Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Fluorescence "ON-OFF-ON" Response in the Formation of a Tetrahedral

Anionocage and Encapsulation of Halogenated Hydrocarbons

Jie Zhao,^{a, b#} Wenyao Zhang,^{b#} Yayun Zheng,^{b#} Yue Wang,^b Dong Yang^b*

^a School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

^b Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

E-mail: yangdong@nwu.edu.cn

Table of Contents:

- S1. General considerations
- S2. Synthesis of L^{NO2}, L^{Me} and cage 1^{Me}
- S3. ¹H NMR spectroscopy
- **S4. Fluorescence property**
- **S5. UV-vis property**
- S6. X-ray crystallography
- S7. High-Resolution MS Study
- **S8. Reference**

S1. General considerations

The *p*-tolyl isocyanate was purchased from Alfa Aesar and used as received. All solvents and other reagents were of reagent grade quality and purchased commercially. ¹H and ¹³C NMR spectra were recorded on a Varian unity INOVA-400 spectrometer at 400, and 100 MHz, respectively, using TMS as an internal standard for ¹H and ¹³C.

S2. Synthesis of ligand L^{NO2}, L^{Me} and cage 1^{Me}

Scheme S1. Synthesis of ligand L^{Me}.

L^{NO2}

L^{NO2} was synthesized according to the literature procedures.¹

L^{Me}

Compound a^1 (0.3 g, 0.4 mmol) was dissolved in 6 mL of DMF and the solution was added dropwise into a 10 mL THF solution of p-tolyl isocyanate (0.45 g, 2.7 mmol). The mixture was refluxed for 24 hours and the precipitate thus obtained was filtered off and washed with toluene and diethyl ether and then dried over vacuum to yield a yellow solid (0.39 g, 0.34 mmol, 84 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.24 (s, 1H, NHa), 8.97 (s, 1H, NHb), 8.10 (s, 1H, NHc), 8.04 (s, 1H, NHd), 7.79 (d, *J* = 8.0 Hz, 3H, H1/H3), 7.62 (m, 4H, H2/H4/H7), 7.35 (s, *J* = 8.0 Hz, 2H, H8), 7.09 (m, 4H, H5/H6/H9), 2.23 (s, 3H, H10); ¹³C NMR (100 MHz, DMSO-*d*₆): 153.3 (CO), 153.2 (CO), 141.2 (C), 139.6 (C), 137.3 (C), 133.6 (C), 131.4 (C), 131.2 (C), 130.6 (C), 129.2 (CH), 127.5 (CH), 124.1 (CH), 124.0 (CH), 123.9 (CH), 122.6 (CH), 118.5 (CH), 118.3 (CH), 20.4 (CH₃). IR (KBr, v/cm⁻¹): 3306 (NH), 1635 (CO), 1607 (CO), 1556, 1512, 1450, 1402, 1314, 1291, 1241, 1104, 892, 812, 742, 675, 569, 501, 465. ESI-MS: m/z 1153.45, calculated for C₆₉H₆₁N₁₂O₆ [M + H] 1153.48; 1175.44, calculated for C₆₉H₆₀N₁₂O₆Na [M + Na] 1175.46.

Figure S2. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of L^{Me}.

Cage 1^{Me}

The synthesis of cage 1^{Me} : (TBA)₃PO₄ (13 µL, 0.625 mol/L; generated in situ from (TBA)OH and H₃PO₄ in water) was added to a suspension of L^{Me} (10 mg, 8 µmol) in acetone (1 mL). After stirring overnight at room temperature, centrifuged to collect clear colorless solution. Slow vapor diffusion of diethyl ether into this solution provided colorless crystals of cage 1^{Me} within two weeks.

S3. ¹H NMR spectroscopy

Figure S3. ¹H NMR titration (400 MHz, DMSO-*d*₆, 298 K) of L^{Me} (5 mM) with [K([18]crown-6)]₃PO₄.

Figure S4. ¹H NMR titration (400 MHz, DMSO-*d*₆, 298 K) of L^{Me} (5 mM) with (TMA)₃PO₄.

Figure S5. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) (top, 1 mM) and $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) with 20 eq. CCl₄ (bottom).

Figure S6. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) (top, 1 mM) and $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) with 20 eq. C(CH₃)Cl₃ (bottom).

Figure S7. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) (top, 1 mM) and $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) with 40 eq. C(CH₃)₂Cl₂ (bottom).

Figure S8. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) (top, 1 mM) and $(TPA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4 \supset CH_3CN]$ ($\mathbf{1}^{Me} \supset CH_3CN$) with 40 eq. C(CH₃)₃Cl (bottom).

Figure S9. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of (TPA)₁₂[(PO₄)₄(\mathbf{L}^{Me})₄ \supset CH₃CN] ($\mathbf{1}^{Me}$ \supset CH₃CN) (top, 1 mM) and (TPA)₁₂[(PO₄)₄(\mathbf{L}^{Me})₄ \supset CH₃CN] ($\mathbf{1}^{Me}$ \supset CH₃CN) with 20 eq. CFCl₃ (bottom).

S4. Fluorescence property

Figure S10. Fluorescence excitation and emission spectrum of L^{Me} (40 μ M in DMSO).

Figure S11. Fluorescence emission spectra of L^{NO2} and L^{Me} (40 μ M in DMSO).

Figure S12. Fluorescence emission spectra of $(TPA)_{12}[(PO_4)_4(L^{Me})_4 \supset CH_3CN]$ ($1^{Me} \supset CH_3CN$) under room temperature and at 77 K (40 µM in DMSO).

Binding constants studies

The binding constants were evaluated by fluorescence titrations. All the measurements were performed at room temperature. In the titrations, successive addition of known amounts of PO_4^{3-} anions or guests to a 3 mL solution of L^{Me} (40 μ M, DMSO) or cage 1^{Me} (10 μ M, CH₃CN).

The binding constant (Ka) and coefficient value (n) were calculated using the Hill equation.²

$$\theta = \frac{\Delta I}{\Delta I_{max}} \tag{S1}$$

)

$$\log \frac{\theta}{1-\theta} = n \log[G] + n \log Ka$$
(S2)

Where θ is the fraction of binding sites occupied by the guests (or PO₄³⁻), [G] is the

concentration of guest (or PO_4^{3-}), *n* is the Hill coefficient describing cooperativity, and *K*a is the apparent association constant.

In the Hill equation, the value of θ was obtained using Equation S1. The value of θ was obtained by using the change of fluorescence intensity (ΔI) as compared against the maximum change of fluorescence intensity (ΔI_{max}).

Guest	$K_{\rm a}/~{ m M}^{-1}$
C(CH ₃) ₃ Cl	198 ± 1
$C(CH_3)_2Cl_2$	409 ± 1
C(CH ₃)Cl ₃	280 ± 2
CCl ₄	693 ± 1
CFCl ₃	391 ± 2
TMA^+	$(2.91 \pm 0.01) \times 10^5$

Table S1. Binding constants (Ka, M^{-1}) of cage 1^{Me} to different guests.

Figure S14. a) Fluorescence emission spectra (λ_{ex} =335) of cage 1^{Me} (10 µM) in acetonitrile upon addition of C(CH₃)₃Cl, b) Fluorescence intensity vs [C(CH₃)₃Cl]/[Cage 1^{Me}] and c) log $\frac{\theta}{1-\theta}$ vs log[C(CH₃)₃Cl].

Figure S15. a) Fluorescence emission spectra (λ_{ex} =335) of cage 1^{Me} (10 µM) in acetonitrile upon addition of

Figure S16. a) Fluorescence emission spectra (λ_{ex} =335) of cage 1^{Me} (10 µM) in acetonitrile upon addition of

C(CH₃)Cl₃, b) Fluorescence intensity vs [C(CH₃)Cl₃]/[Cage 1^{Me}] and c) $\log \frac{\theta}{1-\theta}$ vs log[C(CH₃)Cl₃].

Figure S17. a) Fluorescence emission spectra (λ_{ex} =335) of cage $\mathbf{1}^{Me}$ (10 µM) in acetonitrile upon addition of CCl₄, b) Fluorescence intensity vs [CCl₄]/[Cage $\mathbf{1}^{Me}$] and c) $\log \frac{\theta}{1-\theta}$ vs log [CCl₄].

Figure S18. a) Fluorescence emission spectra (λ_{ex} =335) of cage 1^{Me} (10 µM) in acetonitrile upon addition of

CFCl₃, b) Fluorescence intensity vs [CFCl₃]/[Cage 1^{Me}] and c) $\log \frac{\theta}{1-\theta}$ vs log [CFCl₃].

Figure S19. a) Fluorescence emission spectra (λ_{ex} =335) of cage 1^{Me} (10 µM) in acetonitrile upon addition of

TMA⁺, b) Fluorescence intensity vs [TMA⁺]/[Cage 1^{Me}] and c) $\log \frac{\theta}{1-\theta}$ vs log [TMA⁺].

Figure S20. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 μ M) in DMSO upon addition of C(CH₃)₃Cl.

Figure S21. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 μ M) in DMSO upon addition of C(CH₃)₂Cl₂.

Figure S22. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 µM) in DMSO upon addition of C(CH₃)Cl₃.

Figure S23. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 μ M) in DMSO upon addition of CCl₄.

Figure S24. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 μ M) in DMSO upon addition of CFCl₃.

Figure S25. Fluorescence emission spectra (λ_{ex} =335) of L^{Me} (40 μ M) in DMSO upon addition of TMA⁺.

Detection limits

Figure S26. A plot of the difference of the fluorescence intensity (ΔI) at 381 nm versus the concentration of C(CH₃)₃Cl. Linear Equation: $y = (2.5 \times 10^8) \text{ x} - 17600.5$, $R^2 = 0.9639$; y = 0, $x = 69.1 \mu M$.

Figure S27. A plot of the difference of the fluorescence intensity (ΔI) at 381 nm versus the concentration of C(CH₃)₂Cl₂. Linear Equation: $y = (8.7 \times 10^8) \text{ x} - 30401.3$, $R^2 = 0.98099$; y = 0, $x = 34.9 \text{ }\mu\text{M}$.

Figure S28. A plot of the difference of the fluorescence intensity (ΔI) at 381 nm versus the concentration of C(CH₃)Cl₃. Linear Equation: $y = (3.2 \times 10^8) x - 9622.0$, $R^2 = 0.90543$; y = 0, $x = 30.0 \mu$ M.

Figure S29. A plot of the difference of the fluorescence intensity (ΔI) at 381 nm versus the concentration of CCl₄. Linear Equation: $y = (4.9 \times 10^8) x - 8826.1$, $R^2 = 0.995$; y = 0, $x = 18.0 \mu M$.

Figure S30. A plot of the difference of the fluorescence intensity (ΔI) at 381 nm versus the concentration of CFCl₃. Linear Equation: $y = (6.6 \times 10^8) \text{ x} - 18767.1$, $R^2 = 0.98395$; y = 0, $x = 28.3 \mu M$.

Binding of different anions

The binding ability of L^{Me} with various anions was examined by fluorescence spectra (tetra-n-butylammonium (TBA⁺) as counter cation without special instructions). The addition of PO₄³⁻ anions caused significant fluorescence quenching. The other anions, such as NO₃⁻, Br⁻, Cl⁻, I⁻, and HSO₄⁻ induced no obvious change and SO₄²⁻, CO₃²⁻ ([K([18]crown-6)]⁺ as counter cation), HCO₃⁻ ([Na([15]crown-5)]⁺ as counter cation), AcO⁻, H₂PO₄⁻ and HPO₄²⁻ quenched fluorescence to some extent (Figure S31).

Figure S31. a) Fluorescence emission spectra ($\lambda ex = 330 \text{ nm}$) of L^{Me} (40 µm in DMSO) upon addition of various anions (10 equiv); b) Variation of fluorescence intensity at $\lambda em = 381 \text{ nm}$.

Fluorescence lifetime

Fluorescence decay for L^{Me} at 380 nm, A_4L_4 (TBA)₁₂[(PO₄)₄(L^{Me})₄] (cage 1^{Me}) at 381 nm were measured (Figures S32, S33). Fluorescence decay measurements of L^{Me} at 380 nm showed a double-exponential behavior with lifetime of 0.42 ns and 4.75 ns. When L^{Me} coordinate with PO₄³⁻ anions to form cage 1^{Me}, the short-lived component (τ 1) is almost the same, while the long-lived component (τ 2) decreased from 4.75 ns to 2.50 ns (Table S2). The decrease of the long-lived lifetime may be ascribed to dynamic quenching by free (TBA)₃PO₄. Fluorescence decay for cage 1^{Me} was also measured in acetonitrile for the comparison with host-guest complexes. The lifetimes of cage 1^{Me} are lengthened in acetonitrile (from 0.41 ns to 0.63 ns for τ 1, and 2.50 ns to 6.30 ns for τ 2) duo to the influence of solvent polarity.

Figure S32. Fluorescence emission decays of L^{Me} ($\lambda em = 380$ nm, 40 μ M in DMSO).

Figure S33. Fluorescence emission decays of $(TBA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4]$ (cage $\mathbf{1}^{Me}$, $\lambda em = 381$ nm, 10 μ M in DMSO).

Figure S34. Fluorescence emission decays of $(TBA)_{12}[(PO_4)_4(\mathbf{L}^{Me})_4]$ (cage $\mathbf{1}^{Me}$, $\lambda em = 381$ nm, 10 μ M in acetonitrile).

Figure S35. Fluorescence emission decays of Cage $1^{Me} \supset C(CH_3)_3 Cl$ ($\lambda em = 381$ nm, 10 μ M in acetonitrile).

Figure S36. Fluorescence emission decays of Cage 1^{Me} TMA⁺ ($\lambda em = 381$ nm, 10 μ M in acetonitrile).

Complex	$Component\left(\tau_i\right)$	$\tau_{i}\left(ns\right)$	
L ^{Me} [a]	(au_1) (au_2)	0.42(91.85) 4.75(8.15)	
Cage 1 ^{Me [a]}	(au_1) (au_2)	0.41(91.61) 2.50(8.39)	
Cage 1 ^{Me [b]}	(au_1) (au_2)	0.63(45.17) 6.30(54.83)	
Cage 1 ^{Me} ⊃C(CH ₃) ₃ Cl ^[b]	(au_1) (au_2)	0.63(41.16) 6.01(58.84)	
Cage 1 ^{Me} ⊃TMA ^{+ [b]}	(τ ₁) (τ ₂)	0.60(44.39) 6.08(55.61)	

Table S2. Lifetimes (τ_i) of L^{Me} and Cage 1^{Me} ((TBA)₁₂[(PO₄)₄(L^{Me})₄]), Cage $1^{Me} \supset C(CH_3)_3Cl$ and Cage $1^{Me} \supset TMA^+$.

^[a] Measured in DMSO, ^[b] measured in acetonitrile.

Table S3. Fluorescence quantum yield of L^{Me} , Cage 1^{Me} ((TBA)₁₂[(PO₄)₄(L^{Me})₄]), Cage $1^{Me} \supset C(CH_3)_3Cl$ and Cage $1^{Me} \supset TMA^+$ and L^{NO2} .

Complex	Quantum yield (Φ , %)
L ^{Me} [a]	42.5
Cage 1 ^{Me [a]}	3.3
Cage 1 ^{Me [b]}	3.6
Cage 1 ^{Me} ⊃C(CH ₃) ₃ Cl ^[b]	13.7
Cage 1 ^{Me} ⊃TMA ^{+[b]}	0.8
L ^{NO2} [a]	< 0.1

^[a] Measured in DMSO, ^[b] measured in acetonitrile.

S5. UV-vis property

Figure S37. a) UV-vis absorption spectra of L^{Me} with different concentrations in DMSO, b) plots of UV-vis intensity (295 nm) vs [L^{Me}], the extinction coefficient of L^{Me} was determined as $(1.21 \pm 0.02) \times 10^6 \text{ M}^{-1} \text{ cm}^{-1}$.

Figure S38. UV-vis spectra (2.5 μM in CH₃CN) of a) cage 1^{Me} and cage 1^{Me} with C(CH₃)₃Cl, b) cage 1^{Me} and cage 1^{Me} with C(CH₃)₂Cl₂, c) cage 1^{Me} and cage 1^{Me} with C(CH₃)Cl₃, d) cage 1^{Me} and cage 1^{Me} with CCl₄, e) cage 1^{Me} and cage 1^{Me} with CFCl₃, f) cage 1^{Me} and cage 1^{Me} with TMA⁺. All the guest molecules were in a saturated state.

S6. X-ray crystallography

Diffraction data were collected on Rigaku XtaLAB Pro diffractometer with Cu-K α radiation (λ = 1.54178 Å) at 100 K. An empirical absorption correction using SADABS was applied for all data. The structures of cage 1^{Me} were solved by dual space using the SHELXT program. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^2 by the use of the SHELXL program. Hydrogen atoms bonded to carbon and nitrogen were included in idealized geometric positions with thermal parameters equivalent to 1.2 times those of the atom to which they were attached. The site occupancy factors of C₃H₆O is 0.68.

One aryl rings for $1^{Me} \supset C_3H_6O$ were refined with restraints. Two TBA⁺ counter cation in $1^{Me} \supset C_3H_6O$ were refined with restraints.

The remaining solvents could not be successfully resolved despite numerous attempts at modeling, and consequently the SQUEEZE function of PLATON was required to account for these highly disordered solvents. The removed void electron density corresponds to about 26 water molecules for $1^{Me} \supset C_3 H_6 O$ per cage.

Due to the moderate quality of the diffraction data, amount of the TBA⁺ molecules could not be completely located. In addition, some twisty aryl rings and the highly disordered TBA⁺ molecules of $1^{Me} \supset C_3H_6O$ caused the alerts level B in the checkCIF report. The difference between the given and expected formula weight caused the alerts level c in the checkCIF report.

CCDC 2218391 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S39. Crystal structure of the tetrahedral cage $[(PO_4)_4 L^{Me_4}]^{12-}$ with an encapsulated acetone.

	1 ^{Me} ⊃C ₃ H ₆ O
Empirical formula	$C_{470.03}H_{676.06}N_{60}O_{40.68}P_4$
Formula weight	7941.81
Crystal System	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a (Å)	31.4137(3)
<i>b</i> (Å)	32.1377(2)
<i>c</i> (Å)	50.4723(4)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(Å^3)$	50955.0(7)
Ζ	4
$D_{\rm calc}, { m g/cm^3}$	1.035

Table S4. Crystal data of $1^{Me} \supset C_3H_6O$.

Flack parameter	0.383(14)
No. of unique data	97172
<i>T</i> (K)	100(2)
Total no. of data	241157
Crystal size (mm)	0.10 x 0.10 x 0.10
heta range	2.153 to 73.126
Completeness to θ	99.8 %
Goodness-of-fit on F^2	1.058
<i>R</i> 1	0.0909
wR2	0.2505

Table S5. Hydrogen bonds around the $PO_4^{3^-}$ ions in $1^{Me} \supset C_3H_6O$.

_

PO ₄	D–H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(DHA)
P1	N21-H21O27	0.88	2.07	2.917(3)	161
	N22-H22A…O25	0.88	1.95	2.761(3)	152
	N23-H23A…O25	0.88	1.90	2.777(3)	175
	N24-H24O28	0.88	1.99	2.796(3)	152
	N33-H33A…O27	0.88	2.22	2.814(3)	124
	N24-H34…O26	0.88	1.92	2.771(3)	163
	N35-H35…O26	0.88	1.91	2.786(3)	173
	N36-H36AO25	0.88	1.95	2.792(3)	161
	N45-H45O27	0.88	1.98	2.823(3)	161
	N46-H46A…O28	0.88	1.98	2.810(3)	156
	N48-H48O26	0.88	1.98	2.813(4)	158
	N47-H47AO28	0.88	1.88	2.752(4)	169
P2	N9-H9A…O31	0.88	2.09	2.793(3)	136
	N10-H10···O30	0.88	1.96	2.793(3)	157
	N11-H11A···O30	0.88	1.93	2.798(3)	168
	N12-H12A…O29	0.88	1.94	2.803(3)	165
	N13-H13…O31	0.88	2.03	2.825(2)	149
	N14-H14…O29	0.88	1.96	2.777(3)	154
	N15-H15A…O29	0.88	1.89	2.759(3)	169
	N16-H16A…O32	0.88	1.95	2.793(3)	160
	N29-H29A…O31	0.88	2.07	2.892(3)	155
	N30-H30A···O32	0.88	1.96	2.802(3)	160
	N31-H31O32	0.88	1.91	2.767(3)	163
	N32-H32AO30	0.88	1.96	2.824(3)	165
P3	N1-H1A034	0.88	2.02	2.822(3)	151
	N2-H2···O33	0.88	2.02	2.849(3)	156
	N3-H3A…O33	0.88	1.89	2.762(3)	173

	N4-H4O35	0.88	2.00	2.832(3)	157
	N25-H25A…O34	0.88	2.09	2.938(3)	162
	N26-H26AO35	0.88	1.92	2.744(3)	155
	N27-H27O35	0.88	1.93	2.793(3)	167
	N28-H28····O36	0.88	1.97	2.840(3)	168
	N41-H41O34	0.88	2.17	2.945(3)	146
	N44-H44AO33	0.88	1.96	2.819(3)	165
	N42-H42O36	0.88	2.01	2.752(3)	141
	N43-H43A…O36	0.88	1.89	2.761(3)	171
P4	N5-H5AO38	0.88	2.07	2.895(3)	155
	N6-H6O40	0.88	2.00	2.791(3)	148
	N7-H7O40	0.88	1.88	2.750(3)	169
	N8-H8AO39	0.88	1.94	2.766(3)	156
	N17-H17A····O38	0.88	2.04	2.867(3)	155
	N18-H18AO37	0.88	1.96	2.765(3)	152
	N19-H19O37	0.88	1.94	2.798(3)	167
	N20-H20····O40	0.88	2.04	2.866(3)	156
	N37-H37A····O38	0.88	2.04	2.812(3)	146
	N38-H38AO39	0.88	1.90	2.762(3)	165
	N39-H39AO39	0.88	1.93	2.795(3)	166
	N40-H40O37	0.88	1.97	2.809(3)	160

S7. High-Resolution MS Study

Figure S40. The high-resolution ESI-spectra of $(L^{Me})_4(PO_4)_4(TBA)_{12}$ in different valences.

S8. Reference

- D. Yang, J. Zhao, Y. Zhao, Y. Lei, L. Cao, X.-J. Yang, M. Davi, N. d. S. Amadeu, C. Janiak, Z. Zhang, Y.-Y. Wang and B. Wu, *Angew. Chem. Int. Ed.*, 2015, 54, 8658-8661.
- 2. H. Takezawa, T. Murase, G. Resnati, P. Metrangolo and M. Fujita, *J. Am. Chem. Soc.*, 2014, **136**, 1786-1788.