Br-SAZyme	189.3074	/38.888/	031.0008	002.2238
FeN ₄ I-SAzyme	2993.394	13767.13	14284.14	14693.8

Table 4. The area (Fe-O, C-O-H, C-O-C, C=O) of FeN₄F-SAzyme, FeN₄Cl-SAzyme,

FeN₄Br-SAzyme and FeN₄I-SAzyme, respectively.

Fig. S27 Calculated gibbs free energy diagrams of $4e^{-}$ ORR pathway on FeN₄F-SAzyme.

Fig. S28 Calculated gibbs free energy diagrams of 4e⁻ ORR pathway on FeN₄Br-SAzyme.

Fig. S29 Calculated gibbs free energy diagrams of $4e^-$ ORR pathway on FeN₄I-SAzyme.

Fig. S30 The charge density difference of FeN_4 -SAzyme (a) and FeN_4Cl -SAzyme (b) with O* adsorption from a 3-dimensional view.

Fig. S31 Fe-spectrum test before and after the reaction of FeN₄F-SAzyme.

Fig. S32 Fe-spectrum test before and after the reaction of FeN₄Cl-SAzyme.

Fig. S33 Fe-spectrum test before and after the reaction of FeN₄Br-SAzyme.

Fig. S34 Fe-spectrum test before and after the reaction of FeN_4I -SAzyme.

	Area (Fe ²⁺ 2p _{3/2})	Area (Fe ³⁺ $2p_{3/2}$)	Area (Fe ²⁺ $2p_{1/2}$)
FeN ₄ F-SAzyme	1878.251	2179.639	4056.667
(before)			
FeN ₄ F-SAzyme	1365.49	5265.104	4100.177
(after)			
FeN ₄ Cl-SAzyme	7180.536	8294.58	12203.52

(before)			
FeN ₄ Cl-SAzyme	1851.969	6585.678	2500.341
(after)			
FeN ₄ Br-SAzyme	3743.709	3437.806	5670.871
(before)			
FeN ₄ Br-SAzyme	2329.944	10102.06	6212.925
(after)			
FeN ₄ I-SAzyme	4099.982	5077.203	7430.271
(before)			
FeN ₄ I-SAzyme	2349.763	3524.603	1231.35
(after)			

Table 5. The area (Fe²⁺ $2p_{3/2}$, Fe³⁺ $2p_{3/2}$, Fe²⁺ $2p_{1/2}$) of FeN₄F-SAzyme, FeN₄Cl-

SAzyme, FeN₄Br-SAzyme and FeN₄I-SAzyme at the before and after reaction, respectively.

References

- 1. G. Kresse and J. Hafner, *Phys. Rev., B Condens. Matter*, 1993, **47**, 558-561.
- 2. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 3. P. E. Blochl, Phys. Rev., B Condens. Matter, 1994, 50, 17953-17979.
- 4. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett*, 1996, 77, 3865.
- 6. S. Grimme, J. Comput. Chem, 2006, 27, 1787-1799.
- 7. J. Zhang, Z. Zhou, F. Wang, Y. Li and Y. Jing, ACS Sustain. Chem. Eng., 2020, 8, 7472-7479.
- 8. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin,T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.