Supplementary Information

Generation and reaction of alanyl radicals in open flasks

Elene Tatunashvili,^a Callan J. Maloney,^a Bun Chan^b and Christopher S. P. McErlean^{*a}

Table of Contents

General Information	 S2
General Procedure for the reaction of iodoalanyl	
esters and peptides	 S2
Product characterization data	 S3
Comparison of open flask method with photoredox	
catalysis	 S15
HPLC traces	 S16
Computational details	 S23
References	 S24
NMR Spectra	 S26

General Information

CAUTION: Although we had no incidents relating to the stability of the diazonium salts used in this work, care was taken to avoid the use of metal needles and spatulas.

All reactions were performed under air using plastic tubing, plastic syringes, and oven-dried glassware. Dimethylsulfoxide (DMSO) was dried over 3 Å molecular sieves. All other solvents and reagents were used as received from commercial sources. Melting points were determined using a Stanford Research Systems Optimelt automated melting point system and are uncorrected. Infrared spectra were acquired on a Bruker ALPHA FT-IR spectrometer as thin films, or neat. Absorption maxima are expressed in wavenumbers (cm⁻¹). Optical rotations were obtained on a Perkin-Elmer 341 polarimeter at 589 nm and 20 °C. Nuclear magnetic resonance (NMR) spectroscopy was conducted at 300 K on either a Bruker AVANCE DPX300 (1H at 300 MHz), AVANCE III 400 (1H at 400 MHz) or AVANCE III 500 (1H at 500 MHz) and processed using Bruker TopSpin 3.2 or 3.5pl7. Deuterated solvents CDCl₃, MeCN-d₃, MeOD- d_4 , DMSO- d_6 and (CD₃)₂CO, were obtained from Cambridge Isotope Laboratories. Chemical shifts for all nuclei are reported as parts per million (ppm) and all coupling constants are reported in hertz (Hz) unless otherwise stated. ¹H NMR data are reported as chemical shift (ppm); relative integral; multiplicity, coupling constant (J), reported in Hz; chemical assignment. Chemical shifts are calibrated to residual solvent peaks: chloroform ($\delta = 7.26$), acetone ($\delta = 2.05$), DMSO ($\delta = 2.50$), acetonitrile ($\delta = 1.94$), methanol ($\delta = 3.31$). ¹³C{¹H} data is reported as chemical shift (ppm); degree of substitution, determined by HSQC analysis; coupling constant (if applicable) in Hz. Chemical shifts are calibrated to the residual solvent peaks: chloroform ($\delta = 77.16$), acetone ($\delta = 206.26$ or 29.84), DMSO ($\delta = 39.52$), acetonitrile $(\delta = 118.26 \text{ or } 1.32)$, methanol ($\delta = 49.00$). Multiplicity is reported as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad and reported in decreasing magnitude of coupling constant (e.g. dt = doublet of triplets). Low-resolution mass spectrometry was carried out on a Finnigan PolarisQ ion trap mass spectrometer using the ionization mode electron impact (EI) at 40 or 70 eV or a Finnigan LCQ ion trap mass spectrometer using the ionization modes electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). High-resolution mass spectrometry was conducted on a Bruker Apex II FTICR mass spectrometer with a 7.0 T magnet fitted with an off-axis analytical electrospray source. Column chromatography was performed using Grace Davison, Merck, or Scharlau 40-60 µm (230-400 mesh) silica gel using commercial solvents. Analytical thin-layer chromatography was performed using preconditioned plates (Merck TLC silica gel 60 F254 on aluminum) and visualized using UV light (254 nm and 365 nm), ethanolic anisaldehyde solution.

General Procedure for the reaction of iodoalanyl esters and peptides

To a solution of the desired alanyl iodide (0.35 mmol) and radical acceptor (0.70 mmol) in dry DMSO (0.2 mL), the solutions of 2,4,6-trimethylbenzenediazonium tetrafluoroborate (0.70 mmol) in dry DMSO (0.4 mL) and dibenzyl Hantzsch ester (0.70 mmol) in dry DMSO (0.4 mL) were added by syringes in one portion at room temperature under air. The resulting reaction mixture was stirred for 5 minutes and diluted with ethyl acetate (10 mL), water (20 mL) was added, and the mixture was extracted with ethyl acetate (3×15 mL). The combined organic layers were dried over anhydrous sodium sulfate, concentrated under vacuum and the desired product was purified by column chromatography on silica get using hexane/ethyl acetate as eluent.

Product characterization data

Methyl (*S*)-2-((*tert*-butoxycarbonyl)amino)-6-(4-nitrophenyl)-6-oxohexanoate (17): Eluent 35% ethyl acetate in hexane. Isolated as a yellow oil (56%). ¹H NMR (400 MHz, CDCl₃) δ : 8.30 (2H, d, J = 8.8 Hz), 8.10 (2H, d, J = 8.8 Hz), 5.11 (1H, d, J = 6.4 Hz), 4.36 (1H, d, J = 4.8 Hz), 3.75 (3H, s), 3.10-3.00 (2H, m), 1.94-1.71 (4H, m), 1.44 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 197.9, 173,0. 150.4, 141.3, 129.1, 123.9, 80.1, 53.1, 52.4, 38.3, 32.2, 29.8, 28.4, 19.6; v_{max}/cm^{-1} : 3385, 2976, 1605, 1526, 1347, 1165, 855; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₁₈H₂₄N₂O₇: 403.14757; found: 403.14738; $[\alpha]_D^{25}$ +31 (c = 0.02, CHCl₃).

Methyl (*S*)-6-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amino)-6-oxohexanoate (18): Eluent 35% ethyl acetate in hexane. Isolated as a yellow oil (70%). ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (2H, d, *J* = 8.5 Hz), 7.58 (2H, d, *J* = 8.5 Hz), 5.11-5.13 (1H, m), 4.32-4.33 (1H, m), 3.72 (3H, s), 2.90-2.98 (2H, m), 1.81-1.89 (1H, m), 1.70-1.80 (3H, m), 1.42 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 198.4, 173.1, 155.4, 135.6, 131.9, 129.5, 128.2, 79.9, 53.1, 52.3, 37.6, 32.1, 29.7, 28.3, 19.8; *v*_{max}/cm⁻¹: 3369, 2975, 2932, 1710, 1687, 1365, 1250, 1208, 1163, 1070, 815; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₁₈H₂₄⁷⁹BrNO₅ and C₁₈H₂₄⁸¹BrNO₅: 436.07301 and 438.07096; found: 436.07277 and 438.07072. [α]_D²⁵ +36 (*c* = 0.02, CHCl₃).

Methyl (S)-2-((*tert*-butoxycarbonyl)amino)-6-(naphthalen-2-yl)-6-oxohexanoate (19): Eluent 25% ethyl acetate in hexane. Isolated as a yellow oil (64%). ¹H NMR (400 MHz, CDCl₃) δ : 8.4 (1H, s), 8.00 (1H, d, J = 10 Hz), 7.95 (1H, d, J = 8.0 Hz), 7.86 (2H, t, J = 7.2 Hz), 7.60-7.52 (2H, m), 5.13 (1H, d, J = 7.2 Hz), 4.37 (1H, d, J = 4.0 Hz), 3.73 (3H, s), 3.16-3.11 (2H, m), 1.94-1.78 (4H, m), 1.44 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 199.4, 173.2, 155.5, 135.6, 134.2, 132.5, 129.7, 129.6, 128.5, 127.8, 126.8, 123.8, 79.9, 53.2, 52.3, 37.7, 32.2, 28.3, 20.0; v_{max}/cm^{-1} : 3373, 2975, 1733, 1711, 1680, 1509, 1366, 1254, 1166; HRMS (ESI) *m/z*: 408.17791 [M+Na]⁺ [α]_D²⁵ +34 (*c* = 0.02, CHCl₃).

Methyl (S)-2-((*tert*-butoxycarbonyl)amino)-6-(4-chlorophenyl)-6-oxohexanoate (20): Eluent 35% ethyl acetate in hexane. Isolated as a bright yellow oil (55%). ¹H NMR (400 MHz, CDCl₃) δ : 7.88-7.86 (2H, d, J = 8.4 Hz), 7.42-7.40 (2H, d, J = 8.4 Hz), 5.13-5.05 (1H, m), 4.34-

4.33 (1H, m), 3.73 (3H, s), 3.00-2.94 (2H, m), 1.90-1.71 (4H, m), 1.43 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 198.4, 173.2, 155.6, 139.7, 135.3, 129.6, 129.1, 80.1, 53.3, 52.5, 37.8, 32.3, 29.8, 28.5, 19.9; $v_{\text{max}}/\text{cm}^{-1}$: 3367, 2953, 2933, 1742, 1710, 16851589, 1507, 1454, 1395, 1366, 1250, 1214, 1164, 1092, 1013; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₁₈H₂₄ClNO₅: 392.12352; found: 392.12341; $[\alpha]_D^{25}$ +5.95 (c = 0.63, CHCl₃)

Methyl (S)-2-((*tert***-butoxycarbonyl)amino)-5-tosylpentanoate (21):** Eluent 40% ethyl acetate in hexane. Isolated as a yellow oil (41%); ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (2H, d, J = 8.4 Hz), 7.34 (2H, d, J = 8.0 Hz), 5.05 (1H, d, J = 7.2 Hz), 5.24 (1H, d, J = 5.2 Hz), 3.70 (3H, s), 3.14-3.02 (2H, m), 2.44 (3H, s), 1.81-1.68 (4H, m), 1.41 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 172.6, 155.4, 144.8, 136.2, 130.0, 128.1, 80.2, 55.6, 52.8, 52.5, 31.5, 28.3, 27.9, 21.6, 19.1; v_{max}/cm^{-1} : 3354, 2930, 1742, 1597, 1455, 1301, 1163, 1148, 564, 521; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₁₈H₂₇NO₆S: 408.14513; found: 408.14479; $[\alpha]_D^{25}$ +10.5 (c = 0.07, CHCl₃).

1,1-Di-*tert*-butyl 4-methyl (*S*)-4-((*tert*-butoxycarbonyl)amino)butane-1,1,4-tricarboxylate (22): Eluent 35% ethyl acetate in hexane. Isolated as a light-yellow oil (75%). ¹H NMR (400 MHz, CDCl₃) δ : 5.05 (1H, d, *J* = 7.6 Hz), 4.30 (1H, s), 3.73 (3H, s), 3.13 (1H, t, *J* = 7.2 Hz), 1.81-1.84 (3H, m), 1.45 (9H, s), 1.44 (9H, s), 1.43 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 172.7, 168.4, 168.3, 155.3, 81.5, 79.8, 53.2, 53.1, 52.3, 30.0, 28.3, 27.9, 24.4; *v*_{max}/cm⁻¹: 2977, 1717, 1503, 1392, 1367, 1249, 1158, 1136, 848; HRMS (ESI+) *m*/*z* [M+Na]⁺ calc'd for C₂₁H₃₇NO₈: 454.24114; found: 454.24087; $[\alpha]_D^{25}$ +15 (*c* = 0.02, CHCl₃).

Methyl (*S*)-2-((*tert*-butoxycarbonyl)amino)-6-(2-(methylthio)phenyl)-6-oxohexanoate (23): Eluent 35% ethyl acetate in hexane. Isolated as a bright yellow oil (49%). ¹H NMR (400 MHz, CDCl₃) δ: 7.81-7.79 (1H, d, J = 8.0 Hz), 7.48-7.43 (1H, m), 7.32-7.30 (1H, d, J = 8.0 Hz), 7.19-7.15 (1H, m), 5.11-5.09 (1H, d, J = 8.0 Hz), 4.35-4.30 (1H, m), 3.72 (3H, s), 3.00-2.98 (2H, m), 2.42 (3H, s), 1.91-1.70 (4H, m), 1.43 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 200.7, 173.3, 155.5, 142.4, 134.4, 132.3, 130.2, 125.2, 123.6, 80.0, 55.9, 53.3, 52.4, 39.1, 32.2, 28.4, 20.1, 16.1; v_{max} /cm⁻¹: 3364, 2925, 1740, 1707, 1671, 1619, 1587, 1558, 1511, 1453, 1434, 1391, 1365, 1272, 1249, 1215, 1163, 1078, 1047; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₁₉H₂₇NO₅S: 404.15021; found: 404.15041; [α]_D²⁵ +4.58 (*c* = 1.0, CHCl₃).

Dimethyl ((S)-2-((*tert***-butoxycarbonyl)amino)-6-(naphthalen-2-yl)-6-oxohexanoyl)-Lglutamate (25):** Eluent 35% ethyl acetate in hexane. Isolated as a brown oil (72%). ¹H NMR (400 MHz, CDCl₃) δ : 8.45 (1H, s), 7.99-8.01(1H, m), 7.94 (1H, d, J = 7.8 Hz), 7.84-7.87 (2H, m), 7.51-7.60 (2H, m), 7.24 (1H, d, (NH) J = 8.9 Hz), 5.36-5.38 (1H, m), 4.86-4.90 (1H, m), 4.22 (1H, brs (NH)), 3.73 (3H, s), 3.68 (3H, s), 3.31-3.37 (2H, m), 3.03 (1H, dd, $J_I = 4.6$ Hz, $J_2 = 17.1$ Hz), 2.86 (1H, dd, $J_I = 5.6$ Hz, $J_2 = 17.4$ Hz), 1.77-2.0 (2H, m), 1.45 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 199.7, 172.0, 171.3, 170.9, 155.6, 135.6, 134.2, 132.5, 129.7, 129.6, 128.4, 127.7, 126.7, 123.8, 80.0, 52.8, 52.0, 48.6, 37.9, 36.0, 32.1, 28.3, 20.0; v_{max}/cm^{-1} : 3327, 2953, 2924, 2853, 1737, 1673, 1507, 1438, 1366, 1214, 1167, 477; ; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₂₇H₃₄N₂O₈: 537.22074; found: 537.22031; $[\alpha]_{25}^{25}$: -6.0 (c = 0.01, CHCl₃).

Dimethyl ((*S*)-6-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amino)-6-oxohexanoyl)-L-glutamate (26): Eluent 45% ethyl acetate in hexane. Isolated as an orange oil (75%). ¹H NMR (400 MHz, CDCl₃) δ: 7.80 (2H, d, J = 8.6 Hz), 7.58 (2H, d, J = 8.6 Hz), 5.17-5.19 (1H, m), 4.55-4.62 (1H, m), 4.19 (1H, brs (NH)), 3.72 (3H, s), 3,65 (3H, s), 2.95-3.00 (2H, m), 2.35-2.42 (2H, m), 2.21-2.26 (2H, m), 1.96-2.00 (2H, m), 1.79-1.93 (2H, m), 1.44 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 198.7, 173.1, 172.1, 172.0, 155.6, 135.5, 131.9, 129.6, 128.3, 80.3, 52.5, 51.8, 51.6, 51.5, 37.7, 29.9, 29.7, 28.3, 27.2, 19.8; v_{max}/cm^{-1} : 3342, 2954, 1737, 1681, 1518, 1438, 1366, 1248, 1207, 1166; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₂₄H₃₃⁷⁹BrN₂O₈ and C₂₄H₃₃⁸¹BrN₂O₈: 579.13125 and 581.12921; found: 579.13079 and 581.12872.; [α]_D²⁵ -15 (*c* = 0.06, CHCl₃).

Dimethyl ((S)-2-((*tert*-butoxycarbonyl)amino)-5-(diphenylphosphoryl)pentanoyl)-L-glutamate (27): Isolated as an off-white solid (25%). ¹H NMR (400 MHz, CDCl₃) δ : 7.64-7.69 (4H, m), 7.40-7.46 (6H, m), 5.52-5.53 (1H, m), 4.44-4.50 (1H, m), 4.21 (1H, m), 3.65 (3H, s), 3.61 (3H, s), 2.31-3.39 (3H, m), 2.12-2.16 (1H, m), 1.92-2.00 (2H, m), 1.66-1.72 (2H, m), 1.36 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 173.0, 172.3, 170.9, 132.7, 132.1, 131.8, 130.9, 130.8, 130.6, 130.5, 128.9, 128.8, 127.7, 128.6, 128.6, 79.7, 53.1, 52.3, 51.7, 51.5, 33.7, 30.0, 28.3, 27.0, 18.2; v_{max}/cm^{-1} : 3321, 2975, 1718, 1500, 1396, 1249, 1150, 1137, 786; HRMS (ESI+) *m/z* [M+Na]⁺ calc'd for C₂₉H₃₉N₂O₈P: 574.24440; found 574.24433; [α]_D²⁵ -60 (*c* = 0.03, CHCl₃).

Ethyl (*S*)-2-((*S*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-6-oxo-6-(thiophen-2-yl)hexanoate (28): Eluent 55% ethyl acetate in hexane. Isolated as a yellow oil (64%). ¹H NMR (400 MHz, CDCl₃) δ: 7.71-7.72 (1H, m), 7.61-7.62 (1H, m), 7.11-7.13 (1H, m), 6.69 (1H, d, J = 7.9 Hz), 4.88-4.90 (1H, m), 4.56-4.61 (1H, m), 4.19 (2H, q, J = 7.1 Hz), 2.91-2.96 (2H, m), 2.21-2.31 (2H, m), 1.75-1.82 (3H, m), 1.65-1.70 (2H, m), 1.43 (9H, s), 1.25-1.28 (3H, m), 0.93-0.96 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 192.4, 172.4, 171.9, 144.2, 133.5, 131.9, 128.1, 80.1, 61.6, 51.8, 38.3, 31.8, 29.7, 28.3, 24.7, 22.9, 19.9, 14.1; v_{max}/cm^{-1} : 2955, 2921, 2850, 1663, 1519, 1456, 1417, 1367, 1249, 1167, 734; HRMS (ESI) *m/z* [M+Na]⁺ calc'd for C₂₃H₃₆N₂O₆S:491.21863; found: 491.21906; [α]²⁵_D - 9.5 (*c* = 0.03, CHCl₃).

Methyl ((*S*)-2-((*tert*-butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-yl)hexanoyl)-Ltryptophanate (29): Eluent 45% ethyl acetate in hexane. Isolated as a yellow oil (95%). ¹H NMR (400 MHz, CDCl₃) δ : 8.48 (1H, brs), 7.67 (1H, d, *J* = 4.4 Hz), 7.61 (1H, d, *J* = 5.2 Hz), 7.51 (1H, d, *J* = 7.6 Hz), 7.31 (1H, d, *J* = 8.0 Hz), 7.0-7.16 (4H, m), 6.77-6.80 (1H, m), 5.16 (1H, m), 1.64-1.80 (4H, m), 1.41 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 20.3, 27.6, 28.3, 32.0, 38.5, 52.4, 52.9, 80.1, 109.7, 111.4, 118.5, 119.6, 122.1, 123.2, 127.6, 128.2, 132.1, 133.6, 136.2, 144.2, 156.6, 171.7, 172.1, 192.9; v_{max} /cm⁻¹: 3337, 2975, 1741, 1694, 1660, 1517, 1416, 1366, 1247, 1212, 1167, 742; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₂₇H₃₃N₃O₆S: 550.19823; found: 550.19833; $[\alpha]_D^{25} + 8.7$ (*c* = 0.01, CHCl₃).

Methyl ((*S*)-2-((*tert*-butoxycarbonyl)amino)-6-(6-methylpyridin-2-yl)-6-oxohexanoyl)-Ltryptophanate (30): Eluent 35% ethyl acetate in hexane. Isolated as an orange oil (67%). ¹H NMR (400 MHz, CDCl₃) δ: 8.36 (1H, brs), 7.78 (1H, d, J = 7.6 Hz), 7.67 (1H, t, J = 7.8 Hz), 7.51 (1H, d, J = 7.6 Hz), 7.30 (2H, t, J = 8.4 Hz), 7.03-7.15 (3H, m), 6.70 (1H, d, J = 8.0 Hz), 5.11 (1H, s), 4.88-4.92 (1H, m), 4.11 (1H, d, J = 6.8 Hz), 3.64 (3H, s), 3.31 (2H, d, J = 5.6 Hz), 3.17-3.22 (2H, m), 2.58 (3H, s), 1.62-1.85 (4H, m), 1.40 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 202.0, 172.1, 171.7, 158.1, 152.9, 136.9, 136.2, 127.6, 126.7, 123.1, 122.12, 119.6, 118.8, 118.5, 111.3, 109.8, 79.8, 52.9, 52.3, 37.0, 32.0, 28.3, 28.0, 27.7, 24.4, 19.9; v_{max}/cm^{-1} : 3337, 2918, 1751, 1703, 1677, 1438, 1393, 1231, 1129, 747; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₂₉H₃₆N₄O₆: 559.26348; found: 559.25959; [α]_D²⁵ +96 (c = 0.25, CHCl₃).

Methyl ((*S*)-2-((*tert*-butoxycarbonyl)amino)-6-(naphthalen-2-yl)-6-oxohexanoyl)-Ltryptophanate (31): Eluent 55% ethyl acetate in hexane. Isolated as an orange oil (65%). ¹H NMR (400 MHz, CDCl₃) δ: 8.42 (1H, s), 7.93-7.99 (2H, m), 7.85-7.87 (2H, d, J = 8.2 Hz), 7.51-7.61 (2H, m), 7.30-7.32 (1H, d, J = 8.2 Hz), 7.06-7.18 (2H, m), 7.01-7.04 (2H, m), 5.21-5.23 (1H, m), 4.89-4.93 (1H, m), 3.63 (3H, s), 3.30-3.32 (2H, m), 2.98-3.07 (2H, m), 1.68-1.87 (4H, m), 1.41 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 199.9, 172.1, 171.8, 155.9, 136.2, 135.6, 134.1, 132.5, 129.8, 129.6, 128.5, 128.4, 127.8, 127.6, 126.8, 123.8, 123.2, 122.1, 119.6, 118.5, 111.4, 109.7, 82.7, 52.9, 52.3, 37.9, 32.0, 28.3, 27.6, 20.0; v_{max}/cm^{-1} : 3341, 2974, 2930, 1671, 1510, 1366, 1250, 1166, 743; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₃H₃₇N₃O₆: 594.25746; found: 594.25698; [α]_D²⁵ +1.65 (*c* = 0.02, CHCl₃).

Methyl ((S, (*E/Z*))-2-((*tert*-butoxycarbonyl)amino)-6-(2-nitrophenyl)-6-oxohex-4-enoyl)-L-tryptophanate (32): Eluent 55% ethyl acetate in hexane. Isolated as an orange oil (65%). ¹H NMR (400 MHz, CDCl₃) δ: 8.31 (1H, brs), 8.04-8.07 (1H, m), 7.65 (1H, m), 7.63-7.65 (1H, m), 7.34 (2H, t, *J* = 7.6 Hz), 7.15-7.19 (1H, m), 7.06-7.11 (2H, m), 7.01 (1H, s), 6.53 (1H, d, *J* = 7.8 Hz), 6.35-6.40 (1H, m), 4.17 (1H, m), 3.65 (3H, s), 3.28-3.33 (2H, m), 2.60-2.66 (1H, m), 2.47-2.50 (1H, m), 1.38 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 192.6, 192.1, 171.7, 170.4, 146.7, 145.2, 136.2, 135.8, 133.9, 133.2, 130.6, 128.9, 128.2, 127.5, 124.4, 123.0, 122.3, 122.2, 119.7, 119.6, 118.5, 118.4, 111.4, 111.3, 109.6, 81.3, 80.4, 52.3, 52.9, 52.4, 35.8, 28.2, 27.5;*v*_{max}/cm⁻ ¹: 3336, 2929, 1666, 1528, 1347, 1250, 1164, 737; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₂₉H₃₂N₄O₈: 587.21124; found: 587.21341; [α]²⁵ +11.4 (*c* = 0.07, CH₂Cl₃).

Methyl ((S)-2-((*tert*-butoxycarbonyl)amino)-5-tosylpentanoyl)-L-tryptophanate (33): Eluent 40% ethyl acetate in hexane. Isolated as an orange oil (77 %).¹H NMR (400 MHz, CDCl₃) δ : 7.72 (2H, d, J = 8.2 Hz), 7.50 (1H, d, J = 7.8 Hz), 7.30-7.39 (3H, m), 7.17 (1H, t, J = 7.2 Hz), 7.10 (1H, t, J = 7.2 Hz), 7.03 (1H, d, J = 1.9 Hz), 6.64 (1H, (NH), d, J = 7.7 Hz), 5.03-5.05 (1H, m), 4.83-4.90 (1H, m), 4.07 (1H, brs), 3.67 (3H, s), 3.28-3.32 (2H, m), 3.03-3.04 (2H, m), 2.42 (3H, s), 1.82-1.84 (1H, m), 1.66-1.71 (1H, m), 1.40 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 172.0, 171.3, 144.7, 136.2, 136.1, 129.9, 129.0, 127.5, 123.3, 122.1, 119.6, 118.4, 111.5, 109.5, 80.0, 52.9, 52.4, 42.6, 31.6, 28.3, 22.6, 21.6, 14.1; $v_{\text{max}}/\text{cm}^{-1}$: 3348, 2929, 1665, 1286, 1248, 1162, 1146, 730; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₂₉H₃₇N₃O₇S: 594.22444; found: 594.22400; $[\alpha]_D^{25}$: +7.9 (c = 0.06, CHCl₃)

Ethyl (6S,9S,12S)-12-(4-(benzofuran-2-yl)-4-oxobutyl)-9-(4-((*tert*-butoxycarbonyl)amino)butyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (34): Eluent 60% ethyl acetate in hexane. Isolated as an off-white oil (53%). ¹H NMR (500 MHz, CDCl₃) δ: 7.70 (1H, d, J = 7.9 Hz), 7.54-7.57 (1H, m), 7.53 (2H, s), 7.45-7.48 (1H, m), 7.28-7.32 (1H, m), 4.79 (1H, brs), 4.83-4.84 (1H, m) 4.52-4.58 (1H, m), 4.42-4.45 (2H, m), 4.09-4.14 (2H, m), 4.09-4.13 (2H, m), 3.08 (1H, brs), 3.00-3.07 (2H, m), 1.91-1.98 (4H, m), 1.76-1.83 (4H, m), 1.50-1.51 (1H, m), 1.45 (18H, s), 1.26-1.29 (5H, m), 0.87-0.93 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 190.6, 172.8, 171.8, 171.3, 156.1, 155.8, 155.6, 152.5, 128.3, 127.0, 123.9, 123.3, 112.8, 112.4, 80.2, 79.0, 61.5, 52.8, 52.1, 37.9, 33.7, 31.4, 29.3, 28.5, 28.3, 24.8, 23.0, 22.4, 21.8, 19.6, 14.1; $ν_{max}$ /cm⁻¹: 3300, 2961, 2932, 1677, 1551, 1516, 1366, 1250, 1140, 753; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₃₈H₅₈N₄O₁₀: 753.40451; found: 753.40411; [α]²⁵₂ -20 (c = 0.01, CHCl₃).

Methyl ((*S*)-2-((*S*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-6-oxo-6-(thiophen-2-yl)hexanoyl)-L-tryptophanate (35): Eluent 45% ethyl acetate in hexane. Isolated as an orange oil (43%).¹H NMR (400 MHz, CDCl₃) δ : 8.65 (1H, brs), 7.67 (1H, d, *J* = 4.4 Hz), 7.61 (1H, d, *J* = 5.2 Hz), 7.51 (1H, d, *J* = 7.6 Hz), 7.31 (1H, m), 7.0-7.16 (4H, m), 5.07-5.09 (1H, m), 4.84-4.89 (1H, m), 4.44-4.48 (1H, m), 4.16 (1H, brs (NH)), 3.67 (3H, s), 3.27-3.30 (2H, m), 2.87-2.93 (2H, m), 1.84-1.92 (2H, m), 1.61-1.66 (6H, m), 1.41-1.44 (1H, m), 1.44 (9H, s), 0.83-0.91 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 192.0, 171.9, 171.0, 169.9, 161.6, 154.9, 143.1, 135.1, 132.7, 131.2, 127.2, 127.1, 126.4, 122.5, 121.0, 121.0, 118.4, 117.4, 110.4, 110.3, 108.5, 79.4, 51.8, 51.7, 51.4, 40.3, 37.4, 30.4, 27.3, 23.8, 22.0, 20.6, 18.9; v_{max}/cm^{-1} : 3325, 2957, 2929, 1656, 1517, 1366, 1250, 1166, 742; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₃H₄₄N₄O₇S: 663.28229; found: 663.28221; $[\alpha]_D^{25}$ +6.6 (*c* = 0.046, CHCl₃).

Methyl ((*S*)-2-((*S*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-6-(naphthalen -2-yl)-6-oxohexanoyl)-L-tryptophanate (36): Eluent 55% ethyl acetate in hexane. Isolated as a yellow oil (51%).¹H NMR (400 MHz, CDCl₃) δ: 8.63 (1H, brs (NH)), 8.42 (1H, s), 7.93-7.99 (2H, m), 7.85-7.87 (2H, d, J = 8.2 Hz), 7.51-7.61 (2H, m), 7.30-7.32 (1H, d, J = 8.2 Hz), 7.06-7.18 (2H, m), 7.01-7.04 (2H, m), 5.09-5.12 (1H, m), 4.82-4.89 (1H, m), 4.48-4.49 (1H, m), 4.18 (1H, brs (NH)), 3.65 (3H, s), 3.39-3.31 (2H, m), 2.87-2.93 (2H, m), 1.84-1.92 (2H, m), 1.61-1.66 (6H, m), 1.41-1.44 (1H, m), 1.44 (9H, s), 0.83-0.91 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 200.1, 173.0, 172.0, 171.9, 155.9, 136.2, 135.6, 134.1, 132.5, 129.8, 129.6, 128.4, 127.7, 127.4, 126.8, 123.8, 123.5, 122.0, 119.41, 118.4, 111.4, 109.5, 80.4, 61.9, 52.8, 52.4, 41.3, 37.8, 31.7, 28.3, 24.8, 23.0, 21.6, 19.7; ν_{max}/cm⁻¹: 3306, 2957, 1672, 1518, 1367, 1167, 1047, 743; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₉H₄₈N₄O₇: 707.34152; found: 707.34149; [α]_D²⁵ + 55 (*c* = 0.068, CHCl₃).

Methyl ((2*S*)-2-((*s*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-4-(3-hydroxy -13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-16-yl)butanoyl)-L-tryptophanate (37): Eluent 55% ethyl acetate in hexane. Isolated as a yellow oil (27%). ¹H NMR (500 MHz, CDCl₃) δ: 7.48-7.52 (1H, m), 7.31-7.35 (1H, m), 6.69-7.15 (4H, m), 6.57-6.64 (2H, m), 4.97-5.03 (1H, m), 4.83-4.85(1H, m) 4.35-4.70 (1H, m (NH)), 4.11-4.13 (1H, m), 3.87 (3H, s), 3.25-3.34 (2H, m), 2.78-2.84 (2H, m), 2.21-2.33 (3H, m), 2.04-2.17 (3H, m), 1.87-1.88 (5H, m), 1.58-1.62 (5H, m), 1.42 (9H, s), 1.26-1.42 (3H, m), 0.88-0.99 (9H, m); ¹³C NMR (125 MHz; CDCl₃): 222.3, 173.1, 171.9, 171.1, 155.9, 154.0, 137.8, 136.2, 131.5, 130.4, 129.5, 126.9, 126.4, 122.0, 119.5, 118.4, 115.4, 112.4, 111.4, 80.3, 53.4, 52.5, 52.4, 49.1, 48.5, 48.0, 43.9, 41.2, 37.9, 37.8, 31.9, 31.4, 30.2, 29.7, 29.6, 28.3, 26.6, 25.8, 24.8, 23.0, 22.7, 21.7, 21.2, 20.87, 20.5, 19.7, 19.2, 14.1; $v_{max}/cm^{-1}:3313, 2928, 1724, 1657, 1502,$ 1453, 1367, 1286, 1249, 1164, 1046, 742; HRMS (ESI) *m/z* [M+Na]⁺ calc'd for C₄₅H₆₀N₄O₈: 807.43034; found: 807.43026; [α]₂²⁵ -13 (*c* = 0.03, CHCl₃)

6-(Acetoxymethyl)-3-((*R***)-2-((***tert***-butoxycarbonyl)amino)-6-(naphthalen-2-yl)-6-oxohexanamido)tetrahydro-2***H***-pyran-2,4,5-triyl triacetate (39): Eluent 35% ethyl acetate in hexane. Isolated as a yellow oil (48%). ¹H NMR (400 MHz, CDCl₃) \delta: 8.41 (1H, s), 7.91-8.00 (2H, m), 7.83-7.88 (2H, m), 7.51-7.60 (2H, m), 6.82-6.84 (1H, d,** *J* **= 7.6 Hz), 5.77 (1H, d,** *J* **= 8.3 Hz), 5.31-5.38 (1H, m), 5.13 (1H, t,** *J* **= 9.7 Hz), 4.30-4.40 (1H, m), 4.22-4.28 (1H, m), 4.05-4.11 (2H, m), 3.86-3.89 (1H, m), 3.09-3.11 (2H, m), 2.08 (3H, s), 2.05 (3H, s), 2.04 (6H, s), 1.75-1.80 (2H, m), 1.39-1.44 (2H, m), 1.41 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 199.6, 172.6, 171.4, 170.6, 169.4, 169.3, 155.6, 135.6, 134.0, 132.5, 129.7, 129.6, 128.6, 128.5, 127.8, 126.7, 123.7, 92.1, 80.2, 72.8, 72.6, 68.1, 61.8, 52.6, 37.7, 28.3, 20.8, 20.7, 20.6, 20.5; v_{max}/cm^{-1}: 3354, 2974, 1750, 1677, 1514, 1454, 1367, 1221, 1164, 1122, 1076, 1040; HRMS (ESI)** *m***/***z* **[M+Na]⁺ calc'd for C₃₅H₄₄N₂O₁₃: 723.27356; found: 723.27372; [\alpha]_D^{25} + 9.1 (***c* **= 0.02, CHCl₃)**

6-(Acetoxymethyl)-3-((*R*)-2-((*tert*-butoxycarbonyl)amino)-6-oxo-6-(thiophen-2-yl)hexanamido)tetrahydro-2*H*-pyran-2,4,5-triyl triacetate (40): Eluent 35% ethyl acetate in hexane. Isolated as an off-white oil (71%). ¹H NMR (400 MHz, CDCl₃) δ : 7.68-7.69 (1H, dd, J_I = 0.8 Hz, J_2 = 4.0 Hz), 7.61 (1H, d, J = 5.5 Hz), 7.09-7.11 (1H, dd, J_I = 4.0 Hz, J_2 = 5.2 Hz), 5.74 (1H, d, J = 8.0 Hz), 5.35 (1H, t, J = 10 Hz), 5.14 (1H, t, J = 9.7 Hz), 4.25-4.38 (2H, m), 4.11-4.18 (1H, m), 4.01-4.04 (1H, m), 3.89-3.91 (1H, m), 2.91 (2H, t, J = 6.5 Hz), 2.09 (3H, s), 2.08 (3H, s), 2.05 (3H, s), 2.04 (3H, s), 1.72-1.76 (2H, m), 1.40-1.43 (2H, m), 1.42 (9H, s); ¹³C NMR (101 MHz; CDCl₃):192.5, 172.6, 171.4, 170.6, 169.3, 155.6, 144.0, 133.8, 132.0, 128.2, 92.1, 80.1, 72.8, 72.7, 68.2, 61.8, 52.5, 38.4, 31.7, 28.3, 20.8, 20.7, 20.5, 20.3; v_{max}/cm^{-1} : 3354, 2974, 1749, 1665, 1517, 1454, 1415, 1366, 1216, 1165, 1075, 1040, 735; HRMS (ESI) *m/z* [M+Na]⁺ calc'd for C₂₉H₄₀N₂O₁₃S: 656.22511; found: 656.22495; $[\alpha]_D^{25}$ +136 (*c* = 0.16, CHCl₃).

6-(Acetoxymethyl)-3-((*R*)-6-(benzofuran-2-yl)-2-((*tert*-butoxycarbonyl)amino)-6-oxohexanamido)tetrahydro-2*H*-pyran-2,4,5-triyl triacetate (41): Eluent 35% ethyl acetate in hexane. Isolated as an off-white oil (50%). ¹H NMR (400 MHz, CDCl₃) δ : 7.66 (1H, d, *J* = 7.8 Hz), 7.61 (1H, brd, *J* = 10.0 Hz), 7.53 (1H, d, *J* = 8.4 Hz), 7.40-7.49 (2H, m), 7.24-7.30 (1H, m), 5.75 (1H, d, J = 8.5 Hz), 5.28-5.33 (1H, m), 5.11 (1H, t, J = 9.7 Hz), 4.21-4.32 (2H, m), 4.03-4.11 (2H, m), 3.85-3.87 (1H, m), 2.96-2.97 (2H, m), 2.07 (3H, s), 2.05 (3H, s), 2.02 (3H, s), 2.01 (3H, s), 1.72-1.79 (2H, m), 1.35-1.41 (2H, m), 1.40 (9H, s); ¹³C NMR (101 MHz; CDCl₃):190.7, 172.5, 171.4, 170.6, 169.3, 155.6, 152.4, 128.4, 127.0, 124.0, 123.3, 112.9, 112.4, 92.1, 79.8, 72.8, 72.7, 68.1, 61.8, 52.6, 38.0, 28.4, 20.8, 20.7, 20.5, 20.0; v_{max}/cm^{-1} : 3359, 2931, 1753, 1679, 1555, 1367, 1221, 1164, 1139, 1076, 1042, 755; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₃₃H₄₂N₂O₁₄: 713.25282; found: 713.25301; $[\alpha]_D^{25}$ +34 (c = 0.02, CHCl₃).

Methyl (*S*)-2-((*tert*-butoxycarbonyl)amino)-6-oxo-6-(2-oxo-2*H*-chromen-3-yl)hexanoate (42): Eluent 35% ethyl acetate in hexane. Isolated as a yellow oil (58%). ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (1H, s), 7.63-7.67 (2H, m), 7.31-7.38 (2H, m), 7.34 (1H, brs), 5.08-5.09 (1H, m), 4.32-4.34 (1H, m), 3.75 (3H, s), 3.17 (2H, t, *J* = 6.8 Hz), 1.73-1.78 (4H, m), 1.44 (9H, s); ¹³C NMR (101 MHz; CDCl₃): 197.1,176.6, 173.4, 159.1, 155.3, 147.5, 134.4, 130.2, 125.0, 124.4, 118.3, 116.7, 80.0, 52.3, 41.8, 32.0, 29.7, 28.3, 19.6; v_{max}/cm^{-1} : 3363, 2954, 2933, 1720, 1616, 1516, 1455, 1373, 1225, 1164, 769; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₂₁H₂₅NO₇: 426.15232; found: 426.13959; $[\alpha]_D^{25}$ +11.6 (*c* = 0.05, CHCl₃).

Ethyl (*S*)-2-((*S*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-6-(7-(diethyl-amino)-2-oxo-2*H*-chromen-3-yl)-6-oxohexanoate (43): Eluent 60% ethyl acetate in hexane. Isolated as yellow oil (55%): ¹H NMR (400 MHz, CDCl₃) δ : 8.41 (1H, s), 7.38 (1H, d, *J* = 8.9 Hz), 6.82 (1H, d, *J* = 7.8 Hz), 6.60 (1H, dd, *J*₁ = 2.4 Hz, *J*₂ = 9.0 Hz), 6.44 (1H, d, *J* = 2.4 Hz), 5.02 (1H, d, *J* = 7.2 Hz), 4.52-4.56 (1H, m), 4.14-4.21 (2H, m), 4.86 (4H, q, *J* = 7.1 Hz), 3.09 (2H, t, *J* = 6.9 Hz), 1.88-1.91 (1H, m), 1.76-1.81 (1H, m), 1.65-1.73 (4H, m), 1.45-1.50 (1H, m), 1.42 (9H, s), 1.21-1.28 (9H, m), 0.93 (6H, d, *J* = 5.4 Hz); ¹³C NMR (101 MHz; CDCl₃): 197.2, 172.4, 172.0, 160.7, 158.7, 153.1, 148.1, 131.9, 115.8, 109.9, 108.2, 96.6, 61.3, 52.3, 45.1, 41.7, 31.6, 28.3, 24.7, 22.9, 19.6, 14.1, 12.4; *v*_{max}/cm⁻¹: 3322, 2960, 1718, 1617, 1575, 1506, 1350, 1173, 1132; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₂H₄₇N₃O₈: 624.32554; found: 624.33112; [α]_D²⁵ -13 (*c* = 0.01, CHCl₃).

Methyl ((S)-2-((*tert*-butoxycarbonyl)amino)-6-oxo-6-(2-oxo-2H-chromen-3-yl)hexanoyl)-L-tryptophanate (44): Eluent 50% ethyl acetate in hexane. Isolated as a yellow oil (38%). ¹H NMR (400 MHz, CDCl₃) δ : 8.42 (1H, s), 8.33 (1H, brs), 7.61-7.65 (2H, m), 7.51 (1H, d, J = 7.7 Hz), 7.31-7.34 (3H, m), 7.14 (1H, t, J = 7.4 Hz), 7.04-7.08 (1H, m), 6.72 (1H (NH), d, J = 7.7 Hz), 5.05-5.09 (1H, m), 4.87-4.92 (1H, m), 4.11-4.13 (1H, brs), 3.64 (3H, s), 3.31 (2H, d, J = 5.3 Hz), 3.09-3.12 (2H, m), 1.61-1.73 (2H, m), 1.41 (9H, s); NMR (101 MHz; CDCl₃): 197.49, 172.04, 171.64, 159.07, 155.2, 147.5, 136.2, 134.3, 130.2, 127.6, 124.9, 123.2, 122.1, 119.6, 118.5, 118.3, 116.6, 111.3, 109.8, 80.0, 52.8, 52.4, 52.3, 41.8, 31.99, 29.7, 29.3, 27.6, 19.7; $v_{\text{max}}/\text{cm}^{-1}$:3351, 2930, 1720, 1608, 1456, 1229, 1169, 757, 732; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₃₂H₃₅N₃O₈: 612.23164; found: 612.232011; $[\alpha]_D^{25}$ +3.57 (c = 0.14, CH₂Cl₂).

Ethyl (6*S*,9*S*,12*S*)-9-(4-((*tert*-butoxycarbonyl)amino)butyl)-12-(4-(7-(diethylamino)-2-oxo-2*H*-chromen-3-yl)-4-oxobutyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (49): Eluent 65% ethyl acetate in hexane. Isolated as yellow oil (55%); ¹H NMR (400 MHz, CDCl₃) δ: 8.43 (1H, s), 8.40 (1H, d, J = 9.2 Hz), 6.61 (1H, dd, $J_l = 2.1$ Hz, $J_2 = 9.0$ Hz), 6.44-6.45 (1H, m), 4.47-4.53 (2H, m), 4.13-4.20 (3H, m), 3.41-3.45 (6H, m), 3.08 (2H, t, J = 6.6 Hz), 2.20 (2H, brs), 1.87-1.92 (2H, m), 1.63-1.73 (4H, m), 1.47-1.51 (2H, m), 1.34-1.40 (3H, m), 1.41 (9H, s), 1.40 (9H, s), 1.20-1.24 (11H, m), 0.89-0.91 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 197.3, 172.7, 171.9, 171.3, 160.7, 158.7, 156.1, 153.2, 148.3, 132.0, 128.4, 115.6, 110.0, 108.3, 96.6, 80.0, 78.9, 61.4, 52.7, 52.5, 45.2, 41.6, 31.7, 31.1, 29.2, 28.4, 28.3, 24.7, 23.0, 22.2, 21.9, 19.7, 19.3, 14.2, 12.4; v_{max}/cm^{-1} : 2973, 1717, 1617, 1574, 1506, 1350, 1175; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₄₃H₆₇N₅O₁₁: 852.47293; found: 852.48002; [α]_D²⁵ -3.8 (*c* = 0.07, CHCl₃).

Methyl (S)-2-((*tert*-butoxycarbonyl)amino)-7-(1,3-dioxo-6-(piperidin-1-yl)-1*H*-benzo[de] isoquinolin-2(3*H*)-yl)-6-oxoheptanoate (45): Eluent 50% ethyl acetate in hexane. Isolated as

yellow oil (42%); ¹H NMR (500 MHz, CDCl₃) δ : 8.55 (1H, d, J = 6.8 Hz), 8.47 (1H, d, J = 8.3 Hz), 8.40 (1H, d, J = 8.7 Hz), 7.67 (1H, t, J = 7.9 Hz), 7.17 (1H, d, J = 8.5 Hz), 5.11-5.13 (1H, m), 4.96 (2H, s), 4.30-4.31 (1H, m), 3.73 (3H, s), 3.23-3.24 (4H, m), 2.61-2.66 (2H, m), 1.86-1.90 (5H, m), 1.71-1.74 (5H, m), 1.43 (9H, s); ¹³C NMR (125 MHz; CDCl₃): 202.7, 173.1, 164.3, 163.7, 157.7, 155.4, 133.1, 131.4, 131.1, 130.2, 122.6, 115.3, 114.7, 79.9, 54.6, 53.2, 52.3, 48.7, 39.3, 31.2, 28.3, 26.2, 24.3, 19.3; $v_{\text{max}}/\text{cm}^{-1}$: 2917, 2850, 1694, 1655, 1588, 1452, 1377, 1235, 1164, 1081, 1028, 790; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₃₀H₃₇N₃O₇: 574.25237 ; found: 574.25233; $[\alpha]_{D}^{25} + 4.3$ (c = 0.06, CHCl₃).

Ethyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-7-(1,3-dioxo-6-(piperidin-1-yl)-1H-benzo[de]isoquinolin-2(3H)-yl)-6-oxoheptanoate (46): Eluent 50% ethyl acetate in hexane. Isolated as yellow solid (61%); M.p.: 72-74 °C; ¹H NMR (400 MHz, CDCl₃) δ: 8.55 (1H, d, J = 7.0 Hz), 8.47 (1H, J = 8.0 Hz), 8.39 (1H, d, J = 7.1 Hz), 7.66 (1H, t, J = 7.7 Hz), 7.16 (1H, d, J = 8.1 Hz), 6.78 (1H, brs), 5.04-5.05 (1H, m), 4.97 (2H, s), 4.54-4.57 (1H, m), 4.17 (2H, q, J = 6.9 Hz), 3.32 (4H, s), 2.55-2.69 (2H, m), 1.87-1.89 (6H, m), 1.70-1.73 (8H, m), 1.48-1.50 (1H, m), 1.42 (9H, s), 1.26 (3H, t, J = 6.9 Hz), 0.91-0.94 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 202.8, 172.6, 171.8, 164.3, 163.7, 157.8, 133.1, 131.4, 131.1, 130.2, 126.3, 125.3, 122.6, 115.3, 114.7, 80.0, 61.5, 54.6, 51.9, 48.5, 39.2, 31.3, 28.3, 26.2, 24.7, 24.3, 22.9, 19.5, 14.1; v_{max} /cm⁻¹: 3330, 2924, 2852, 1696, 1651, 1375, 1234, 1163, 1011, 783; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₇H₅₀N₄O₈: 701.35210; found: 701.35341; found: [α]_D²⁵ -16.7 (*c* = 0.03, CH₂Cl₂).

Ethyl (6S,9S,12S)-9-(4-((*tert*-butoxycarbonyl)amino)butyl)-12-(5-(1,3-dioxo-6-(piperidin-1-yl)-1*H*-benzo[de]isoquinolin-2(3*H*)-yl)-4-oxopentyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (48): Eluent 70% ethyl acetate in hexane. Isolated as yellow oil (38%); ¹H NMR (400 MHz, CDCl₃) δ : 8.54 (1H, dd, $J_I = 1.0$ Hz, $J_2 = 7.3$ Hz), 8.48 (1H, J = 8.1 Hz), 8.39 (1H, dd, $J_I = 1.1$ Hz, $J_2 = 8.5$ Hz), 7.64-7.68 (1H, m), 7.16 (1H, d, J = 8.3 Hz), 5.04-5.08 (1H, m), 4.96 (2H, s), 4.48-4.51 (2H, m), 4.18 (2H, q, J = 6.8 Hz), 3.21-3.24 (4H, m), 3.06-3.07 (2H, m), 2.59-2.65 (2H, m), 1.86-1.87 (6H, m), 1,59-1.72 (8H, m), 1.45-1.52 (2H, m), 1.41-1.42 (1H, m), 1.41 (18H, s), 1.24-1.27 (5H, m), 0.81-0.95 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 203.0, 172.7, 171.8, 171.4, 164.3, 163.7, 157.8, 156.1, 155.7, 133.2,

131.5, 131.2, 130.2, 126.3, 125.3, 122.6, 115.2, 114.8, 80.0, 78.9, 65.8, 61.5, 54.5, 52.7, 52.1, 48.5, 41.0, 40.0, 39.1, 31.9, 30.8, 29.3, 28.4, 28.3, 26.2, 24.7, 24.3, 22.9, 22.3, 21.9, 19.7, 15.3, 14.1; $v_{\text{max}}/\text{cm}^{-1}$: 3296, 2932, 2332, 1695, 1518, 1367, 1251, 1171, 542; HRMS (ESI) m/z [M+Na]⁺ calc'd for C₄₈H₇₀N₆O₁₁: 929.49948; found: 929.49942; $[\alpha]_D^{25}$ -5.3 (c = 0.06, CHCl₃).

Ethyl (6*S*,9*S*,12*S*)-9-(4-((*tert*-butoxycarbonyl)amino)butyl)-6-isobutyl-2,2-dimethyl-4,7,10-trioxo-12-(4-oxo-4-(pyren-1-yl)butyl)-3-oxa-5,8,11-triazatridecan-13-oate (50): Eluent 60% ethyl acetate in hexane. Isolated as a yellow (44%). ¹H NMR (500 MHz, CDCl₃) δ: 8.91 (1H, d, J = 9.2 Hz), 8.33 (1H, d, J = 8.0 Hz), 8.16-8.27 (6H, m), 8.05-8.09 (3H, m), 4.83-4.84 (1H, m), 4.61-4.63 (1H, m), 4.79 (1H, brs), 4.56-4.61 (1H, m), 4.47-4.51 (2H, m), 4.15-4.20 (2H, m), 4.08-4.12 (2H, m), 3.23-3.27 (2H, m), 3.07-3.08 (2H, brs), 1.95-2.00 (1H, m), 1.86-1.94 (5H, m), 1.67-1.71 (4H, m), 1.46-1.50 (1H, m), 1.42 (18H, s), 1.23-1.26 (5H, m), 0.88-0.91 (6H, m); ¹³C NMR (101 MHz; CDCl₃): 204.0, 172.8, 171.9, 171.3, 156.1, 133.8, 132.2, 131.1, 130.5, 129.7, 129.5, 129.4, 127.1, 126.4, 126.3, 126.2, 126.1, 125.0, 124.8, 124.7, 124.3, 124.1, 80.2, 79.0, 61.5, 53.4, 52.8, 52.2, 41.4, 31.5, 29.3, 28.5, 28.3, 24.8, 22.9, 22.4, 21.8, 20.4, 14.1; ν_{max}/cm^{-1} : 3328, 3303, 2962, 2933, 1690, 1514, 1389, 1269, 1250, 1170, 849; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₄₆H₆₂N₄O₉: 837.44090; found: 837.44041; [α]_D²⁵ -15.6 (*c* = 0.016, CHCl₃)

Methyl ((*S*)-6-(anthracen-9-yl)-2-((*S*)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanamido)-6-oxohexanoyl)-L-valinate (47):Eluent 55% ethyl acetate in hexane. Isolated as a yellow oil (45%). ¹H NMR (400 MHz, CDCl₃) δ: 8.47 (1H, s), 8.02 (2H, d, *J* = 7.8 Hz), 7.80 (2H, d, *J* = 8.6 Hz), 7.48-7.53 (4H, m), 6.88-6.90 (1H, m, (NH)), 4.91 (1H, m), 4.48-4.55 (2H, m), 4.14 (1H, brs (NH)), 3.73 (3H, s), 3.10-3.14 (2H, m), 2.19-2.20 (1H, m), 2.04-2.06 (2H, m), 1.88-1.91 (2H, m), 1.69-1.70 (2H, m), 11.47-1.5- (1H, m), 1.43 (9H, s), 0.82-0.96 (12H, m); ¹³C NMR (101 MHz; CDCl₃): 209.2, 171.8, 171.0, 170.1, 154.7, 135.3, 130.0, 127.8, 127.2, 125.9, 125.8, 124.5, 123.3, 79.3, 56.4, 52.1, 51.1, 44.7, 35.1, 30.0, 28.7, 28.0, 27.3, 23.8, 21. 9, 18.0, 16.7; v_{max}/cm^{-1} : 3350, 2960, 1742, 1654, 1539, 1367, 1165; HRMS (ESI) *m*/*z* [M+Na]⁺ calc'd for C₃₇H₄₉N₃O₇: 670.34627; found: 670.34598; found: [α]²⁵_D -191 (*c* = 0.068, CHCl₃)

Comparison of open flask method with photoredox catalysis

Procedure 1: To a 10 ml vial with a magnetic stir bar was added the corresponding dipeptidyl iodide (0.60 mmol, 1.0 equiv.), radical acceptor (0.6 mmol, 1.0 equiv), MeCN (6.0 ml), diethyl Hantzsch ester (DEHE) (1.2 mmol, 2.0 equiv.), tributylamine (1.2 mmol, 2.0 equiv.) and *fac*-Ir(ppy)₃ (0.0060 mmol, 0.010 equiv.). The reaction mixture was degassed by bubbling with Ar for 30 min with an outlet needle and the vial was sealed with PTFE cap. The mixture was stirred rapidly while irradiated with blue LED for 24 hours. The solvent was removed from the crude mixture in vacuo and the residue was dissolved in ethyl acetate. The contents were poured into a separatory funnel containing ethyl acetate (25 mL) and aqueous HCl (1 M; 25 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×25 ml). The combined organic layers were washed with sat. NaHCO₃ solution and brine, dried (Na₂SO₄) and concentrated in vacuo. The crude sample was subjected to NMR and MS analyses. The residue was purified by chromatography on silica gel to afford the desired product.

Procedure 2: To a 10 mL vial was added $Mn_2(CO)_{10}$ (11.7 mg, 0.03 mmol, 1 mol %), radical acceptor (0.3 mmol, 1.0 equiv), corresponding dipeptidyl iodide (0.6 mmol, 2.0 equiv), DEHE (114 mg, 0.45 mmol, 2.0 equiv) and 3.0 mL of DMSO. The reaction mixture was degassed by bubbling with Ar for 30 min with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with Blue LED. The progress of the reaction was monitored by TLC and mass spectrometric analysis of aliquots. After 24 hrs, the mixture was diluted with aqueous NaHCO₃ (1 M; 10 mL) and extracted with DCM (3 × 20 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude reaction mixture was subjected to NMR and MS analyses, which indicated the presence of ethyl *N*-Boc-leucyl-alaninate **54**. After identification of the targeted compound, the product was isolated using column chromatography.

HPLC traces

Methyl (*S*)-2-((*tert*-butoxycarbonyl)amino)-6-(4-nitrophenyl)-6-oxohexanoate (17): Enantioseparation of compound 17 was achieved using a Lux Amylose-2 chiral column and hexane/isopropanol (90/10) as the mobile phase (1 mL/min).

	Retention Time	% Area
1	33.882	50.58
2	47.360	49.42

Reaction product

	Retention Time	% Area
1	45.953	100.00

Co-injection

	Retention Time	% Area
1	35.220	4.26
2	45.851	95.74

Methyl (*S*)-6-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amino)-6-oxohexanoate (18): Enantioseparation of compound 18 was achieved using a Lux Amylose-2 chiral column and hexane/isopropanol (90/10) as the mobile phase (0.7 mL/min).

	Retention Time	% Area
1	38.933	54.42
2	48.544	45.58

Reaction product

	Retention Time	% Area
1	47.390	100

Co-injection

	Retention Time	% Area
1	37.062	37.29
2	45.445	62.71

Enantioseparation of compound 19 was achieved using a Lux Amylose-2 chiral column and hexane/isopropanol (90/10) as the mobile phase (1 mL/min).

Reaction product

	Retention Time	% Area
1	37.363	100.00

Co-injection

Methyl (S)-2-((*tert***-butoxycarbonyl)amino)-5-tosylpentanoate (21):** Enantioseparation of compound **21** was achieved using a Lux Amylose-2 chiral column and hexane/isopropanol (60/40) as mobile phase (1 mL/min).

	Retention Time	% Area
1	13.635	50.35
2	24.183	49.65

	Retention Time	% Area
1	24.147	100

	Retention Time	% Area
1	14.215	6.46
2	22.591	93.54

Methyl (S)-2-((tert-butoxycarbonyl)amino)-6-oxo-6-(2-oxo-2H-chromen-3-yl)hexanoate

(42): Enantioseparation of compound 42 was achieved using a Lux Amylose-2 chiral column and hexane/isopropanol (40/60) as the mobile phase (1 mL/min).

Racemate

	Retention Time	% Area
1	15.619	50.88
2	40.758	49.12

	Retention Time	% Area
1	40.991	100

	Retention Time	% Area
1	16.185	12.71
2	39.758	87.29

Computational details

Standard density functional theory (DFT) calculations were carried out with Gaussian 16¹ and Q-Chem 5.² Geometries were optimized using the B3LYP/6-31G(d) procedure.³ The choice of this level of theory is based on the our previous studies into the use of efficient computational chemistry methods for obtaining reliable molecular geometries.^{4,5} For the calculation of electronic excitations, we used the PBE50 functional,⁶ which has been shown to yield reliable excitation energies. We applied the Tamm-Dancoff approximation⁷ to time-dependent DFT in our excited state calculations for its substantially improved computational efficiency with minimal impact on the reliability. The orbitals involved in the lowest-energy absorptions (i.e., the lowest-energy transitions with non-negligible intensities) are shown in the figures below. For **51**, the transition populates the acceptor alkene, making it less reactive towards further acceptance of electron density (from the donor molecule).

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.

Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Wallingford, CT, 2016.

- 2. E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z. Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. De Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P. T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, Á. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y. P. Li, J. Liang, M. Liebenthal, H. H. Lin, Y. S. Lin, F. Liu, K. Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S. P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J. M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, Á. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y. C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J. D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. Deprince, R. A. Distasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C. P. Hsu, T. C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert and A. I. Krylov, J. Chem. Phys., 2021, 155.
- 3. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *Journal of Physical Chemistry*[®], 1994, **98**, 11623-11627.
- 4. B. Chan and L. Radom, J. Chem. Theory Comput., 2016, **12**, 3774-3780.
- 5. B. Chan, J. Chem. Theory Comput., 2017, **13**, 6052-6060.
- 6. Y. A. Bernard, Y. Shao and A. I. Krylov, J. Chem. Phys., 2012, 136.
- 7. S. Hirata and M. Head-Gordon, *Chem. Phys. Lett.*, 1999, **314**, 291-299.

89°93T-

2113 2013

9T.L 9T.L 99.L 99.L 99.L 00.8 10.8 90.8 10.8 90.8 10.8 90.8 10.8

