Supporting Information for

Facile synthesis of single-crystalline MnO₂ nanowire arrays with high photothermal catalytic activity

Tetsuro Soejima,^{a, b*} Haruki Inoue,^b Keigo Egashira,^b Yaozong Yan^b and Hiroaki Tada^{a, b*}

- ^{a.} Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
- ^{b.} Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

E-mail: soejima@apch.kindai.ac.jp, h-tada@apch.kindai.ac.jp

Table of Contents

Materials3
Growth of TiO ₂ nanocorals on glass substrate ······3
Growth of γ-MnOOH and β-MnO ₂ nanowire arrays on TiO ₂ nanocorals ·······4
Analysis of the prepared nanocrystals4
Photothermal catalytic reaction ————————————————4-5
Fig. S1. SEM images of TiO_2 nanocoral substrates for the growth of γ -MnOOH NWA6
Fig. S2. Kubelka-Munk-transformed absorption spectrum of β-MnO ₂ NPs ·······7
Fig. S3. TEM image (a) and particle size distribution (b) of β-MnO ₂ NPs8
Fig. S4. A large scale HRTEM image of a γ-MnOOH nanowire9
Fig. S5. FT-IR spectra of (a) γ -MnOOH and (b) β -MnO ₂ NWA···················10
Fig. S6. High-resolution (a) Mn 2p and (b) Mn 3s XPS spectra of (A) γ-MnOOH and (B) β-MnO ₂ NW······11
Fig. S7. SEM images of a film sample. TiO_2 nanocoral substrates were placed in an aqueous solution containing $Mn(NO_3)_2$ and H_2O_2 at an angle against the wall of glass vials and were kept at 85 °C12
Fig. S8. SEM images of γ-MnOOH NWA obtained at various reaction temperatures; (a) 40 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C, (f) 90 °C13-14
Fig. S9. XRD patterns of γ-MnOOH NWA obtained at various reaction temperatures; (a) 40 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C, (f) 90 °C15

Fig. S10. Time-course changes in pH on the growth solutions of γ-MnOOH NWA with or without Mn(NO ₃) ₂
16
Fig. S11. XRD pattern of the as-prepared film sample. TiO_2 nanocoral substrates were placed in an aqueous solution containing $Mn(NO_3)_2$ and HMT at an angle against the wall of glass vials and were kept at 85 °C ···············17
Fig. S12. Temperature change in the bulk reaction solution during the photothermal reaction in the β -MnO ₂ NW and β -MnO ₂ NP catalyst systems.
Fig. S13. Repeated photothermal reaction in the β-MnO ₂ NWA catalyst system. ————————————————————————————————————
Fig. S14. SEM image of the β-MnO ₂ NWA catalyst used after the repeated photothermal reaction. ······20
Fig. S15. XP spectrum of the β-MnO ₂ NWA catalyst used after the repeated photothermal reaction. ·······21

Materials.

All aqueous solutions were prepared with distilled water. Glass slides (18 mm × 32 mm × 0.13-0.17 mm) as the substrate to grow TiO₂ nanocorals and MnOOH and MnO₂ nanowire arrays (NWA) were purchased from Matsunami Glass Ind., Ltd. Acetonitrile, phenazine-2,3-diamine, and hydrochloric acid (HCl) were purchased from FUJIFILM Wako Pure Chemical Corporation. Hydrogen peroxide for the photothermal catalytic reaction, sodium carbonate (Na₂CO₃), and hexamethylenetetramine (HMT) were purchased from KISHIDA CHEMICAL Co.,Ltd. Manganese(II) nitrate hexahydrate (Mn(NO₃)₂·6H₂O) and β -MnO₂ nanoparticles were purchased from KANTO CHEMICAL CO.,INC. *o*-Phenylenediamine and hydrogen peroxide (35%, H₂O₂) for the syntheses of TiO₂ and manganese oxide nanostructures were purchased from Tokyo Chemical Industry Co., Ltd. Titanium(IV) oxysulfate hydrate (TiOSO₄·nH₂O, n ~ 5) was purchased from NACALAI TESQUE, INC.

Growth of TiO₂ nanocorals on glass substrate

71.25 mg of TiOSO₄·nH₂O and 60 μL of 35% H₂O₂ aqueous solution were added to 19 mL of water, and then the pH was adjusted to 1.30 with the addition of concentrated HCl. After TiOSO₄ was completely dissolved, 42.0 mg of Na₂CO₃ was added to the aqueous solution of TiOSO₄–H₂O₂. The obtained aqueous solution was poured in glass vials with polypropylene screw caps. A glass slide was immersed and placed against the inside wall. The sample was heated at 80 °C for 15 h in a constant-temperature drying oven. The obtained thin films were washed with water, and dried in air at room temperature. The as-prepared film was calcined at 400 °C for 2 h in an electric furnace to improve adhesion between TiO₂ nanocorals and the glass substrate. The TiO₂ nanocoral consists of a rutile overlayer with 400-500 nm thickness and an anatase underlayer with 50-100 nm thickness.

Growth of γ-MnOOH and β-MnO₂ nanowire arrays on TiO₂ nanocorals

45 μ L of Mn(NO₃)₂·6H₂O and 60 μ L of H₂O₂ aqueous solution were added to 19 mL of water, and then 0.04 g of HMT was added to the aqueous solution of Mn(NO₃)₂–H₂O₂. The obtained aqueous solution was poured in a glass vial with a polypropylene screw cap after HMT has been dissolved. A substrate was immersed and placed against the inside wall. The sample was heated at 85 °C for 5 h. The obtained thin film was washed with water and dried in air at room temperature. The as-prepred film was calcined at 400 °C for 2 h in an electric furnace to convert the as-grown γ -MnOOH into β -MnO₂.

Analysis of the prepared nanocrystals

X-ray diffraction (XRD) was performed using a Shimadzu XD-D1. Field-emission scanning electron microscopy (SEM) was performed using a Hitachi S-5000 and a Hitachi S-4800 type II. UV-vis-near infrared diffuse reflectance spectra were measured using a JASCO V-670 UV-Vis spectrophotometer with an integrating sphere. X-ray photoelectron spectroscopy (XPS) was performed using a Shimadzu KRATOS-AXIS Nova spectrometer (X-ray source operated at 15 kV) and a ULVAC-PHI VersaProbe 4 (X-ray source operated at 15 kV). The observed sample was sputtered using Pt-Pd alloy before SEM observation. The measured binding energies by the XPS were referenced to the C 1s line at 284.6 eV. TEM observations was performed using a JEOL JEM-4000EX (acceleration voltage, 400 kV). The photoluminescence (PL) spectra were collected by means of a JASCO FP-6000 spectrofluorometer with varying excitation wavelengths at -196°C.

Catalytic and photothermal catalytic reactions

The oxidative coupling of OPD to DAP was carried out using a double jacket-type reaction cell in the dark and under illumination of simulated sunlight (PEC-L12-S17, Peccell technologies, Inc.) (AM 1.5 one sun, λ > 660 nm). The light intensity at the place of the reaction cell was adjusted to 100 mW cm⁻², and then the light was irradiated through an optical filter (AGC TECHNO GLASS Co., R-68). A H₂O-acetonitrile solution (20 mL, 9 : 1 v/v) of 5 mM o-phenylenediamine (OPD) with or without H₂O₂ (10 mM) was placed in the reaction cell, and then, β -MnO₂ NWA-grown glass substrate (2 cm × 2.5 cm) was immersed into the solution. For comparison, commercial β -MnO₂ NPs (Kanto Chemicals) were used as the catalyst in the place of β -MnO₂ NWA. In this case, the amounts of MnO₂ contained in both the systems were made the same (1.5 mg). At a given time, an aliquot of the reaction solution was taken to be diluted ten times with water. The concentraiton of 2,3-diaminophenazine (DAP) was determined by the absorption intensity at 420 nm by using a UV-vis spectrophotometer (Shimadzu Corporation, UV-1800).

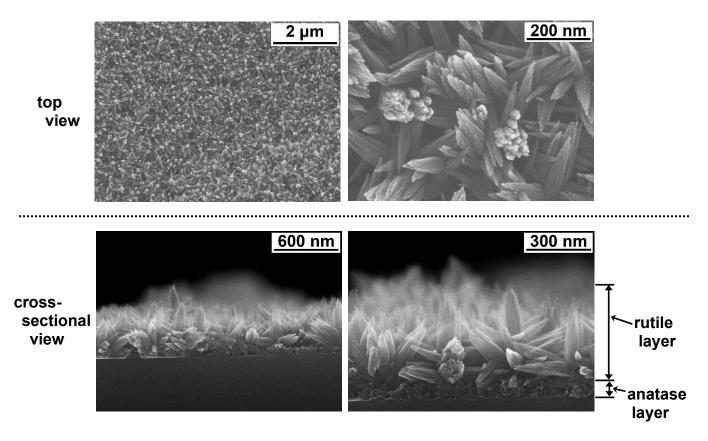


Fig. S1. SEM images of TiO_2 nanocoral substrates for the growth of γ -MnOOH NWA. TiO_2 nanocorals consist of anatase base film and rutile nanocoral layer.

Fig. S2. Kubelka-Munk-transformed absorption spectrum of β -MnO₂ NPs, and the solar spectrum for comparison. Diffuse reflectance spectrum of β -MnO₂ NPs was measured by diluting them to 30% with BaSO₄.

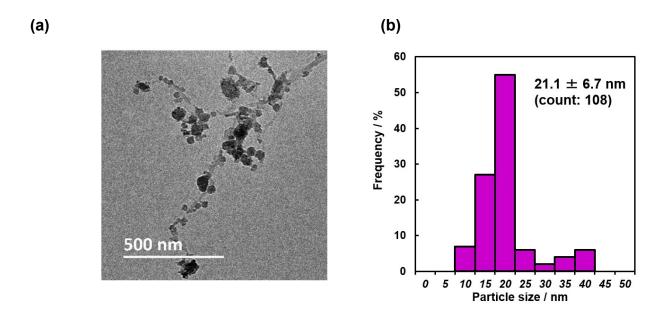
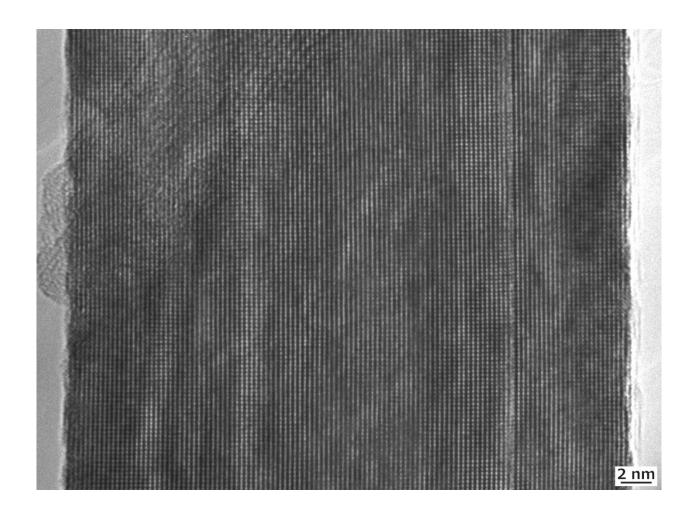



Fig. S3. TEM image (a) and particle size distribution (b) of $\beta\text{-MnO}_2$ NPs.

Fig. S4. A large scale HRTEM image of a γ-MnOOH nanowire.

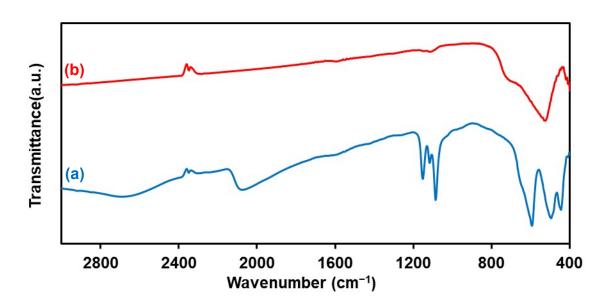
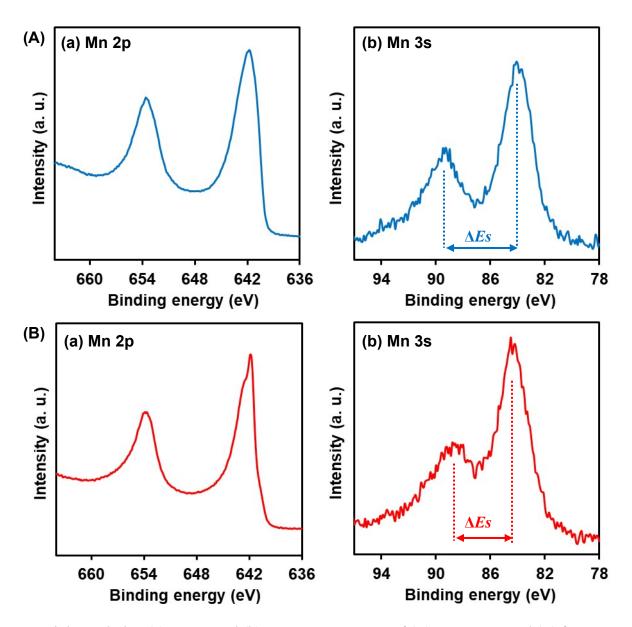



Fig. S5. FT-IR spectra of (a) γ -MnOOH and (b) β -MnO₂ NWA.

Fig. S6. High-resolution (a) Mn 2p and (b) Mn 3s XPS spectra of (A) γ -MnOOH and (B) β -MnO₂ NWA. The average oxidation state (AOS) of manganese was calculated by using the magnitude of Mn3s multiplet splitting (ΔEs), according to the following relationship;

$$AOS = 8.95 - 1.13 \Delta Es$$

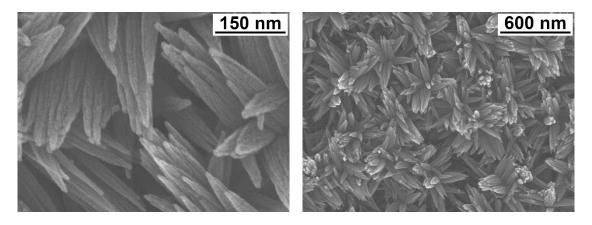
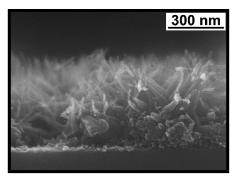
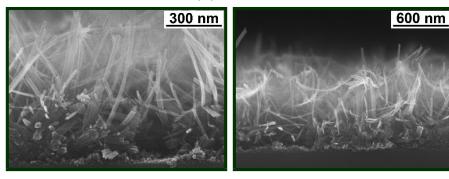
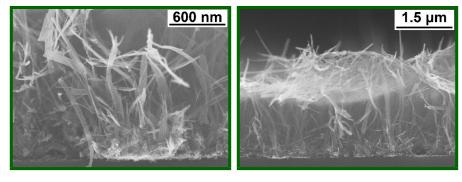
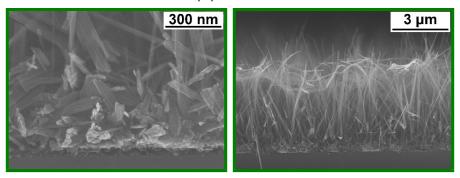
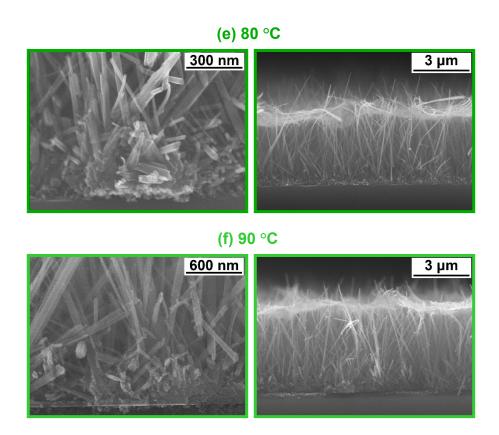




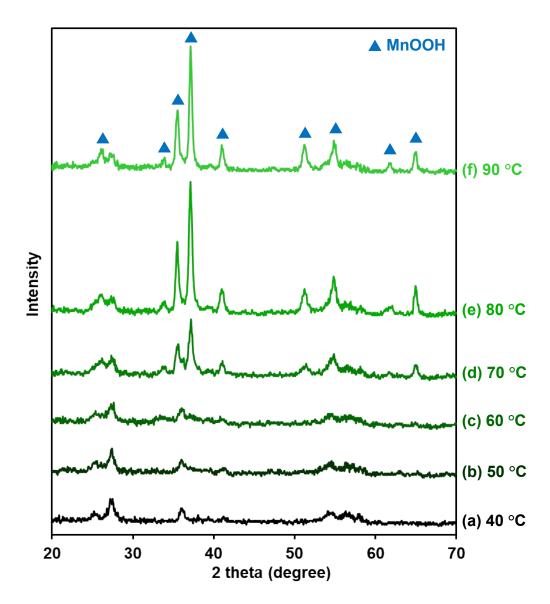
Fig. S7. SEM images of a film sample. TiO_2 nanocoral substrates were placed in an aqueous solution containing $Mn(NO_3)_2$ and H_2O_2 at an angle against the wall of glass vials and were kept at 85 °C.


(a) 40 °C


(b) 50 °C



(c) 60 °C



(d) 70 °C

Fig. S8. SEM images of γ-MnOOH NWA obtained at various reaction temperatures; (a) 40 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C, (f) 90 °C.

Fig. S9. XRD patterns of γ -MnOOH NWA obtained at various reaction temperatures; (a) 40 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C, (f) 90 °C.

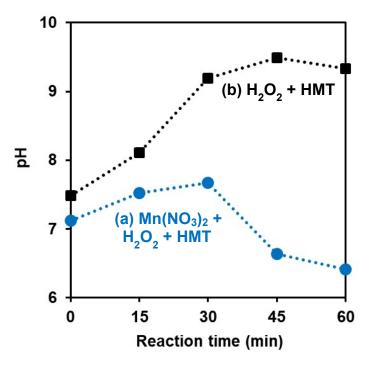
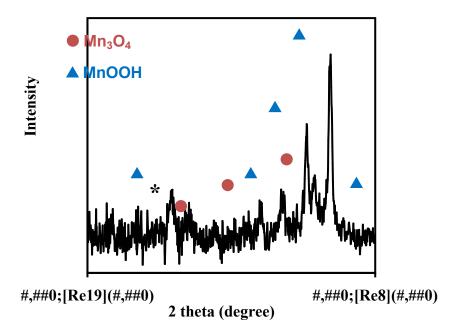
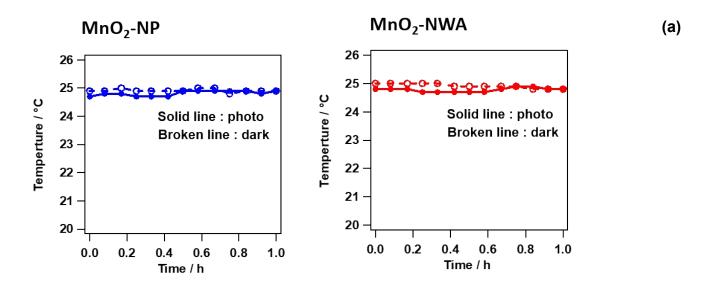




Fig. S10. Time-course changes in pH on the growth solutions of γ -MnOOH NWA with or without Mn(NO₃)₂.

Fig. S11. XRD pattern of the as-prepared film sample. TiO₂ nanocoral substrates were placed in an aqueous solution containing Mn(NO₃)₂ and HMT at an angle against the wall of glass vials and were kept at 85 °C.

S12. Temperature change in the bulk reaction solution during the photothermal reaction in the β -MnO₂ NP and β -MnO₂ NWA catalyst systems. The temperature was directly measured by thermometer while taking care to avoid its direct light exposure.

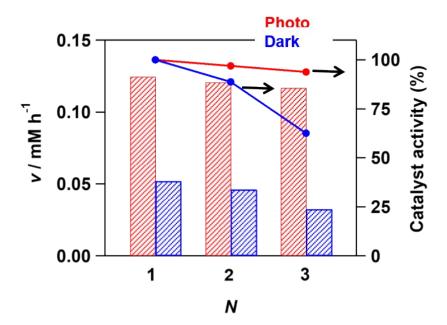


Fig. S13. Stability of β -MnO₂ NWA during the repeated dark (blue) and photothermal (red) reactions. N denotes the repetition number of the reaction.

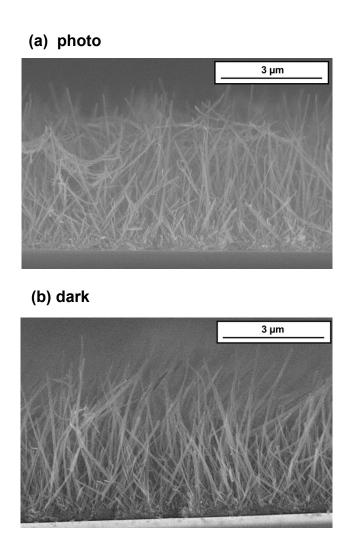


Fig. S14. SEM image of the β -MnO₂ NWA catalyst used after the repeated photothermal reaction.

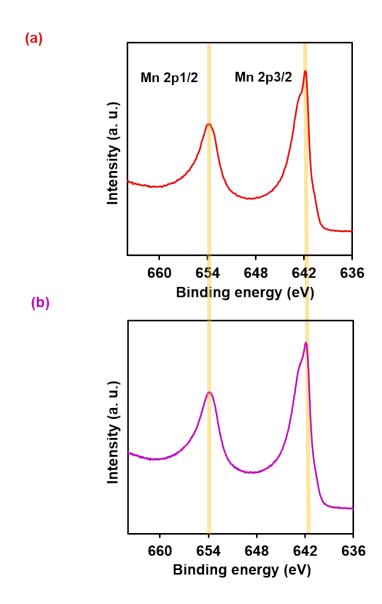


Fig. S15. Mn 2p XPS spectra of the β -MnO₂ NWA catalyst used (a) before and (b) after the repeated photothermal reaction.