Electronic Supporting Information

Transient Hydroboration and hydroalumination of activated azo-species: Avenues to NBO and NAIOheterobicycles

Dipendu Mandal,^{a,b,c} Zahid Hussain^{a,c}, Yong-an Luo^a, Yile Wu^{a*}, and Douglas W. Stephan^{a,b}

^aInstitute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China ^bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

*Corresponding Author

^cThese authors contributed equally

Table of Contents

Experimental	4
General information for synthesis	4
Synthetic procedures and characterization data	5
Synthesis 1	5
Synthesis 2	5
Synthesis 3	6
Synthesis 4	7
Synthesis 5	7
Synthesis 6	8
Synthesis 7	8
Synthesis 8	9
Synthesis 9	9
Synthesis 10	10
NMR spectra of all the compounds	11
NMR spectra of all the compounds Compound 1	11 11
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂)	11 11 11
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Figure S2. ¹⁹ F NMR (471 MHz) spectrum of the compound 1 in CD ₂ Cl ₂	11 11 11 12
 NMR spectra of all the compounds	11
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Figure S2. ¹⁹ F NMR (471 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S3. ¹¹ B NMR (161 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S4. ¹³ C NMR (126 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂)	11 11 12 13 13
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Figure S2. ¹⁹ F NMR (471 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S3. ¹¹ B NMR (161 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S4. ¹³ C NMR (126 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Compound 2	11 11 12 13 13 13
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Figure S2. ¹⁹ F NMR (471 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S3. ¹¹ B NMR (161 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S4. ¹³ C NMR (126 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Compound 2 Figure S5. 1H NMR (400 MHz) spectrum of the compound 2 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	11 11 12 13 13 13 14 = CDCl ₃ ; #= 14
 NMR spectra of all the compounds	11 11 12 12 13 13 14 = CDCl ₃ ; #= 14 14
NMR spectra of all the compounds Compound 1 Figure S1. ¹ H NMR (500 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Figure S2. ¹⁹ F NMR (471 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ Figure S3. ¹¹ B NMR (161 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ . Figure S4. ¹³ C NMR (126 MHz) spectrum of the compound 1 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂) Compound 2. Figure S5. 1H NMR (400 MHz) spectrum of the compound 2 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂). Figure S6. ¹⁹ F NMR (377 MHz) spectrum of the compound 2 in CDCl ₃ /CH ₂ Cl ₂ (1:5) Figure S7. ¹¹ B NMR (128 MHz) spectrum of the compound 2 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	11 11 12 13 13 14 = CDCl ₃ ; #= 14 14 14

Compound 3	16
Figure S9. ¹ H NMR (400 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	CDCl ₃ ; #= 16
Figure S10. ¹⁹ F NMR (377 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	17
Figure S11. ¹¹ B NMR (128 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	18
Figure S12. ¹³ C NMR (101 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	CDCl ₃ ; #= 18
Compound 4	19
Figure S13. ¹ H NMR (400 MHz) spectrum of the compound 4 in CDCI ₃ (*= CDCI ₃)	19
Figure S14. ¹⁹ F NMR (377 MHz) spectrum of the compound 4 in CDCl ₃	19
Figure S15. ¹¹ B NMR (128 MHz) spectrum of the compound 4 in CDCl ₃	20
Figure S16. ¹³ C NMR (126 MHz) spectrum of the compound 4 in CDC_{13} (*= $CDCI_3$)	20
Compound 5	21
Figure S17. ¹ H NMR (400 MHz) spectrum of the compound 5 in CDCI ₃ (*= CDCI ₃)	21
Figure S18. ¹⁹ F NMR (377 MHz) spectrum of the compound 5 in CDCl ₃	21
Figure S19. ¹¹ B NMR (128 MHz) spectrum of the compound 5 in $CDCl_3$	22
Figure S20. ¹³ C NMR (126 MHz) spectrum of the compound 5 in CDC_{I3} (*= $CDCI_3$)	22
Compound 6	23
Figure S21. ¹ H NMR (500 MHz) spectrum of the compound 6 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	CDCl ₃ ; #= 23
Figure S22. ¹¹ B NMR (161 MHz) spectrum of the compound 6 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	23
Figure S23. ¹³ C NMR (101 MHz) spectrum of the compound 6 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	CDCl ₃ ; #= 24
Compound 7	25
Figure S24. ¹ H NMR (400 MHz) spectrum of the compound 7 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CH ₂ Cl ₂).	CDCl ₃ ; #= 25
Figure S25. ¹¹ B NMR (128 MHz) spectrum of the compound 7 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	25
Figure S26. 13 C NMR (101 MHz) spectrum of the compound 7 in CDCl ₃ (*= CDCl ₃ ; #= CH	₂ Cl ₂)26
Compound 8	27
Figure S27. ¹ H NMR (400 MHz) spectrum of the compound 8 in CH ₂ Cl ₂ (*= CH ₂ Cl ₂)	27
Figure S28. ¹¹ B NMR (128 MHz) spectrum of the compound 8 in CH ₂ Cl ₂ .	28
Figure S29. ¹³ C NMR (101 MHz) spectrum of the compound 8 in CH_2Cl_2 (*= CH_2Cl_2)	29
Compound 9	
Figure S30. ¹ H NMR (500 MHz) spectrum of the compound 9 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂)	
Figure S31. ¹¹ B NMR (128 MHz) spectrum of the compound 9 in CD ₂ Cl ₂ (*= CD ₂ Cl ₂)	
Figure S32. ¹³ C NMR (126 MHz) spectrum of the compound 9 in CD_2Cl_2 (*= CD_2Cl_2)	31
Compound 10	
Figure S33. ¹ H NMR (500 MHz) spectrum of the compound 10 in C_6D_6 (*= C_6D_6)	
Figure S34. ¹³ C NMR (126 MHz) spectrum of the compound 10 in C_6D_6 (*= C_6H_6)	
HRMS spectra of all the compounds	34
Compound 1	34
Figure S35. HRMS (DART) spectrum of the compound 1.	34
Compound 2	

Figure S36. HRMS (DART) spectrum of the compound 2	35
Compound 3	36
Figure S37. MS (DART) spectrum of the compound 3.	36
Compound 4	37
Figure S38. HRMS (DART) spectrum of the compound 4.	37
Compound 5	38
Figure S39. HRMS (DART) spectrum of the compound 5	38
Compound 6	39
Figure S40. HRMS (DART) spectrum of the compound 6	39
Compound 7	40
Figure S41. HRMS (DART) spectrum of the compound 7	40
Compound 8	41
Figure S42. HRMS (DART) spectrum of the compound 8	41
Compound 9	42
Figure S43. HRMS (ESI) spectrum of the compound 9	42
References	43

Experimental

General information for synthesis

Experiments were carried under inert conditions using standard Schlenk techniques or a glove box as appropriate. Dichloromethane (DCM, CH_2CI_2) and *n*-hexanes (C₆H₁₄) were dispensed from an MBRAUN Solvent Purification System, deoxygenated by bubbling Ar for 20 min, and stored over 3 Å molecular sieves prior to use. Chloroform-d (CDCl₃) and benzene-d₆ (C₆D₆) solvents were used as received without any purification and those were stored over 4 Å molecular sieves prior to use. Vials and stir bar for reactions were oven-dried overnight before experiments. ¹H (500 or 400 MHz), ¹⁹F (471 or 377 MHz), and ¹³C{¹H} (126 or 101 MHz) NMR spectra were run at 298 K on Bruker 500 or 400 spectrometers. The chemical shifts (δ , ppm) for ¹H and ¹³C{¹H} NMR spectra are given relative to solvent signals whereas an external reference standards used for ¹⁹F (CFCI₃) and ¹¹B (BF₃.OEt₂) NMR spectra. These NMR data are written as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. The single-crystal X-ray data were collected either on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $[K \le 12.894 \text{ mm}^{-1})$ micro-focus X-ray sources at 150 K or on a Bruker Kappa Apex II diffractometer which was equipped with rotation anode using graphitemonochromated MoK α radiation (λ = 0.71073 Å). The structure was solved and refined using Full-matrix least-squares based on F² with a suite of programs SHELXS and SHELXL¹ compiled in OLEX2.² High-resolution mass spectra (HRMS) were obtained on an AccuTOF Plus 4G (DART) at AIMS Mass Spectrometry Laboratory whilst elemental (CHN) alaysis was carried out at ANALEST Facility, University of Toronto. The reagents HB(C₆F₅)₂³ and nacnacAlH₂⁴ were prepared by following literature method or a slight variations thereof. All other reagents were purchased commercially and used as received.

Synthetic procedures and characterization data

Synthesis 1

Into a 4 mL open top PTFE vial equipped with a stir bar, BH(C₆F₅)₂ (69.2 mg, 0.20 mmol, 2.0 equiv.) was taken in DCM (0.5 mL). A solution of diethyl azodicarboxylate (17.4 mg, 0.10 mmol, 1.0 equiv.) in DCM (0.5 mL) was transferred to the vial. At addition a strong bubble observed whilst reaction changes to colorless in few min. The reaction mixture was allowed to stir at RT for 18 h. After removal of all volatiles, the residue was washed with *n*-hexane (3 x 1 mL) and to that followed by drying afforded compound **1** (73 mg, 84%). *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. 1: C₃₀H₁₀B₂F₂₀N₂O₄ requires: C 41.7, H 1.17, N 3.24. Found: C 41.7, H 1.14, N 3.16%. ¹H NMR (500 MHz, CD₂Cl₂): δ_{H} 4.53 (q, *J* = 7.8 Hz, 4 H, -OC*H*₂), 1.35 (t, *J* = 7.2 Hz, 3 H, -OCH₂C*H*₃), ¹⁹F NMR (471 MHz, CD₂Cl₂): δ_{F} -136.6 (m, 8 F, *o*-C₆*F*₅ of -B(C₆*F*₅)₂), -155.0 (m, 4 F, *p*-C₆*F*₅ of -B(C₆*F*₅)₂); ¹³C NMR (126 MHz, CD₂Cl₂): δ_{C} 160.3 (s, N=*C*(OEt)O-), 149.6 (br s, -*C*₆F₅), 147.7 (br s, -*C*₆F₅), 142.8 (br s, -*C*₆F₅), 140.8 (br s, -*C*₆F₅), 138.9 (br s, -*C*₆F₅), 136.9 (br s, -*C*₆F₅), 71.7 (s, *C*H₂ of OEt), 14.5 (s, *C*H₃ of OEt); HRMS (DART) m/z: 865.0575 for [M*+1] (calcd.: 865.0580).

Synthesis 2

2 (70 mg, 79%) was prepared by following the protocol for **1**. *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. **2**: $C_{32}H_{14}B_2F_{20}N_2O_4$ requires: C 43.1, H 1.58, N 3.14. Found: C 43.0, H 1.57, N 3.09%. ¹H NMR (400 MHz, CDCl₃): δ_H 5.15 (m, 2 H, C*H* of OC*H*(CH₃)₂), 1.27 (d, *J* = 6.3 Hz, 12 H, C*H*₃ of - OCH(*CH*₃)₂), ¹⁹F NMR (377 MHz, CDCl₃): δ_F -136.3 (m, 8 F, *o*-C₆*F*₅ of -B(C₆*F*₅)₂), -154.3 (m, 4 F, *p*-C₆*F*₅ of -B(C₆*F*₅)₂), -162.9 (m, 8 F, *m*-C₆*F*₅ of -B(C₆*F*₅)₂); ¹¹B NMR (128 MHz, CDCl₃): δ_B 4.0 (br s, 2 B, -*B*(C₆*F*₅)₂); ¹³C NMR (101 MHz, CDCl₃): δ_C 159.3 (s, N=*C*(OCH(*C*H₃)₂)O-), 149.0 (br s, -*C*₆*F*₅), 146.7 (br s, -*C*₆*F*₅), 142.2 (br s, -*C*₆*F*₅), 139.8 (br s, -*C*₆*F*₅), 138.5 (br s, -*C*₆*F*₅), 135.9 (br s, -*C*₆*F*₅), 81.1 (s, O*C*H(CH₃)₂), 21.5 (s, OCH(*C*H₃)₂); HRMS (DART) m/z: 892.0811 for [M⁺] (calcd.: 892.0815).

Synthesis 3

3 (87 mg, 81%) was prepared by following the protocol for **1**. *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. **3**: $C_{30}H_4B_2Cl_6F_{20}N_2O_4$ requires: C 33.7, H 0.38, N 2.62. Found: C 33.5, H 0.32, N 2.51%. ¹H NMR (400 MHz, CDCl₃): δ_H 1.24 (s, 4 H, -OC*H*₂CCl₃), ¹⁹F NMR (377 MHz, CDCl₃): δ_F -135.8 (m, 8 F, *o*-C₆*F*₅ of -B(C₆*F*₅)₂), -153.0 (m, 4 F, *p*-C₆*F*₅ of -B(C₆*F*₅)₂), -162.4 (m, 8 F, *m*-C₆*F*₅ of -B(C₆*F*₅)₂); ¹¹B NMR (128 MHz, CDCl₃): δ_B 5.4 (br s, 2 B, -*B*(C₆*F*₅)₂); ¹³C NMR (101 MHz, CDCl₃): δ_C 158.9 (s, N=C(OCH₂CCl₃)O-), 149.2 (br s, -C₆F₅), 146.6 (br s, -C₆F₅), 142.8 (br s, -C₆F₅), 140.0 (br s, -C₆F₅), 138.3 (br s, -C₆F₅), 136.0 (br s, -C₆F₅), 91.5 (s, CH₂CCl₃), 79.9 (s, CH₂CCl₃); MS (DART) m/z: 1069.8 for [M⁺] (calcd.: 1069.8).

Synthesis 4

4 (77 mg, 78%) was prepared by following the protocol for **1**. *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. **4**: $C_{40}H_{14}B_2F_{20}N_2O_4$ requires: C 48.6, H 1.43, N 2.83. Found: C 46.8, H 1.40, N 2.61%. ¹H NMR (400 MHz, CDCl₃): δ_H 7.41 (tt, *J* = 7.6, 1.4 Hz, 2 H, Ar-*H*), 7.37 - 7.30 (m, 4 H, Ar-*H*), 7.20 - 7.13 (m, 4 H, Ar-*H*); 5.42 (s, 4 H, OC*H*₂); ¹⁹F NMR (377 MHz, CDCl₃): δ_F -136.1 (m, 8 F, *o*- C_6F_5 of -B(C_6F_5)₂), -153.7 (m, 4 F, *p*- C_6F_5 of -B(C_6F_5)₂), -162.5 (m, 8 F, *m*- C_6F_5 of -B(C_6F_5)₂); ¹¹B NMR (128 MHz, CDCl₃): δ_B 4.4 (br s, 2 B, -*B*(C_6F_5)₂); ¹³C NMR (101 MHz, CDCl₃): δ_C 160.0 (s, N=*C*(OCH₂Ph)O-), 149.1 (br s, -*C*₆F₅), 146.7 (br s, -*C*₆F₅), 142.5 (br s, -*C*₆F₅), 140.0 (br s, -*C*₆F₅), 138.4 (br s, -*C*₆F₅), 136.0 (br s, -*C*₆F₅), 131.6 (s, -*C*₆H₅), 130.1 (s, -*C*₆H₅), 129.0 (s, -*C*₆H₅), 128.7 (s, -*C*₆H₅), 75.9 (s, -OCH₂); HRMS (DART) m/z: 988.0809 for [M⁺] (calcd.: 988.0815).

Synthesis 5

5 (85 mg, 90%) was prepared by following the protocol for **1**. **5**: $C_{36}H_{20}B_2F_{20}N_2O_2$ requires: C 45.9, H 2.14, N 5.95. Found: C 45.7, H 2.03, N 5.79%. ¹H NMR (400 MHz, CDCl₃): δ_H 3.35 (t, J = 5.3 Hz, 8 H, N-C H_2), 1.64 - 1.45 (m, 4 H, C H_2), 1.36 - 1.16 (m, 8 H, C H_2); ¹⁹F NMR (377 MHz, CDCl₃): δ_F -136.1 (m, 8 F, o-C₆ F_5 of -B(C₆ F_5)₂), -154.8 (m, 4 F, p-C₆ F_5 of -B(C₆ F_5)₂), -162.7 (m, 8 F, m-C₆ F_5 of -B(C₆ F_5)₂); ¹¹B NMR (128 MHz, CDCl₃): δ_B 1.9 (br s, 2 B, -*B*(C₆ F_5)₂); ¹³C NMR (101 MHz, CDCl₃): δ_C 153.2 (s, N=*C*(O)-), 149.4 (br s, -C₆ F_5), 146.9 (br s, -C₆ F_5),

145.1 (br s, $-C_6F_5$), 142.3 (br s, $-C_6F_5$), 138.7 (br s, $-C_6F_5$), 136.2 (br s, $-C_6F_5$), 47.2 (s, $-NCH_2$), 25.1 (s, $-CH_2$), 23.3 (s, $-CH_2$); HRMS (DART) m/z: 943.1527 (M⁺+1) (calcd.: 942.1526).

Synthesis 6

6 (27 mg, 65%) was prepared by following the protocol for **1**. *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. **6**: $C_{22}H_{38}B_2N_2O_4$ requires: C 63.5, H 9.20, N 6.73. Found: C 63.4, H 9.35, N 6.63%. δ_H ¹H NMR (400 MHz, CDCl₃): δ_H 4.41 (q, *J* = 7.70 Hz, 4 H, -OC*H*₂CH₃), 2.04 - 0.58 (m, 28 H, 9-BBN C*H* & C*H*₂), 1.38 (t, *J* = 7.43 Hz, 6 H, -OCH₂CH₃); ¹¹B NMR (128 MHz, CDCl₃): δ_B 13.2 (br s, 2 B); ¹³C NMR (101 MHz, CDCl₃): δ_C 158.1 (s, N=C(OCH₂CH₃)O-), 66.7 (s, CH₂ of OEt), 32.2 (s, CH₂, 9-BBN), 30.6 (s, CH₂, 9-BBN), 26.4 (s, CH, 9-BBN), 24.4 (s, CH₂, 9-BBN), 24.1 (s, CH₂, 9-BBN), 14.0 (s, CH₃ of OEt); HRMS (DART) m/z: 417.3102 for [M⁺+1] (calcd.: 417.3091).

Synthesis 7

7 (27 mg, 61%) was prepared by following the protocol for **1**. *X*-ray quality crystals were grown with a mixture of solvent of DCM:*n*-hexane (1:5) and stored at -30 °C for three days. **7**: $C_{24}H_{42}B_2N_2O_4$ requires: C 64.9, H 9.53, N 6.31. Found: C 63.3, H 9.46, N 5.88%. δ_{H} ¹H NMR

(400 MHz, CDCl₃): δ_{H} 5.01 (m, 2 H, -OC*H*(CH₃)₂), 2.04 - 0.66 (m, 28 H, 9-BBN C*H* & C*H*₂), 1.36 (q, *J* = 7.01 Hz, 12 H, -OCH(C*H*₃)₂); ¹¹B NMR (128 MHz, CDCl₃): δ_{B} 12.7 (br s, 2 B, 9-BBN); ³C NMR (101 MHz, CDCl₃): δ_{C} 157.7 (s, N=*C*(O*i*Pr)O-), 75.7 (s, -OCH(CH₃)₂), 32.3 (s, *C*H₂, 9-BBN), 30.7 (s, *C*H₂, 9-BBN), 26.4 (s, *C*H, 9-BBN), 24.5 (s, *C*H₂, 9-BBN), 24.1 (s, *C*H₂, 9-BBN), 21.7 (s, OCH(*C*H₃)₂); HRMS (DART) m/z: 444.3410 for [M⁺+1] (calcd.: 444.3404).

Synthesis 8

8 (39 mg, 79%) was prepared by following the protocol for **1**. **8**: $C_{28}H_{48}B_2N_4O_2$ requires: C 68.0, H 9.79, N 11.33. Found: C 67.7, H 9.80, N 11.02%. δ_{H} ¹H NMR (400 MHz, CH₂Cl₂): δ_{H} 2.82 (s, 8 H, -NC*H*₂), 1.47 - 1.14 (m, 12 H, -C*H*₂), 1.13 - 0.95 (m, 20 H, -C*H*₂), 0.93 - 0.77 (m, 4 H, -C*H*), 0.30 (s, 4 H, -C*H*₂); ¹¹B NMR (128 MHz, CH₂Cl₂): δ_{B} 9.5 (br s, 2 B); ¹³C NMR (101 MHz, CH₂Cl₂): δ_{C} 161.3 (s, N=*C*(O)-), 49.9 (s, -NCH₂), 33.1 (s, -CH₂), 30.2 (s, -CH₂), 25.7 (-CH₂), 24.2 (-CH₂), 22.7 (-CH₂); HRMS (DART) m/z: 495.4030 for [M⁺+1] (calcd.: 494.4036).

Synthesis 9

9 (41 mg, 73%) was prepared by following the protocol for **1**. **8**: δ_H ¹H NMR (500 MHz, CD₂Cl₂): δ_H 7.44 - 7.37 (m, 8 H, Ph*H*), 7.33 - 7.23 (m, 12 H, Ph*H*), 1.41 (s, 18 H, -*t*Bu*H*); ¹¹B NMR (128 MHz, CD₂Cl₂): δ_B 9.7 (br s, 2 B); ¹³C NMR (126 MHz, CD₂Cl₂): δ_C 160.3 (s,

N=C(O)-), 132.6 (s, PhC), 127.8 (PhC), 127.5 (PhC), 90.3 (-OC(CH₃)₃), 28.6 (-OC(CH₃)₃), MS (ESI) m/z: 561.2680 for [M⁺+1] (calcd.: 561.2960 for C₃₄H₃₉B₂N₂O₄).

Synthesis 10

10 (87 mg, 89%) was prepared by following the protocol for **1** except the reaction was carried out in toluene. *X*-ray quality crystals were grown with a mixture of solvent of toluene:*n*-hexane (1:5) and stored at -30 °C for three days. **10**: δ_{H} ¹H NMR (500 MHz, C₆D₆): δ_{H} 12.5 (s, 2 H, Al-*H*), 7.28 - 7.13 (m, 12 H, Ar-*H*), 4.89 (s, 4 H, OC*H*₂), 3.91 (br m, 2 H, C*H*), 3.32 (m, 8 H, C*H*), 1.7 (s, 12 H, C*H*₃), 1.22 (d, *J* = 6.5 Hz, 24 H, C*H*₃), 1.16 (d, *J* = 6.9 Hz, 24 H, C*H*₃), 0.89 (t, *J* = 7.4 Hz, CH₃); ¹³C NMR (101 MHz, C₆D₆): δ_{C} 161.9 (s, N=C(O)-), 156.0 (N=C-CH₃), 143.1 (s, ArC), 141.6 (s, ArC), 126.2 (s, ArC), 124.0 (s, ArC), 94.6 (CH), 73.5 (s, -OCH₂), 61.7 (s, CH), 29.0 (s, CHMe₂), 24.8 (s, CH*Me*₂), 23.8 (s, CH*Me*₂), 21.1 (s, Me), 14.7 (s, -OCH₂CH₃).

NMR spectra of all the compounds

Figure S2. ¹⁹F NMR (471 MHz) spectrum of the compound **1** in CD₂Cl₂.

Figure S3. ¹¹B NMR (161 MHz) spectrum of the compound **1** in CD₂Cl₂.

Figure S4. ¹³C NMR (126 MHz) spectrum of the compound **1** in CD₂Cl₂ (*= CD₂Cl₂).

Figure S5. 1H NMR (400 MHz) spectrum of the compound **2** in $CDCI_3/CH_2CI_2$ (1:5) (*= $CDCI_3$; #= CH_2CI_2).

Figure S6. ¹⁹F NMR (377 MHz) spectrum of the compound **2** in CDCl₃/CH₂Cl₂ (1:5).

Figure S7. ¹¹B NMR (128 MHz) spectrum of the compound **2** in CDCl₃/CH₂Cl₂ (1:5).

Figure S8. ¹³C NMR (101 MHz) spectrum of the compound **2** in CDCl₃/CH₂Cl₂ (1:5) (*= CDCl₃; #= CH₂Cl₂).

Figure S9. ¹H NMR (400 MHz) spectrum of the compound **3** in $CDCI_3/CH_2CI_2$ (1:5) (*= $CDCI_3$; #= CH_2CI_2).

Chemical Shift (ppm)

Figure S10. ¹⁹F NMR (377 MHz) spectrum of the compound **3** in CDCl₃/CH₂Cl₂ (1:5)..

Figure S11. ¹¹B NMR (128 MHz) spectrum of the compound **3** in CDCl₃/CH₂Cl₂ (1:5).

Figure S12. ¹³C NMR (101 MHz) spectrum of the compound **3** in CDCl₃/CH₂Cl₂ (1:5) (*= CDCl₃; #= CH₂Cl₂).

Figure S13. ¹H NMR (400 MHz) spectrum of the compound **4** in CDCl₃ (*= CDCl₃).

Figure S14. ¹⁹F NMR (377 MHz) spectrum of the compound 4 in CDCl₃.

Figure S15. ¹¹B NMR (128 MHz) spectrum of the compound 4 in CDCl₃.

Figure S16. ¹³C NMR (126 MHz) spectrum of the compound **4** in CDC_{I3} (*= CDCI₃).

Figure S17. ¹H NMR (400 MHz) spectrum of the compound **5** in CDCl₃ (*= CDCl₃).

Figure S18. ¹⁹F NMR (377 MHz) spectrum of the compound 5 in CDCl₃.

Figure S19. ¹¹B NMR (128 MHz) spectrum of the compound **5** in CDCl₃.

Figure S20. ¹³C NMR (126 MHz) spectrum of the compound **5** in CDC_{I3} (*= $CDCI_3$).

Figure S21. ¹H NMR (500 MHz) spectrum of the compound **6** in CDCl₃/CH₂Cl₂ (1:5) (*= CDCl₃; #= CH₂Cl₂).

Figure S22. ¹¹B NMR (161 MHz) spectrum of the compound **6** in CDCl₃/CH₂Cl₂ (1:5).

Figure S23. ¹³C NMR (101 MHz) spectrum of the compound **6** in CDCl₃/CH₂Cl₂ (1:5) (*= CDCl₃; #= CH₂Cl₂).

Figure S24. ¹H NMR (400 MHz) spectrum of the compound **7** in CDCl₃/CH₂Cl₂ (1:5) (*= CDCl₃; #= CH₂Cl₂).

Figure S25. ¹¹B NMR (128 MHz) spectrum of the compound 7 in CDCl₃/CH₂Cl₂ (1:5) .

Figure S26. ¹³C NMR (101 MHz) spectrum of the compound **7** in CDCl₃ (*= CDCl₃; #= CH_2Cl_2).

Figure S27. ¹H NMR (400 MHz) spectrum of the compound **8** in CH_2CI_2 (*= CH_2CI_2).

Figure S28. ^{11}B NMR (128 MHz) spectrum of the compound $\pmb{8}$ in CH_2Cl_2.

Figure S29. ¹³C NMR (101 MHz) spectrum of the compound **8** in CH_2CI_2 (*= CH_2CI_2).

Figure S30. ¹H NMR (500 MHz) spectrum of the compound **9** in CD₂Cl₂ (*= CD₂Cl₂).

Figure S31. ¹¹B NMR (128 MHz) spectrum of the compound **9** in CD_2CI_2 (*= CD_2CI_2).

Figure S32. ¹³C NMR (126 MHz) spectrum of the compound **9** in CD_2Cl_2 (*= CD_2Cl_2).

Figure S33. ¹H NMR (500 MHz) spectrum of the compound **10** in C_6D_6 (*= C_6D_6).

Figure S34. ¹³C NMR (126 MHz) spectrum of the compound **10** in C_6D_6 (*= C_6H_6).

HRMS spectra of all the compounds

Compound 1

Figure S35. HRMS (DART) spectrum of the compound 1.

Figure S36. HRMS (DART) spectrum of the compound 2.

Figure S37. MS (DART) spectrum of the compound 3.

Figure S38. HRMS (DART) spectrum of the compound 4.

943.15392

943.15124

-1.18

1.50

19.0

14.5

-1.25

1.59

Figure S39. HRMS (DART) spectrum of the compound 5.

C38 H23 B2 N O3 F20

C35 H25 B2 O6 F20

Figure S40. HRMS (DART) spectrum of the compound 6.

Figure S41. HRMS (DART) spectrum of the compound 7.

Figure S42. HRMS (DART) spectrum of the compound 8.

Figure S43. HRMS (ESI) spectrum of the compound 9.

References

- 1. 1. Sheldrick, G. M. Acta Cryst. Sec. A 2008, 64, 112-122.
- 2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. *Crystallogr.* **2009**, *42*, 339-341.
- 3. D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17, 5492.
- 4. C. Cui, H.W. Roesky, H. Hao, H.-G. Schmidt, M. Noltemeyer, *Angew. Chem. Int. Ed.*, **2000**, *39*, 1815.