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1. Materials and methods

All chemicals and solvents were purchased from commercial suppliers and used without further
purification.

NMR Spectroscopy: *H, *C, 'B and *°F spectra were recorded on BrukerBiospinAvance 111
FT-NMR 400 MHz spectrometer at room temperature. Tetramethyl silane (TMS) was used as
internal standard.

Mass Spectroscopy: High-resolution mass spectra were recorded with Waters QTOF mass
spectrometer. Software used for acquiring mass spectra was Flex Control, Bruker (USA) and
software used for analyzing mass spectra was Flex Analysis 3.1.

UV/Vis absorption and fluorescence spectroscopy: UV/Vis and near-NIR spectral
measurements were carried out with Carey 5000 UV/Vis spectrophotometer using a quartz
cuvette with 1 cm path length. Steady state emission and excitation studies were carried out
with Hitachi F7000 fluorescence spectrophotometer equipped with R928F photomultiplier
expandable up to 900 nm.

Temperature dependent fluorescence spectroscopy: Temperature-dependent fluorescence
of samples were measured using temperature-controlled cuvette holder for Hitachi F7000
spectrophotometer (Luma 40) from Quantum Northwest. Luma 40 temprature controller was
used for measurements in the temperature range of 0 °C to 100 'C.

Time resolved fluorescence spectra: Time resolved fluorescence spectra were measured
using time correlated single photon counting (TCSPC) model from Fluorocube, Horiba Jobin
Yvon, NJ equipped with picosecond laser diodes as excitation source. A 590 nm and 635 nm
laser diode were used as a light source for the excitation of samples and the instrument response
function (IRF) was collected using Ludox (colloidal silica) solution. The width (FWHM) of
IRF was ~250 ps. The optical pulse durations from < 70 ps were used. Highly integrated
picosecond PMT modules as well as micro channel plate PMTs were used for the time
resolution.

Cyclic voltammetry: The electrochemical measurements were recorded using CHI-610
electrochemical workstation from CH Instruments (USA), with a conventional three electrode
single-compartment cell consisting of a glassy carbon as the working electrode, Ag/AgClI
containing 1M KCI solution as the reference electrode, and Pt wire as the counter electrode.
Cyclic voltammetry measurements were performed at a scan-rate of 100 mV/s.
Tetrabutylammonium hexafluorophosphate (TBAHFP) (Alfa Aesar) (0.1M) dissolved in pre-

dried DCM was used as a supporting electrolyte. The solutions were purged with nitrogen prior
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to measurement. The electrochemical potential was internally calibrated against the standard
ferrocene/ferrocenium (Fc/Fc*) redox couple prior to each measurement.
Spectroelectrochemistry: Spectroelectrochemical measurements were performed using a cell
assembly (SEC-C) supplied by BAS Inc (Japan) and the assembly comprised of a Pt counter
electrode, a Pt gauze working electrode, and an Ag/AgCl reference electrode in a 1.0 mm path
length quartz cell. The absorption spectra were measured using an ocean optics set up
connected in absorbance mode and using the FLAME spectrometer. VVoltages were swept in
the range of -2 V to +2 V, dry DCM was used as solvent and TBAHFP was used as the
supporting electrolyte. The solutions were purged with nitrogen for 10 min prior to
spectroelectrochemical measurements.

Dynamic light scattering (DLS) Measurements: DLS experiments have been performed on
a Malvern Zetasizer Nano ZS90 instrument.

2. Synthesis procedures

Synthesis of donor subchromophore
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Scheme S1. Synthesis of donor precursor PDI 5.
Synthesis of compound 1

Compound 1 was synthesized according to literature procedure.!

Synthesis of compound 2

The crude compound 1 (5 g, 9.43 mmol) was dissolved in dry toluene (100 mL), 2-
ethylhexylamine (3.10 mL, 18.86 mmol) was added and refluxed for 24 h. Then solvent was
removed under reduced pressure and compound was purified by column chromatography with

dichloromethane (DCM) /hexane (1/3) as eluent to obtain compound 2 as red solid.!
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Yield: 5.12 g (72 %).

'H NMR (400 MHz, CDCls) 6 (ppm): 8.68 (s, 4 H), 4.21 — 4.10 (m, 4 H), 1.98 — 1.91 (m, 2
H), 1.43 -1.32 (m, 16 H), 0.97 — 0.88 (m, 12 H).

13C NMR (100 MHz, CDCl3) 6 (ppm): 162.74, 135.49, 133.15, 131.56, 128.70, 123.44, 123.34,
44.71, 38.10, 30.80, 28.75, 24.10, 23.21, 14.27, 10.71.

Synthesis of compound 3

Compound 2 (5 g, 6.64 mmol), 4-tert-butylphenol (12.00 g, 79.73 mmol) and K>CO3(11.02 g,
79.73 mmol) were dissolved in dry N-methyl-2-pyrrolidone (NMP) (60 mL) under nitrogen
atmosphere. The reaction mixture was stirred for 24 h at 120 °C. After being cooled to room
temperature (RT), 2 M HCI was added and a precipitate was formed, filtered and washed with
water/methanol mixture. Subsequently, crude product was purified by column chromatography
with DCM/hexane (1/2) as eluent to obtain 3 as purple solid.

Yield: 5.3 g (66 %).

'H NMR (400 MHz, CD2Cly) 6 (ppm): 8.14 (s, 4 H), 7.28 (d, J =8 Hz, 8 H), 6.85 (d, J = 8 Hz,
8 H), 4.07-3.95 (m, 4 H), 1.86 — 1.80 (m, 2 H), 1.31 — 1.26 (m, 52 H), 0.89 — 0.84 (m, 12 H).
13C NMR (100 MHz, CD2Cly) é (ppm): 164.08, 156.35, 153.67, 147.87, 133.44, 127.17,
123.16, 120.98, 120.36, 120.07, 119.77, 44.63, 38.52, 34.82, 31.76, 31.28, 29.29, 24.57, 23.58,
14.42, 10.95.

Synthesis of compound 4

Compound 3 (4 g, 3.31 mmol) was added to the solution of potassium hydroxide (2.80 g, 50
mmol) dissolved in t-butanol (60 mL) and refluxed for 24 h. Subsequently, the reaction mixture
was cooled to RT and HCI (2M) was added and reaction mixture was heated at 100 °C for 3-4
h. The precipitate was formed and filtered, washed with water and dried in oven and further
purified by silica column chromatography using DCM /hexane (1/1) as eluent to obtain
compound 4 as purple solid.

Yield: 2.7 g (83 %).

'H NMR (400 MHz, CD2Cl») 6 (ppm): 8.17 (s, 4 H), 7.30 (d, J =8 Hz, 8 H), 6.86 (d, J = 8 Hz,
8 H), 1.30 (s, 36 H).

13C NMR (100 MHz, CDCl,) 6 (ppm): 160.35, 156.84, 153.14, 148.53, 133.98, 127.41,
122.02, 121.95, 119.81, 119.19, 34.88, 31.72.

Synthesis of compound 5
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Compound 4 (1 g, 1.02 mmol) was dissolved in dry toluene (40 mL) and 2-azidoethanamine
(437 mg, 5.08 mmol) was added. The reaction mixture was refluxed for 24 h followed by
evaporation of solvent under reduced pressure. The crude product was purified by silica column
chromatography using DCM/hexane (2/1) as eluent and purple solid compound was obtained.
Yield: 1.10 g (97 %).

'H NMR (400 MHz, CDCIs) 6 (ppm): 8.24 (s, 4 H), 7.25 - 7.23 (m, 8 H), 6.83 (d, J =8 Hz, 8
H), 4.37 (t, J = 8 Hz, 4 H), 3.62 (t, J = 4 Hz, 4 H), 1.29 (s, 32 H).

13C NMR (100 MHz, CDCl3) 6 (ppm): 163.58, 156.17, 152.89, 147.54, 133.06, 126.85, 122.186,
120.86, 120.22, 119.63, 119.46, 48.98, 39.10, 34.52, 31.59.

HRMS (ESI): m/z calcd for CesHesNgOg* [M+ H]*: 1121.4920, Found: 1121.4924.

Synthesis of acceptor subchromophore
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Scheme S2. Synthesis of acceptor precursor ABDP 11.

Synthesis of compound 6

4-hydroxyacetophenone (5 g, 36.72 mmol), potassium carbonate (7.6 g, 55.08 mmol) and
propargyl bromide (6.55 g, 55.08 mmol) were dissolved in anhydrous acetone (50 mL) under
nitrogen atmosphere and mixture was refluxed for 5 h. After being cooled to RT, the reaction

mixture was filtered followed by removing the solvent of the filtrate, the crude product was
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obtained which was purified by recrystallization from methanol and white solid compound 6
was obtained.

Yield: 4.8 g (75 %).

IH NMR (400 MHz, CDCl3) & (ppm): 7.97 — 7.93 (m, 2 H), 7.04 — 7.00 (m, 2 H), 4.76 (d, J =
4 Hz, 2 H), 2.56 (s, 3 H), 2.55 (t, J=4 Hz, 1 H).

13C NMR (100 MHz, CDCls) 6 (ppm): 196.82, 161.33, 131.07, 130.59, 114.63, 77.82, 76.25,
55.90, 26.49.

Synthesis of compound 7

4-hydroxybenzaldehyde (6 g, 49.13 mmol), potassium carbonate (10.18 g, 73.70 mmol) and
1-bromohexane (10.30 mL, 73.70 mmol) were dissolved in anhydrous acetone (60 mL) under
nitrogen atmosphere and mixture was refluxed for 8 h under nitrogen atmosphere.
Subsequently, the solvent was removed under reduced pressure and ethyl acetate (EA) was
added to the crude mixture and washed with water and dried over sodium sulphate. Further
solvent was evaporated under reduced pressure and crude product was purified by silica column
chromatography with hexane/EA (5/1) as eluent, compound 7 was obtained as colourless oil.
Yield: 8.1 g (80 %).

'H NMR (400 MHz, CDClIs) 6 (ppm): 9.86 (s, 1 H), 7.81 (d, J = 8 Hz, 2 H), 6.98 (d, J = 8 Hz,
2 H),4.02 (t, J =8 Hz, 2 H), 1.83-1.76 (m, 2 H), 1.49-1.42 (m, 2 H), 1.36-1.31 (m, 4 H), 0.90
(t, J=8Hz, 3 H).

Synthesis of compound 8

Compound 6 (4.76 g, 27.32 mmol) was dissolved in ethanol (70 mL) followed by dropwise
addition of aqueous potassium hydroxide (6.13 g, 109.28 mmol). Subsequently, compound 7
(5.63 g, 27.32 mmol) was dissolved in ethanol (20 mL) and was slowly added dropwise to the
reaction mixture and stirred overnight at RT. A precipitate was formed that was filtered and
washed with ethanol. Compound 8 was further purified by recrystallization from methanol, and
obtained as light yellow colour crystals.

Yield: 9.4 g (95 %).

1H NMR (400 MHz, CDCl3) J (ppm): 8.04 (d, J = 8 Hz, 2H), 7.78 (d, J = 16 Hz, 1 H), 7.59 (d,
J=8Hz, 2H), 7.42 (d, J = 16 Hz, 1 H), 7.06 (d, J = 8 Hz, 2H), 6.92 (d, J = 8 Hz, 2H), 4.78 (d,
J=2Hz,2H),4.00(t,J=8Hz,2H),256 (t,J=4Hz, 1 H), 1.83-1.76 (m, 2 H), 1.51 - 1.43
(m, 2 H), 1.37-1.33 (m, 4 H), 0.91 (t, J =8 Hz, 3 H).
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13C NMR (100 MHz, CDCls3) 6 (ppm): 188.91, 161.34, 161.14, 144.28, 132.29, 130.73, 130.26,
127.62, 119.41, 115.02, 114.77, 77.98, 76.28, 76.22, 68.32, 55.99, 31.68, 29.25, 25.81,
22.72,14.16.

HRMS (ESI): m/z calcd for C24H2703" [M+H]*: 363.1955 , Found: 363.1960.

Synthesis of compound 9

Diethylamine (13.00 mL, 125.53 mmol) and nitromethane (6.73 mL, 125.53 mmol) were added
to the solution of compound 8 (9.11 g, 25.11 mmol) in ethanol (100 mL) and the mixture was
refluxed for 24 h. After being cooled to RT, solvent was evaporated under reduced pressure
and EA was added to crude mixture and washed with water. Further solvent was evaporated
under reduced pressure and crude was purified by silica column chromatography with
hexane/EA (2/1) as eluent, compound 9 was obtained as a yellowish oil.

Yield: 8.5 g (56 %).

'H NMR (400 MHz, CDCls) 6 (ppm): 7.91 (d, J =8 Hz, 2 H), 7.17 (d, J =8 Hz, 2 H), 7.00 d,
J=8Hz,2H),6.84(d, J=8Hz,2H),4.81-4.75(m, 3H), 4.65-4.60 (m, 1 H), 418 -4.11
(m, 1 H), 3.91 (t, J =8 Hz, 2 H), 3.42 — 3.30 (m, 2 H), 2.55 (t, J = 4 Hz, 1 H), 1.78 — 1.71 (m,
2 H), 1.47 — 1.40 (m, 2 H), 1.34 — 1.30 (m, 4 H), 0.90 (t, J = 8 Hz, 3 H).

13C NMR (100 MHz, CDCls3) 6 (ppm): 199.58, 161.66, 158.74, 130.91, 130.39, 130.30, 128.55,
115.02, 114.83, 80.01, 77.72, 76.42, 76.39, 68.07, 55.96, 41.44, 38.82, 31.68, 29.31, 25.82,
22.72,14.17.

HRMS (ESI): m/z calcd for (M+H)*424.2118:, Found: 424.2117.

Synthesis of compound 10 and 11

Compound 9 (3.5 g, 8.26 mmol) and ammonium acetate (31.85 g, 413.22 mmol) were dissolved
in 50 mL of anhydrous butanol. The reaction mixture was refluxed for 24 h. After being cooled
to RT, the precipitate was filtered and washed with water and methanol to give blue solid
product 10. This compound was used for the next step without further purification.

Yield: 1.55 g (25 %).

Compound 10 (1.5 g, 1.98 mmol) was dissolved in dry DCM (150 mL) under nitrogen
atmosphere, diisopropylethylamine (DIPEA) (4.14 mL, 23.76 mmol) was added and reaction
mixture was stirred for 10 minutes followed by the addition of boron trifluoride-diethyl etherate
(4.40 mL, 35.62 mmol) and stirred at RT for 24 h under nitrogen atmosphere. Subsequently,
the reaction mixture was washed with a saturated aqueous NH4ClI solution, saturated sodium

chloride and water. The organic layer was dried over sodium sulphate and the solvent was
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evaporated under reduced pressure. The crude product was purified by column chromatography
with DCM/hexane (1/2) as eluent to obtain purple solid compound 11.%?

Yield: 1.51 g (95 %).

'H NMR (400 MHz, CDClIs) 6 (ppm): 8.05 (t, J = 8 Hz, 8 H), 7.07 (d, J = 8 Hz, 4 H), 6.98 (d,
J=8Hz,4H),6.92 (s,2 H),4.76 (d, J =4 Hz, 2 H), 4.04 (t, J = 8 Hz, 4 H), 2.57 (t, J = 4 Hz,
2 H),1.87-1.80(m,4H),152-1.47 (m,4H),1.41-1.35(m,8H),0.93(t, J=8Hz, 6 H).
13C NMR (100 MHz, CDCls) 6 (ppm): 160.53, 159.70, 131.53, 130.91, 125.34, 115.06, 114.80,
78.22,76.13, 68.32, 55.98, 31.76, 29.36, 25.89, 22.78, 14.21.

11B NMR (128 MHz, CDCl3) 6 (ppm): 1.04 (t, 1J (B-F) = 32 Hz, 1 B).

19F NMR (376 MHz, CDCls) 6 (ppm): -131.28 (g, 1J (F-B) = 30 Hz, 2 F).

HRMS (ESI): m/z calcd for CsoHs1BF2N304 [M+H]": 806.3935, Found: 806.3931.

Synthesis of triad T, macrocycle M1 and pentad P
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Scheme S3. Synthesis of triad T, macrocycle M1 and pentad P.

Aza-BODIPY compound 11 (1.00 equiv.) (550 mg, 0.68 mmol) and PDI 5 (0.3 equiv.) (230.00
mg, 0.20 mmol) were dissolved in DCM: H»O: Ethanol (12:1:1) (60 mL) solvent mixture and
purged with nitrogen for 25-30 minutes. Then sodium ascorbate (872 mg, 0.044 mmol) was

added and after 10 min purging with nitrogen, copper sulphate (5.48 mg, 0.022 mmol) was
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added under nitrogen atmosphere and the reaction was stirred at RT. After the complete
consumption of limiting reactant PDI 5 as monitored by TLC, the reaction was stopped and the
mixture was washed with water and dried with sodium sulphate. The crude product was
purified using column chromatography first with DCM as eluent to recover the reactant aza-
BODIPY 11 (275 mg) as first eluted compound from column and further eluting with DCM/EA
(95/5) compound T (second spot in TLC) was obtained as purple compound in 21 % yield (115
mg).12

Macrocycle M1 was isolated from the above reaction mixture (third spot in TLC) by washing
the mixture with EA as it was soluble in EA followed by further purification 3-4 times using
silica column chromatography with DCM/EA (90/10 ) as eluents and obtained as a purple solid
(15 mg, 3.8 %).

Compound P was isolated from the above reaction mixture as fourth spot in TLC and purified

by column chromatography using DCM/EA (80/20) as eluents as a purple solid (9 mg, 0.8 %).

Triad T

IH NMR (400 MHz, CDCls) d (ppm): 8.15 (s, 4 H), 8.04 — 7.95 (m, 16 H), 7.66 (s, 2 H), 7.20
(d, J=8Hz, 8 H), 7.04 - 6.93 (m, 16 H), 6.89 (s, 2 H), 6.84 (s, 2 H), 6.78 (d, J =8 Hz, 8 H),
521 (s,4H),4.72 (d, J=4Hz, 4H),4.68 (d, J =8 Hz, 4 H), 458 (s, 4 H), 4.0.3 (t, J = 4 Hz,
8H),2.54 (t, J=4Hz,2H),1.86-1.76 (m, 8 H), 1.53 — 1.46 (m, 8 H), 1.39 — 1.35 (m, 16 H),
1.28 (s, 36 H), 0.93 (t, J =8 Hz, 12 H).

13C NMR (100 MHz, CDCls) ¢ (ppm): 163.28, 160.44, 160.41, 160.38, 159.62, 157.46, 155.98,
152.95, 147.39, 145.26, 145.14, 143.96, 142.95, 142.82, 132.95, 131.53, 130.84, 126.76,
125.29, 125.24, 124.88, 123.46, 121.86, 121.04, 120.27, 119.58, 119.34, 117.11, 114.99,
114.69, 78.21, 76.20, 76.16, 68.30, 62.21, 55.94, 55.19, 47.86, 40.01, 34.48, 31.75, 31.58,
29.36, 25.87, 22.76, 14.20.

1B NMR (128 MHz, CDCl3) 6 (ppm): 0.95 (t, 1J (B-F) = 32 Hz, 2 B).

F NMR (376 MHz, CDCls) 6 (ppm): -130.86 —-131.14 (m, 4 F).

HRMS (ESI): m/z calcd for (M+Na)® (CissH164B2FsN12NaO16)*: 2754.2464 Found:
2754.5583.

m/z calcd for (M+2Na)?* (C1esH164B2F4N14016Na2)** : 1389.1195, Found: 1389.1185.

HRMS (MALDI): m/z calcd for (M+Na)* (CiesH164B2F4sN14aNaO16)* : 2754.2464 Found:
2754.3640.

Macrocycle M1
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IH NMR (400 MHz, CDCls) & (ppm): 8.18 (s, 4 H), 8.04 (d, J = 12 Hz, 8 H), 7.40 (s, 2 H),
7.22 (d, J =8 Hz, 8 H), 6.98 (d, J = 12 Hz, 4 H), 6.93 (s, 2 H), 6.89 - 6.80 (m, 12 H), 5.05 (s,
4 H), 4.84 (s, 4 H), 458 (s, 4 H), 4.04 (t, J = 8 Hz, 4 H), 1.85 - 1.80 (m, 4 H), 1.52 - 1.48 (m,
4 H), 1.39 - 1.36 (m, 8 H), 1.28 - 1.25 (32 H), 0.93 (t, J = 8 Hz, 6 H).

13C NMR (100 MHz, CDCls3) 6 (ppm): 163.22, 160.51, 157.54, 156.08, 152.91, 147.57, 145.33,
143.49, 142.85, 133.14, 131.60, 131.55, 130.87, 126.86, 125.31, 124.98, 123.43, 121.66,
121.17, 119.58, 119.30, 114.76, 68.31, 62.02, 52.82, 48.34, 39.86, 34.50, 31.75, 31.57, 29.83,
29.36, 25.88, 22.76, 14.20.

1B NMR (128 MHz, CDCls) & (ppm): 1.09 (t, 1J (B-F) = 32 Hz, 1 B).

19F NMR (376 MHz, CDCls) 6 (ppm): -131.72 (q, 1J (F-B) = 33.84 Hz, 2 F).

HRMS (ESI): m/z calcd for (M+H)* (C118H11sBF2N11012)": 1926.8782, Found: 1926.7845.
m/z calcd for (M+Na)* (C118H114BF2N11NaO12)* : 1948.8602, Found: 1948.7806.

HRMS (MALDI): m/z calcd for (M+H)" (Ci1gH11sBF2N11012)*: 1926.8782, Found:
1926.9504.

m/z calcd for (M+Na)* (C118H114BF2N11NaO12)* : 1948.8602, Found: 1948.9384.

Pentad P

'H NMR (400 MHz, CDCl3) J (ppm): 8.13 (d, J = 2 Hz, 8 H), 8.03 — 7.94 (m, 24 H), 7.66 (d,
J=4Hz,4H),7.20-7.18 (m, 16 H), 7.03 — 6.92 (m, 24 H), 6.87 (s, 2 H), 6.83 (s, 4 H), 6.78
—6.76 (M, 16 H), 5.20 (s, 8 H), 4.72 — 4.66 (m, 12 H), 4.56 (s, 8 H), 4.02 (t, J = 6.68 Hz, 12
H), 2.53 (t, J =2 Hz, 2 H), 1.86 — 1.79 (m, 12 H), 1.51 — 1.46 (m, 12 H), 1.38 — 1.35 (m, 24
H), 1.27 (s, 72 H), 0.93 (t, J = 6.76 Hz, 18 H).

13C NMR (100 MHz, CDCl3) 6 (ppm): 163.26, 160.42, 160.37, 160.33, 159.61, 157.77, 155.95,
152.93, 147.37, 145.24, 145.12, 143.98, 143.94, 142.90, 142.73, 132.93, 131.50, 130.83,
126.74, 125.27, 125.24, 124.85, 123.43, 121.83, 121.02, 120.26, 119.56, 119.32, 117.06,
114.97, 114.67, 78.20, 76.72, 76.22, 68.30, 62.20, 55.94, 47.83, 40.01, 34.47, 31.75, 31.58,
29.36, 25.88, 22.76, 14.21.

1B NMR (128 MHz, CDCls) 6 (ppm): 0.93 (t, 1J (B-F) = 32 Hz, 3 B).

19F NMR (376 MHz, CDCls) 6 (ppm): -130.93 —-131.10 (m, 6 F).

HRMS (ESI): m/z calcd for [(C2ssH27sB3FsN2502s - C16sH164B2FaN14016) + Na*] :1948.8602,
Found 1948.7483.

HRMS (MALDI): m/z calcd for [(C2ssH278B3FeN25028 - CiesHi6aB2FaN14O16) +
Na*] :1948.8602, Found 1948.9413.

For pentad P only mass for fragments ions were observed in both ESI and MALDI techniques.
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Synthesis of macrocycle M2
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Scheme S4. Synthesis of macrocycle M2.
Triad compound T (120 mg, 0.044 mmol) was dissolved in (DCM: H20: Ethanol 12:1:1) (240
mL) solvent and purged with nitrogen for 25-30 minutes, while compound PDI 5 (49.23 mg,
0.044 mmol) was dissolved in DCM (100 mL), filled in syringe, and connected to syringe
pump, sodium ascorbate (8.72 mg, 0.044 mmol) and copper sulphate (5.48 mg, 0.022 mmol)
was added under nitrogen atmosphere to the reaction mixture. The addition of 5 was started
dropwise (0.1 mL/min) to this mixture for about 15 h under nitrogen atmosphere. After the
complete consumption of reactants as monitored by TLC, the mixture was washed with water
and dried using sodium sulphate and solvent was removed under reduced pressure. The crude
was purified using column chromatography with DCM/EA (75/25) as eluents and compound
M2 was obtained as a purple solid compound.?
Yield: 61 mg (36 %).
1H NMR (400 MHz, CDCls) J (ppm): 8.09 (s, 8 H), 7.97 — 7.92 (m, 8 H), 7.68 — 7.64 (m, 4
H), 7.17 (d, J =8 Hz, 16 H), 6.94 (d, J =8 Hz, 16 H), 6.82 — 6.73 (m, 20 H), 5.16 (s, 8 H), 4.67
(s,8H),4.56 (s,8H),4.02 (t, J=8Hz,8H),1.86—-1.79 (m, 8 H), 1.54 — 1.46 (m, 8 H), 1.39
—1.36 (m, 16 H), 1.24 (s, 72 H), 0.93 (t, J = 7 Hz, 12 H).
13C NMR (100 MHz, CDCls) 6 (ppm): 163.20, 160.39, 160.32, 155.93, 152.90, 152.82, 147.36,
145.14, 143.93, 132.89, 131.51, 130.80, 126.73, 125.24, 124.85, 123.48, 121.71, 120.94,
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120.13, 119.46, 119.30, 114.94, 114.67, 68.30, 62.15, 54.91, 47.85, 39.99, 34.45, 31.76, 31.56,
29.36, 25.88, 22.76, 14.21.

118 NMR (128 MHz, CDCls) & (ppm): 0.92 (t, J (B-F) = 32 Hz, 2 B).

19F NMR (376 MHz, CDCls) & (ppm): -131.04 — -131.32 (m, 4 F).

HRMS (ESI): m/z calcd for (M + 2Na)** (CassH228B2FaN22024Naz)?": 1949.8636, Found:
1949.7632.

HRMS (MALDI): m/z calcd for (M + Na)* (Ca2ssH228B2F4N22024Na)*: 3874.7311, Found:

3874.7583.
m/z calcd for (M + 2Na)?* (C2ssHa228B2FaN22024Naz)?*: 1949.8636, Found: 1949.7722.
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Figure S2. DOSY NMR spectra of (a) M1 and (b) M2 in CDCl3 (400 MHz).
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4. Mass spectra
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Figure S3. MALDI-TOF mass spectra of M1.
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Figure S4. MALDI-TOF mass spectra of M2.
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5. Photophysical studies

Steady-state emission
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Figure S5. Spectral overlap of PDI emission and ABDP absorption spectra in chloroform (¢ ~ 10 M).
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Figure S6. Steady-state emission spectra of (a) M1, (b) M2, (c) Triad T, and (d) Pentad P along with reference
compound PDI and ABDP in chloroform (¢ ~ 2 x 106 M).
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Table S1. Photophysical properties of reference as well as final compounds in CHCls.

Compound Aabs(nm) & (Mtem?) Aem (NM)
PDI 585 50,791 617
ABDP 688 87,705 716
M1 591 58,072 623, 719 (Aex =591 nm)
694 80,366
M2 592 1,04,410 621, 721 (hex = 592 nm)
694 1,51,260
T 592 60,425 720 (Aex = 592 nm)
691 1,63,220
P 591 1,06,014 719 (Aex = 591 nm)
692 2,29,570

Fluorescence quantum yield

Table S2. The fluorescence quantum yields of PDI, Triad T, Pentad P, M1 and M2 by using relative method in
CHCls.

Comp. Aex (nm) Aem (nm) D ETE=1-
Do/ Do
PDI 585 616 ~0.88 -
ABDP 688 716 ~0.36 -
M1 591 623 ~0.052 ~94 %
591 719 ~0.22 -
693 719 ~0.23 -
M2 592 620 ~0.009 ~99 %
592 721 ~0.15 -
694 721 ~0.18 -
T 592 616 ~0.005 ~99 %
592 720 ~0.15 -
691 720 ~0.29
P 591 616 ~0.0034 ~ 100 %
591 720 ~0.13 -
692 720 ~0.21
a_umogen® F 577 613 0.96 (reported in -
Red 305 CHCIg)®
PABDP Ref 680 712 0.483 (reported in -
DCM)?

a. Reference dye for PDI part fluorescence quantum yield.®
b. Reference dye for aza-BODIPY part fluorescence quantum yield.2

o o
/ Aza-BODIPY \\\

Reference
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Fluorescence excitation spectra
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Figure S7. Comparison of absorption spectra with fluorescence excitation spectra of (a) M1, (b) M2, (c) T and
(d) P in chloroform (c ~ 2 x 108 M).

Theoretical FRET Efficiency
FRET parameters such as spectral overlap integral, Forster radius, rate of FRET (keT)
and energy transfer efficiency (ETE) were calculated according to the Forster theory.!
The spectral overlap integral J(4) for the emission of the donor and absorption of the
acceptor can be evaluated according to equation 1.

J() = [Fo(l) ea(r) A4 dA (1)
where, Fp(4) is the fluorescence intensity of the donor with total intensity normalized to
unity. The ea(4) refers to the molar extinction coefficient of the acceptor expressed in
units of M-tcm™ and 4 in nm. Accordingly, the J(1) values calculated using the ale
(Fluor Tools) software for M1 was 5.28 x 10 nm* Mt cm™.
Subsequently, the Forster radii (Ro) for M1 were calculated using equation 2 as follows:

Ro = 0.211 [(K2@b J(1))/n*]+e )
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where, k? is the orientation factor and a value of k? = 2/3 was used considering randomly
oriented transition dipoles, @» was the donor only quantum yield and n was the
refractive index of the solvent used (1.445 for CHCI3). Accordingly, Ro of 63.09 A was
obtained for M1.
Utilizing the calculated Forster radii as well as experimentally obtained fluorescence
lifetimes (zp) of donor subchromophores PDI (6.49 ns) and centre-to-centre distances
of 9.14 A obtained from optimized geometry of M1 (Figure S8), energy transfer rate
(ket) were obtained according to the equation 3:

ket = 1/ [Ro/R]° 3)
and accordingly, ket of 1.80 x 10* st was obtained for M1.
Finally, the energy transfer efficiencies (ETE) were obtained for M1 according to
equation 4:

E = 1/[1+(R/Ro)%] (4)
and ETE of ~ 99.9 % was obtained for M1.
This theoretically calculated ETE is in good agreement with ETE calculated from
steady-state fluorescence quenching and fluorescence quantum yield measurements for
M1.

The theoretically calculated FRET parameters have been presented in Table S3.
Table S3. Calculated FRET parameters for M1 using theoretical and experimental results.
Comp. J(A) (M!cmtnm?) Ro (A) ker(s) ETE (%)
M1 5.28 x 101 63.09 1.80 x 10%3 99.9

Figure S8. Optimized geometry of macrocycle M1 by DFT method at B3LYP 6-31G (d,p) level.
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Because of large structure of macrocycle M2, the geometric optimization by B3LYP/631G

basis set was not possible.

Fluorescence lifetime

Table S4. Fluorescence lifetime analysis of PDI, Triad T, Pentad P, M1 and M2 at different excitation and
emission wavelengths in toluene and CHCls.

Comp.  Solvent Aex Aem 7o) n(012) Tavg x2

(nm)  (hm) (ns) (ns) (ns)

PDI Toluene 590 602 6.05 (1.00) - 6.05 1.00

CHCl3 590 616 6.49 (1.00) - 6.49 1.07

ABDP Toluene 635 717 2.40 (1.00) - 2.40 1.09

CHCI; 635 716 2.27 (1.00) - 2.27 1.04

M1  Toluene 590 720 556(0.12) 2.80(0.88)  3.13 1.00

635 720 224(0.36)  3.02(0.64) 274 1.04

CHCls 590 719 6.37 (0.10) 1.59 (0.90) 2.05 1.06

635 719 491(0.06) 164(0.94)  1.83 1.12

M2 Toluene 590 721 1.73(0.28) 3.04 (0.72) 2.68 1.00

635 721 140(0.12) 275(0.88)  2.59 1.08

CHCI; 590 721 1.46 (0.47) 2.69 (0.53) 2.11 1.03

635 721 074(027) 2.32(0.73)  1.90 1.08

T Toluene 590 721 407(0.12) 227(088)  2.48 1.11

635 721 1.19 (0.07) 2.40 (0.93) 2.32 1.00

CHCl; 590 720 1.78 (0.29)  2.47(0.71) 227 1.02

635 720 0.06(0.36) 2.07(0.64) 135 1.06

P Toluene 590 721 1.10(0.32) 2.44 (0.68) 2.01 1.02

635 721 0.69(0.23) 2.29(0.77) 193 1.10

CHCI; 590 721 0.58 (0.21) 2.12 (0.79) 1.79 1.01

635 721 0.37 (0.22) 1.96 (0.78) 1.62 1.02

Solvatochromism

The absorption and emission spectra (Figure S9-S11, Table S5) of macrocycles and
acyclic compounds were recorded in solvents of increasing polarity from toluene to
benzonitrile. Solvent polarities did not show a significant impact on the absorption and
emission maxima and spectral features, except in case of pentad P, where spectral
broadening of PDI band was observed in toluene (Figure S11c) suggesting the

aggregation of P in toluene.
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With the increase in solvent polarity, triad T and macrocycle M2 showed decrease in
fluorescence intensity of aza-BODIPY from toluene to chloroform, THF and DCM, however,

other compounds did not follow any trend.
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Figure S9. Absorption and emission spectra of (a), (b) PDI and (c), (d) ABDP (c ~ 2 x10® M) in solvents with
different polarity. TOL - Toluene, CF - Chloroform, THF - Tetrahydrofuran, DCM - Dichloromethane, BENZ —
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Figure S10. Absorption and emission spectra of (a, b) M1 and (c, d) M2 (c ~ 2 x10® M) in solvents with different

polarity.
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Figure S11. Absorption and emission spectra of (a, b) Triad T and (c, d) Pentad P (c ~ 2 x10° M) in solvents with
different polarity.
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Table S5. Absorption and emission maxima of macrocycles M1 and M2, acyclic triad T and pentad P and
corresponding reference compounds in different solvents.

Comp. Solvent Aabs (NM) Aem (NM)
PDI Toluene 574 602
CHCls 585 616
THF 570 601
DCM 578 611
Benzonitrile 580 614
ABDP Toluene 690 717
CHCls; 688 716
THF 692 717
DCM 689 717
Benzonitrile 699 726
M1 Toluene 581, 696 611, 720 (Aex = 581 nm)
CHCl; 591, 693 623, 719 (hex = 591 nm)
THF 572, 697 605, 721 (Aex = 572 nm)
DCM 585, 694 618, 721 (hex = 585 nm)
Benzonitrile 584, 703 621, 727 (hex = 584 Nm)
M2 Toluene 596, 696 619, 721 (Aex = 596 Nm)
CHCIs 592, 694 620, 721 (Aex = 592 Nm)
THF 583, 697 605, 723 (hex = 583 nm)
DCM 588, 695 618, 721 (hex = 588 nm)
Benzonitrile 588, 704 622, 728 (.ex = 588 Nm)
T Toluene 581, 694 721 (hex =581 nm)
CHCls 592, 691 720 (hex = 592 Nm)
THF 572, 695 721 (Aex =572 nm)
DCM 586, 691 721 (hex = 586 Nm)
Benzonitrile 585, 702 729 (Aex =585 nm)
P Toluene 589, 696 721 (hex =589 nm)
CHCls 591, 692 720 (hex = 591 nm)
THF 575, 696 723 (hex =575 nNm)
DCM 586, 692 722 (hex = 586 Nm)
Benzonitrile 585, 701 730 (hex = 585 nm)
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Absorption and emission spectra in THF/H20 mixtures

To probe the aggregation induced emission (AIE) behaviour of M1 and M2 along with
triad T and pentad P in semi-aqueous media, absorption/emission spectra (Figure S12-
S13) were recorded in water/tetrahydrofuran (THF) mixtures. From the absorption
spectra, broadening as well as a redshift of both the PDI (~ 10-30 nm) and ABDP (~ 12-
41 nm) bands were observed with an increase in water fraction. However, the emission
spectra showed aggregation caused quenching behaviour with the increase of water
fraction (Figure S12-13). Dynamic light scattering (DLS) measurements (Figure S14)
revealed that M1 formed closely packed aggregates with an average hydrodynamic
diameter of ~ 68 nm while M2 due to its large size formed loosely bound aggregates

with an average hydrodynamic diameter of ~ 295 nm.

- 50
- (@) == M1  ——THFH,0 1000 (b) M1 —— THF/H,0 10/0

: _— = THF/H,0 911 —— THF/H,0 9/1
THF  THFH,0 - I:::“g :g 404 —— THF/H,0 8/2
= 2/8 2 - = THF/H,0 7/3

3 THFH06/4 | 5
& THFH,05/5 | & 30- THF/H,0 6/4
8 THF/H,04/6 | > THF/H,0 5/5
 0.081 THFH0 37 | B THF/H,0 4/6
£ ——THFH028 | § 20 THF/H,0 317
o ——THFH,01/9 | € ——— THF/H,0 2/8

o
< L % —— THFIH,0 1/9
o
0.00 +—— . . . . : 0 L — .
400 500 600 700 800 900 600 700 800
Wavelength (nm) Wavelength (nm)
50
(c), —— THFIH,0 101/0 (d) M2 —— THF/H,0 10/0

0.3 ==THEM0 9/ —— THF/H,0 9/1
—pemess| oo

— — 2 —
3 THF THF/H,0 THFM,06/4 | S THF/H,0 7/3
2 ol 2/8 THEM,055 | S 30 THF/H,0 6/4
g THFIH,0 46 | 2 THF/H,0 5/5
& THFH037 | @ THF/H,0 4/5
-g ——THFIH,02/8 | 8 20 THF/H,0 3/2
3 041 —THFH 019 | £ —— THF/H,0 2/8
< 10 ——— THF/H,0 1/9

0.0 T T T T 0- T
400 500 600 700 800 900 600 700 800
Wavelength (nm) Wavelength (nm)

Figure S12. Changes in absorption and emission spectra of (a, b) M1 and (c, d) M2 in different THF/H,O (v/v)
mixtures (c ~ 2 X106 M).
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Figure S13. Changes in absorption and emission spectra of (a, b) Triad T and (c, d) Pentad P in different THF/H,O
(v/v) mixtures (c ~ 2 x10M).
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6. Temperature-dependent emission study
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Figure S15. Temperature responsive emission spectra of (a) M1 and (d) M2 from 0 to 60 °C in chloroform (c ~ 2
x108 M).
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Figure S18. Temperature responsive emission spectra of (a) triad T and (d) pentad P from 0 to 60 °C; Plots of (b)
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Figure S19. Temperature responsive emission spectra of (a) triad T and (e), (f) pentad P from 0 to 100 ‘C; (b)
Plots of lgoa/leoatl721 vs. temperature for triad T; (c) Sensitivity plot for triad T; Cyclic switching of emission
intensity ratio upon heating and cooling for (d) triad T and (g) pentad P in toluene (¢ ~ 2 X105 M).

Table S6. Fitted parameters for temperature-dependent fluorescence intensities and sensitivities for T, P, M1 and
M2 in chloroform and toluene.

Comp. Solvent R? Equation Sensitivity (°C1)
M1 CHCl; 0.98 y =0.00143 x + 0.459 0.14 (0 to 60 °C)
Toluene 0.99 y =0.00208 x + 0.205 0.21 (0 to 100 °C)
M2 CHCl; 0.97 y = 0.00090 x + 0.0783 0.09 (0 to 60 °C)
Toluene 0.99 y =0.0162 exp(x/49.67) + 0.0277 0.0231t0 0.13 (0 to 100 °C)
T CHCl3 0.94 y = 0.00027 x + 0.0092 0.027 (0 to 60 °C)
Toluene 0.998 y = 0.0051 exp(x/43.36) + 0.00465  0.0098 to 0.085 (0 to 100 °C)
P CHCl; 0.97 y =0.000335 x + 0.0156 0.034 (0 to 60 °C)
Toluene - - -

7. Redox behavior and spectroelectrochemistry

The electrochemical behaviour of all the compounds were assessed by performing cyclic
voltammetry and differential pulse voltammetry experiments in dry dichloromethane
(DCM) using tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting
electrolyte (Figures S20-S22). The calculated HOMO, LUMO energy values are
presented in Table S7, deep lying LUMO values indicated their electron deficient
character and deep lying HOMO values indicated their ambient stability. The alignment
of frontier molecular orbitals is presented in Figure S23 that shows the HOMO/LUMO
energy levels of energy acceptor ABDP lie well within the HOMO/LUMO levels of
donor PDI and such band alignments rule out the possibility of photoinduced electron

transfer process between donor and acceptor components.
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Figure S20. Cyclic voltammogram (a, b) and differential pulse voltammogram (c), (d) of PDI and ABDP

respectively in dry DCM with 0.1 M TBAHFP at ¢ ~ 0.5 mM vs. Ag/AgCI reference electrode at scan rate of 0.1
Vst
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Figure S21. Cyclic voltammogram (a, b) and differential pulse voltammogram (c), (d) of M1 and M2 respectively
in dry DCM with 0.1 M TBAHFP at ¢ ~ 0.5 mM vs. Ag/AgCl reference electrode at scan rate of 0.1V s™.
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Figure S22. Cyclic voltammogram (a, b) and differential pulse voltammogram (c), (d) of T and P respectively in
dry DCM with 0.1 M TBAHFP at ¢ ~ 0.5 mM vs. Ag/AgCl reference electrode at scan rate of 0.1 V s
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Figure S23. Alignment of frontier molecular orbital energy levels (in eV) obtained from cyclic voltammetry
measurements for reference as well as for final compounds.
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Table S7. Redox properties of all the compounds based on cyclic voltammetry.

Comp. Eoxonset Eredonset Aonset BHOMO °LUMO CEgOPt Eg&
V) (V) (nm) (eV) (eV) (eV) (eV)
PDI 1.18 -0.63 618 -5.94 -4.13 2.00 181
ABDP 0.94 -0.36 725 -5.70 -4.40 1.71 1.30
M1 0.86 -0.49 731 -5.62 -4.23 1.70 1.39
M2 0.85 -0.51 746 -5.61 -4.25 1.66 1.36
T 0.88 -0.47 736 -5.64 -4.29 1.69 1.35
P 0.90 -0.44 740 -5.66 -4.32 1.68 1.34
aHO'\/IO = '(EO)(Onset + 476) eV, bLUMO = ‘(EredonsEt + 476) EV and CEgopt = 1241/}\,onset.
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Figure S24. Spectroelectrochemical changes observed for (a), (b) PDI and (c), (d) ABDP during oxidation and

reduction cycles.
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Figure S25. Spectroelectrochemical changes observed for (a), (b) Triad T and (c), (d) Pentad P during oxidation
and reduction cycles (Inset figures represents the change in colour on oxidation and reduction stimuli).

8. Comparison of macrocycles and acyclic antenna

On comparison of macrocyclic systems M1 and M2 vs acyclic triad T and pentad P, the
following observations were made:

() In macrocycles M1 and M2, FRET efficiency was comparable to acyclic triad T and pentad
P. (1) Pentad P showed exceptional behavior with the bidirectional response of emission
intensity ratio towards temperature in toluene while others (M1, M2, and T) followed
unidirectional response. In case of macrocycles, cyclic switchability of intensity ratio with
temperature was more consistent as compared to open chain compounds due to conformational
restrictions. (I11) In the aggregation study of macrocyclic vs acyclic compounds, M1 formed
the most compact aggregate of average hydrodynamic diameter of ~ 68 nm compared to more
loosely bound aggregates of M2 (~295 nm), triad T (~255 nm), and pentad P (~295 nm).
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