Electronic Supplementary Information

Design and Synthesis of a New Family of Planar and Central Chiral Ferrocenyl Phosphine Ligands

Li Ling,‡^{ab} Zeli Song,‡^{ab} He Shan,^{ab} Chao Wang,^{ab} Shouting Li,^{ab} Yanjiao Wang,^{ab} Jianfeng Hu,^{ab} Qian Chen,^c Hao Zhang^{*ab} and Yong Yang^{*de}

- a College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. E-mail: haozhang@imu.edu.cn
- b Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China.
- c College of Chemical Engineering, Southwest Forestry University, Kunming, 650224, P. R. China.
- d State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China. E-mail: yyong@sxicc.ac.cn
- e National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P. R. China.

‡These authors equally contributed to this work.

Table of Contents

1. General Information	S 3
2.General procedure for preparation of substrates (1a-1f)	S4
3. General procedure for preparation of substrates (2a-2k)	S 8
4. General procedure for preparation of substrates (3a-3r)	S17
5. General procedure for preparation of substrates (4a-4q)	S32
6. General procedure for preparation of substrates (5)	S49
7. General procedure for preparation of substrates (6)	S51
8. General procedure for preparation of substrates (7)	S 53
9. ¹ H, ¹³ C and ³¹ P NMR spectra	S55
10. Crystal data for compounds	S127
11. HRMS (ESI-TOF) spectra	S136
12. HPLC spectra	S154

1. General Information

All manipulations of air- and moisture-sensitive compounds were performed under a nitrogen atmosphere by use of standard Schlenk techniques or a nitrogen atmosphere in a MBRAUN LabMaster PRS314/10-164-2 glovebox. All ¹H NMR, ¹³C NMR, ³¹P NMR spectra were recorded on a Bruker Avance (500 MHz) instrument. The ¹H NMR chemical shifts were measured relative to tetramethylsilane as an internal standard (TMS: $\delta = 0$ ppm). The ¹³C NMR chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: $\delta = 77.00$ ppm). The ³¹P NMR chemical shifts were measured relative to 85% H₃PO₄ as external standard (85% H₃PO₄: $\delta = 0$ ppm). Highresolution mass spectra (HRMS) were obtained on a Bruker QTOF mass spectrometer. Optical rotation was measured on a Anton Paar MCP100 polarimeter. Enantiomeric excess was determined by a Shimadzu LC-20A liquid chromatograph, using chiralpak® OD-H column, chiralpak® AD-H column, or chiralpak® OJ-H column with hexane and i-PrOH as solvent.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification.

2. General procedure for preparation of substrates (1a-1f)

R= H, -CH₃, -OCH₃, -CI

30 mmol substituted 2-bromobenzene boric acid, 10 mmol *N*-Tosylhydrazone and 30 mmol of K₂CO₃ were charged into 500 mL oven-dried flasks, and backfilled with Argon three times. 120 mL freshly distilled 1,4-dioxane was then injected into the flask, which were heated up to reflux for 20 h. The solvent was eliminated under vacuum pump. Water and dichloromethane was added and the layers were separated. The aqueous phase was extracted three times with dichloromethane. The combined organic phase was dried over MgSO₄. The concentrated residue was purified by column chromatography over silica gel using petroleum ether as eluent to get the product **1**. **Table S1**. preparation of substrates 1.

^a. Three compounds in 1,4-Dioxane, heating reflux, 20 h. ^bIsolated yield.

2-bromophenylmethylene ferrocene (1a)

Yellow solid, yield 69%. mp 70-71 °C. Rf (petroleum ether/ethyl acetate 50: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 4.17 (s, 7H), 4.12 (s, 2H), 3.83 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 141.22 (s), 132.46 (s), 130.14 (s), 127.56 (s), 127.30 (s), 124.13 (s), 86.25 (s), 69.03 (s), 68.71 (s), 67.60 (s), 36.08 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₅BrFe 353.9703; Found: 353.9695.

(2-bromo-4-methylphenyl)methylene ferrocene (1b)

Yellow solid, yield 64%. mp 91-92 °C. Rf (petroleum ether/ethyl acetate 50: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 1H), 7.00 (d, *J* = 0.9 Hz, 2H), 4.16 (s, 7H), 4.10 (t, *J* = 1.8 Hz, 2H), 3.78 (s, 2H), 2.28 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.10 (s), 137.51 (s), 132.87 (s), 129.86 (s), 128.10 (s), 123.83 (s), 86.63 (s), 68.97 (s), 68.69 (s), 67.53 (s), 35.60 (s), 20.52 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₇BrFe 367.9859; Found: 367.9834.

(2-bromo-4-chlorophenyl) methylene ferrocene (1c)

Yellow solid, yield 49%. mp 116-117 °C. Rf (petroleum ether/ethyl acetate 80: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 1.9 Hz, 1H), 6.94 – 6.87 (m, 2H), 4.07 (d, *J* = 3.9 Hz, 5H), 4.05 (s, 2H), 4.03 (s, 2H), 3.68 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.84 (s), 138.10 (s), 132.86 (s), 132.31 (s), 131.93 (s), 130.78 (s), 127.49 (s), 85.72 (s), 68.96 (s), 68.72 (d, *J* = 7.8 Hz), 67.76 (s), 67.53 (s), 35.55 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₄BrClFe 387.9317; Found: 387.9292.

(2-bromo-4-methoxyphenyl) methylene ferrocene (1d)

Yellow solid, yield 61%. mp 78-79 °C. Rf (petroleum ether/ethyl acetate 80: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.7 Hz, 1H), 6.68 (d, *J* = 2.9 Hz, 1H), 6.61 (dd, *J* = 8.7, 3.0 Hz, 1H), 4.18 (s, 7H), 4.13 (s, 2H), 3.79 (s, 2H), 3.72 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.59 (s), 143.91 (s), 138.71 (s), 138.01 (s), 122.84 (s), 84.78 (s), 69.05 (s), 68.86 (s), 67.99 (s), 35.37 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₇BrFeO 383.9826; Found: 383.9812.

(2-bromo-5-methylphenyl)methylene ferrocene (1e)

Yellow solid, yield 60%. mp 57-58 °C. Rf (petroleum ether/ethyl acetate 50: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.1 Hz, 1H), 6.92 (d, *J* = 1.6 Hz, 1H), 6.85 (dd, J = 8.1, 1.8 Hz, 1H), 4.20 – 4.18 (m, 2H), 4.17 (s, 5H), 4.12 – 4.11 (m, 2H), 3.79 (s, 2H), 2.23 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.81 (s), 137.13 (s), 132.17 (s), 130.90 (s), 128.42 (s), 120.73 (s), 86.50 (s), 69.05 (s), 68.72 (s), 67.56 (s), 35.98 (s), 20.93 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₇BrFe 367.9859; Found: 367.9873.

(3-bromo-2-naphthyl)methylene ferrocene (1f)

Yellow solid, yield 57%. mp 104-105 °C. Rf (petroleum ether/ethyl acetate 50: 1) = 0.6. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.74 - 7.69 (m, 2H), 7.53 (s, 1H), 7.45 (dd, J = 5.4, 3.7 Hz, 2H), 4.26 (s, 2H), 4.23 (s, 5H), 4.18 (s, 2H), 4.01 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 138.63 (s), 132.93 (s), 132.32 (s), 130.86 (s), 128.33 (s), 127.42 (s), 126.41 (s), 126.10 (d, J = 5.7 Hz), 122.76 (s), 86.15 (s), 69.21 (s), 68.72 (s), 67.66 (s), 36.25 (s). HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₁H₁₇BrFe 426.9743; Found: 426.9751.

3. General procedure for preparation of substrates (2a-2k)

2-Bromophenylmethyl ferrocene (0.2 mmol), Pd(OAc)₂ (10% mol), *R*-Segphos (20% mol), K₂CO₃ (1.5 equiv.), pivalic acid (0.3 equiv.), and 1.5 mL *p*-xylene were mixed in a 10 mL Schlenk-type sealed tube. The mixture was stirred at 130 °C under argon atmosphere for 18 hours. When the reaction was completed, the solvent was eliminated under vacuum pump and water and dichloromethane was added and the layers were separated. The aqueous phase was extracted three times with dichloromethane. The combined organic phase was dried over anhydrous MgSO₄. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / DCM = 20 / 1, v / v) to get the product **2**.

 (S_p) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a, 8a- η)-1,8-dihydrocyclopent[*a*]inden-1-yl] iron (**2a**)

Orange solid, (99% yield, >99% *ee*). mp 50-51 °C. Rf (hexane) = 0.8. $[\alpha]_D^{20}$ = +490 (c = 0.001, CH₂Cl₂, 99% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 4.55 (d, *J* = 1.9 Hz, 1H), 4.49 (d, *J* = 1.7 Hz, 1H), 4.18 (t, *J* = 1.9 Hz, 1H), 3.88 (s, 5H), 3.75 (d, *J* = 19.9 Hz, 1H), 3.52 (d, *J* = 19.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 120.28 (s), 70.26 (s), 63.28 (s), 58.97 (s), 33.14 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₄Fe 274.0440; Found: 274.0450. The enantiomeric excess was determined by Daicel Chiralpak OJ-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 10.065 min, t (minor) = 14.053 min.

 (S_p) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methyl-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (2b)

Orange oil, (99% yield, 95% *ee*). Rf (hexane) = 0.8. $[\alpha]_D^{20}$ = +1020 (c = 0.001, CH₂Cl₂, 95% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 7.22 - 7.15 (m, 1H), 7.01 - 6.92 (m, 2H), 4.52 - 4.41 (m, 2H), 4.18 - 4.11 (m, 1H), 3.87 - 3.80 (m, 5H), 3.74 - 3.62 (m, 1H), 3.50 - 3.37 (m, 1H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.4, 142.2, 136.2, 125.5,

124.8, 121.1, 93.3, 92.5, 70.2, 69.5, 63.2, 58.8, 32.7, 21.6. HRMS (ESI-TOF) m/z: $[M]^+$ calcd for C₁₈H₁₆Fe 288.0601; Found: 288.0624. The enantiomeric excess was determined by Daicel Chiralpak OJ-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 9.942 min, t (minor) = 10.983 min.

 (S_p) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-methyl-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (**2c**)

Yellow oil, (97% yield, >99% *ee*). Rf (hexane) = 0.8. $[\alpha]_D^{20}$ = +218 (c = 0.001, CH₂Cl₂, 99% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 27.4 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 4.46 (d, *J* = 21.8 Hz, 1H), 4.20 (d, *J* = 15.5 Hz, 1H), 4.14 (s, 2H), 3.85 (s, 3H), 3.70 (d, *J* = 19.3 Hz, 1H), 3.46 (d, *J* = 19.9 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.57 (s), 138.95 (s), 134.18 (s), 131.25 (s), 130.74 (s), 127.21 (s), 126.74 (s), 126.09 (s), 119.79 (s), 92.61 (s), 70.46 (d, *J* = 19.3 Hz), 70.10 (s), 69.80 (s), 69.27 (d, *J* = 20.0 Hz), 62.95 (s), 58.55 (s), 34.12 (s), 32.86 (s), 22.33 (s), 21.48 (s), 14.06 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₆Fe 288.0601; Found: 288.0624. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 7.180 min, t (minor) = 9.441 min.

 (S_p) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-chloro-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (2d)

Orange oil, (97% yield, 98% *ee*). Rf (hexane) = 0.4. $[\alpha]_D^{20}$ = +579 (c = 0.001, CH₂Cl₂, 98% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 7.44 - 7.32 (m, 1H), 7.23 - 7.15 (m, 1H), 7.15 - 7.04 (m, 1H), 4.54 - 4.43 (m, 2H), 4.22 - 4.15 (m, 1H), 3.98 - 3.76 (m, 5H), 3.76 -3.58 (m, 1H), 3.51 - 3.36 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 144.6, 132.6, 126.0, 124.6, 120.4, 93.4, 91.1, 70.4, 70.1, 63.6, 59.2, 32.8. HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₃ClFe 308.0050; Found: 308.0061. The enantiomeric excess was determined by Daicel Chiralpak OJ-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 38.937 min, t (minor) = 42.084 min.

 (S_p) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-chloro-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (2e)

Yellow solid, (77% yield, 99% *ee*). Rf (hexane) = 0.35. $[\alpha]_D^{20}$ = -990 (c = 0.001, CH₂Cl₂, 99% *ee*). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 1H), 7.28 (s, 1H), 7.19 (d, *J* = 7.9 Hz, 1H), 4.51 (s, 1H), 4.48 (s, 1H), 4.18 (s, 1H), 3.86 (s, 5H), 3.72 (d, *J* = 20.0 Hz, 1H), 3.48 (d, *J* = 20.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.96 (s), 140.91 (s), 130.23 (s), 126.76 (s), 125.50 (s), 120.69 (s), 92.61 (s), 91.14 (s), 70.20 (s), 69.82 (s), 63.32 (s), 58.93 (s), 33.00 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₃ClFe 308.0050; Found: 308.0062. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm \times 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 6.682 min, t (minor) = 7.143 min.

 (S_p) -(η^5 -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-chloro-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (**2f**) Orange oil, (97% yield, 91.2% *ee*). m.p. = 72 °C. Rf (hexane) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 7.1 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.12 (m, 1H), 4.53 (t, *J* = 2.6 Hz, 2H), 4.19 (t, *J* = 2.3 Hz, 1H), 3.87 (d, *J* = 12.5 Hz, 5H), 3.78 (d, *J* = 20.5 Hz, 1H), 3.50 (d, *J* = 20.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.78 (s), 144.46 (s), 130.63 (s), 128.32 (s), 124.73 (s), 118.37 (s), 92.15 (s), 91.64 (s), 70.24 (s), 69.92 (s), 63.48 (s), 59.22 (s), 32.71 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₇H₁₃ClFe 308.0050; Found: 308.0047. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 6.680min, t (minor) = 8.100 min.

 (S_p) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methoxy-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (2g)

Orange oil, (98% yield, >99% *ee*). Rf (hexane) = 0.5. $[\alpha]_D^{20} = +693(c = 0.001, CH_2Cl_2, CH_2Cl_2)$

99% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 7.34 - 7.27 (m, 1H), 6.97 - 6.87 (m, 1H), 6.82 - 6.71 (m, 1H), 4.50 - 4.35 (m, 2H), 4.12 - 4.10 (m, 1H), 3.90 - 3.83 (m, 5H), 3.83 (s, 3H), 3.74 - 3.66 (m, 1H), 3.53 - 3.40 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 149.3, 142.4, 120.5, 112.1, 111.9, 92.8, 92.4, 70.2, 69.1, 63.0, 58.4. HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₆FeO 304.0551; Found: 304.0567. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 15.614 min, t (minor) = 16.336 min.

 (S_p) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-methoxy-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (**2h**)

Orange solid, (79% yield, 97% *ee*). mp 131-132 °C. Rf (hexane) = 0.3. $[\alpha]_D^{20}$ = -812 (c = 0.001, CH₂Cl₂, 97% *ee*). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.2 Hz, 1H), 6.92 (s, 1H), 6.77 (dd, *J* = 8.2, 2.1 Hz, 1H), 4.45 (d, *J* = 1.7 Hz, 1H), 4.42 (d, *J* = 1.6 Hz, 1H), 4.12 (s, 1H), 3.86 (s, 5H), 3.84 (s, 3H), 3.71 (d, *J* = 19.8 Hz, 1H), 3.48 (d, *J* = 19.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 157.70 (s), 149.11 (s), 134.25 (s), 120.35 (s), 111.98 (s), 111.70 (s), 92.65 (s), 92.20 (s), 70.04 (s), 68.94 (s), 62.84 (s), 58.22 (s), 55.43 (s), 33.18 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₆FeO 304.0551; Found: 304.0567. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 9.251 min, t (minor) = 10.189 min.

 (S_p) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-methoxy-1,8-dihydrocyclopent[*a*] inden-1-yl]iron (2i)

Orange oil, (94% yield,92.5% *ee*). Rf (hexane) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 4.52 (d, *J* = 11.0 Hz, 2H), 4.17 (s, 1H), 3.91 (d, *J* = 7.3 Hz, 8H), 3.73 (d, *J* = 20.3 Hz, 1H), 3.44 (d, *J* = 20.3 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 155.76 (s), 143.71 (s), 133.91 (s), 128.13 (s), 113.32 (s), 107.22 (s), 93.01 (s), 92.42 (s), 70.16 (s), 69.49 (s), 63.27 (s), 58.98 (s), 55.17 (s), 30.14 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₆FeO 304.0551; Found: 304.0567. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 9.944 min, t (minor) = 10.341 min.

(S_p)-(η⁵-2,4-cyclopentadien-1-yl)[(1,2,3,3a,10a-η)-1,10-dihydro-10-oxopentaleno [1,2
-b] naphthalen-1-yl] iron (2j)
Yellow oil, (88% yield, 99% *ee*). Rf (hexane) = 0.7. [α]_D²⁰ = +48 (c = 0.001, CH₂Cl₂, 99% *ee*). ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 7.9 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 4.89 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H),

1H), 4.64 (s, 1H), 4.32 (d, J = 1.8 Hz, 1H), 3.90 (s, 5H), 3.84 (d, J = 23.2 Hz, 1H), 3.67 (d, J = 20.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.38 (s), 138.50 (s), 132.91 (s), 128.43 (s), 125.71 (s), 125.07 (s), 124.82 (s), 124.43 (s), 123.76 (s), 93.11 (s), 91.84 (s), 73.22 (s), 70.43 (s), 69.90 (d, J = 7.9 Hz), 63.29 (s), 60.77 (s), 33.76 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₁₈H₁₆FeO 324.0596; Found: 324.0587. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, $\lambda = 254$ nm, t (major) =10.205 min, t (minor) =11.720 min.

 (S_p) -(2-phenylmethylene- η^5 -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-1,8-dihydrocyclopent[*a*] inden-1-yl] iron (**2**k)

Yellow oil, (63% yield, 90% *ee*). Rf (hexane) = 0.4. $[\alpha]_D^{20}$ = -479 (c = 0.001, CH₂Cl₂, 90% *ee*). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.24 (s, 1H), 7.17 (dd, *J* = 23.5, 7.2 Hz, 3H), 7.11 (s, 1H), 6.99 (d, *J* = 7.2 Hz, 2H), 4.46 (d, *J* = 23.7 Hz, 2H), 4.16 (s, 1H), 3.89 – 3.83 (m, 3H), 3.71 – 3.62 (m, 2H), 3.49 (d, *J* = 20.0 Hz, 1H), 3.23 (d, *J* = 15.4 Hz, 1H), 3.08 (d, *J* = 15.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 147.32 (s), 141.73 (s), 141.46 (s), 128.17 (d, *J* = 4.9 Hz), 126.57 (s), 125.73 (s), 125.13 (s), 124.64 (s), 120.54 (s), 92.83 (d, *J* = 5.0 Hz), 88.06 (s), 71.32 (s), 70.26 (s), 69.87 (s), 69.62 (s), 69.24 (s), 63.56 (s), 59.37 (s), 33.97 (s), 32.67 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₄H₂₀Fe 364.0909; Found: 364.0891. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 99 / 1, 1.0 mL / min, λ = 254 nm, t (major) = 9.577 min, t (minor) = 10.619 min.

4. General procedure for preparation of substrates (3a-3r)

R² = Phenyl, Isopropyl, Tert-butyl, Cyclohexyl Adamantyl

Ferrocenyl indene (1.0 equiv.) was dissolved in THF under argon. The mixture was cooled to -78 $\,^{\circ}$ C and n-BuLi in hexanes (1.6 M, 1.1 equiv.) was added drop wise. The addition was complete then the mixture was stirred at 40 $\,^{\circ}$ C for 6-12 h. Cooled to -78 $\,^{\circ}$ C and R₂PCl (1.1 equiv.) or trimethylchlorosilane (1.1 equiv.) in THF was added drop wise. After the addition was complete, the mixture was stirred at 40 $\,^{\circ}$ C for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / DCM = 15 / 1, v / v) to get the product **3**.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(diphenylphosphine)-1,8-dihydrocyclopent[a] inden-1-yl]-iron ($ **3a**)

Yellow oil, (70% yield, 99.9% ee ; 99% de). Rf (petroleum ether) = 0.4. ¹H NMR (500 MHz, cdcl₃) δ 7.54 (s, 2H), 7.39 (s, 3H), 7.29 (t, *J* = 8.0 Hz, 4H), 7.19 (s, 2H), 7.13 (t,

J = 7.4 Hz, 1H), 6.98 (s, 1H), 6.88 (s, 1H), 4.86 (s, 1H), 4.42 (s, 1H), 4.00 (s, 1H), 3.86 (s, 1H), 3.85 (d, *J* = 12.9 Hz, 5H). ¹³C NMR (126 MHz, cdcl₃) δ 147.26 (d, *J* = 7.5 Hz), 141.83 (d, *J* = 3.3 Hz), 137.69 (d, *J* = 17.8 Hz), 135.32 (d, *J* = 16.5 Hz), 134.01 (s), 133.84 (s), 133.24 (d, *J* = 18.4 Hz), 128.98 (s), 128.74 (s), 128.23 (d, *J* = 6.3 Hz), 127.79 (d, *J* = 7.2 Hz), 126.76 (d, *J* = 2.1 Hz), 125.22 (d, *J* = 6.1 Hz), 124.22 (d, *J* = 2.0 Hz), 120.03 (s), 93.82 (d, *J* = 6.4 Hz), 91.50 (s), 70.10 (s), 69.66 (s), 63.22 (d, *J* = 2.7 Hz), 59.10 (s), 44.03 (s), 43.87 (s). ³¹P NMR (202 MHz, CDCl₃) δ -1.81 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₂₃FeP 458.0882; Found: 458.0909. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 13.810 min, t (minor) = 10.219 min.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-(8aS)-8-(diisopropylphosphane)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (**3b**)

Yellow oil, (76% yield). Rf (petroleum ether) = 0.45. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 1H), 4.95 (d, *J* = 2.0 Hz, 1H), 4.67 (d, *J* = 2.2 Hz, 1H), 4.36 (t, *J* = 2.3 Hz, 1H), 3.99 (s, 5H), 3.85 (s, 1H), 1.84 (dd, *J* = 9.4, 7.9 Hz, 2H), 1.45 (s, 1H), 1.42 – 1.26 (m, 4H), 1.14 (dd, *J* = 15.0, 7.0 Hz, 2H), 0.89 (t, *J* = 7.7 Hz, 3H), 0.66 (dd, *J* = 11.0, 7.2 Hz, 1H), 0.56 (dd, *J* = 14.4, 7.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 151.86 (s), 140.99 (s), 126.89 (s), 124.77 (s), 124.05 (s), 120.03 (s), 96.45 (s), 91.66 (s), 70.49 – 70.09 (m), 69.95 (s), 63.97 (s), 59.35 (s), 43.85 (s), 39.99 (s). ³¹P NMR (202 MHz, C₆D₆) δ 22.27 (s).HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₈FeP 391.1273; Found:391.0682.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-(8aS)-8-(dicyclohexylphosphine)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (**3c**)

Yellow oil, (76% yield). Rf (petroleum ether) = 0.4. ¹H NMR (500 MHz, cdcl₃) δ 7.45 (d, *J* = 7.3 Hz, 1H), 7.40 (d, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 4.55 (s, 1H), 4.43 (s, 1H), 4.29 (d, *J* = 3.5 Hz, 1H), 4.17 (s, 1H), 3.82 (s, 5H), 2.09 (d, *J* = 9.4 Hz, 1H), 1.94 (d, *J* = 10.3 Hz, 1H), 1.74 (d, *J* = 36.9 Hz, 3H), 1.42 (d, *J* = 9.7 Hz, 5H), 1.28 (d, *J* = 18.7 Hz, 5H), 1.10 (d, *J* = 9.6 Hz, 2H), 0.89 (s, 2H), 0.80 – 0.68 (m, 3H). ¹³C NMR (126 MHz, cdcl₃) δ 149.57 (d, *J* = 7.2 Hz), 141.23 (d, *J* = 2.9 Hz), 126.24 (d, *J* = 1.6 Hz), 124.99 (d, *J* = 7.9 Hz), 124.56 (s), 119.83 (s), 95.20 (s), 91.60 (s), 70.43 (s), 70.19 (s), 69.50 (s), 62.84 (d, *J* = 1.5 Hz), 58.87 (s), 40.40 (s), 40.19 (s), 31.84 (dd, *J* = 16.6, 14.1 Hz), 31.18 (dd, *J* = 17.1, 9.3 Hz), 30.17 (d, *J* = 7.9 Hz), 29.60 (d, *J* = 7.8 Hz), 27.50 – 27.20 (m), 26.97 (d, *J* = 12.0 Hz), 26.49 (s), 26.20 (s). ³¹P NMR (202 MHz, C₆D₆) δ 14.28 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₃₅FeP 470.1899; Found:470.1908.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(ditertbutyl-phosphine)-$ 1,8-dihydrocyclopent[*a*] inden-1-yl]-iron (**3d**)

Yellow oil, (76% yield). Rf (petroleum ether) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.68 - 7.62 (m, 1H), 7.43 - 7.39 (m, 1H), 7.21 (dd, *J* = 6.0, 2.7 Hz, 2H), 4.69 (d, *J* = 2.4 Hz, 1H), 4.64 (d, *J* = 2.3 Hz, 1H), 4.34 (s, 1H), 4.20 (t, *J* = 2.3 Hz, 1H), 4.00 (s, 1H), 3.84 (s, 5H), 1.52 (d, *J* = 11.2 Hz, 9H), 0.80 (d, *J* = 11.5 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 152.19 - 151.59 (m), 140.87 (s), 140.41 (s), 126.79 (s), 125.99 (dd, *J* = 12.0, 7.9 Hz), 124.60 (d, *J* = 16.3 Hz), 123.94 (s), 119.91 (s), 119.43 (s), 96.33 (s), 95.65 (d, *J* = 6.0 Hz), 92.68 (s), 91.54 (s), 70.36 (d, *J* = 16.6 Hz), 69.01 (s), 65.72 (s), 58.98 (s), 42.10 (s), 41.81 (s), 33.85 (s), 33.62 (s), 32.04 (s), 31.85 (s), 30.97 (d, *J* = 13.5 Hz), 29.86 (d, *J* = 13.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 50.83 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₃₁FeP 419.1586; Found:419.1566.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(di(1-adamantyl)phosphine) -1,8-dihydrocyclopent[a]inden-1-yl]-iron ($ **3e**)

Yellow oil, (79% yield). Rf (petroleum ether) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.59

(d, J = 6.2 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.19 – 7.17 (m, 2H), 4.69 (d, J = 1.5 Hz, 1H), 4.61 (d, J = 1.7 Hz, 1H), 4.26 (s, 1H), 4.17 (t, J = 2.3 Hz, 1H), 3.82 (s, 5H), 2.21 (d, J = 56.9 Hz, 10H), 1.88 (s, 6H), 1.68 (d, J = 11.9 Hz, 3H), 1.59 (s, 3H), 1.46 (s, 5H), 1.36 (d, J = 11.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 129.04 (s), 128.23 (s), 125.90 (t, J = 6.8 Hz), 125.31 (s), 124.54 (s), 96.36 (d, J = 5.9 Hz), 92.97 (s), 70.44 (s), 68.87 (s), 66.36 (s), 58.94 (s), 42.41 (d, J = 10.7 Hz), 40.34 (d, J = 10.8 Hz), 39.84 (s), 39.57 (s), 39.24 – 39.14 (m), 38.93 (d, J = 28.0 Hz), 37.16 (s), 36.84 – 35.63 (m), 35.83 – 35.63 (m), 28.92 (d, J = 7.8 Hz), 28.44 (d, J = 8.1 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 48.03 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₇H₄₄FeP 575.2525; Found: 574.8700.

 (R_p, S) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methoxyl-(8aS)-8-(dicyclohexylphosphine)-1,8-dihydrocyclopent [*a*]inden-1-yl] iron (**3f**) Yellow oil, (61% yield). Rf (petroleum ether) = 0.31. $[\alpha]_D^{20} = +506$ (c = 0.001, *n*-

hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.2 Hz, 1H), 6.97 (s, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 4.53 (s, 1H), 4.42 (s, 1H), 4.23 (d, *J* = 4.2 Hz, 1H), 4.16 (d, *J* = 1.6 Hz, 1H), 3.86 (d, *J* = 1.1 Hz, 3H), 3.83 (d, *J* = 1.3 Hz, 5H), 2.06 (d, *J* = 6.2 Hz, 1H), 1.93 (d, *J* = 7.4 Hz, 1H), 1.76 (t, *J* = 31.7 Hz, 10H), 1.32 – 1.24 (m, 10H). ¹³C NMR (126 MHz, CDCl₃) δ 158.80 (s), 142.67 (d, *J* = 2.4 Hz), 141.59 (d, *J* = 7.3 Hz), 125.28 (d, *J* = 7.6 Hz), 109.97 (s), 106.01 (s), 96.29 (d, J = 2.5 Hz), 91.41 (s), 70.27 (s), 69.50 (s), 63.02 (d, J = 1.2 Hz), 58.84 (s), 55.41 (s), 39.61 (s), 39.40 (s), 31.87 (dd, J = 16.4, 4.2 Hz), 31.34 (dd, J = 34.2, 19.2 Hz), 30.22 (d, J = 8.2 Hz), 29.69 (d, J = 7.8 Hz), 27.63 – 26.88 (m), 26.88 – 26.81 (m), 26.54 (s), 26.39 (d, J = 34.8 Hz), 22.61 (d, J = 3.7 Hz), 14.08 (s).³¹P NMR (202 MHz, CDCl₃) δ 13.48 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₃₀H₃₇FeOP 500.1931; Found:500.1959.

(*R_p*,*S*)-(η⁵-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-η)-4-methoxyl-(8a*S*)-8-(ditertbutylphosphine) -1,8-dihydrocyclopent [*a*]inden-1-yl] iron (**3g**) Yellow oil, (68% yield). Rf (petroleum ether) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 2.5 Hz, 1H), 6.72 (dd, *J* = 8.4, 2.5 Hz, 1H), 4.65 (d, *J* = 2.2 Hz, 1H), 4.59 (d, *J* = 2.1 Hz, 1H), 4.26 (s, 1H), 4.17 (t, *J* = 2.3 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 5H), 1.47 (d, *J* = 11.1 Hz, 9H), 0.77 (d, *J* = 11.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.63 (d, *J* = 2.1 Hz), 143.94 (d, *J* = 15.6 Hz), 141.74 (d, *J* = 4.0 Hz), 126.28 (d, *J* = 13.4 Hz), 110.00 (s), 105.48 (s), 96.67 (d, *J* = 6.1 Hz), 92.48 (s), 70.51 (s), 69.05 (s), 65.90 (s), 58.97 (s), 55.38 (s), 41.27 (s), 40.99 (s), 33.81 (s), 33.59 (s), 32.03 (s), 31.84 (s), 31.00 (d, *J* = 13.3 Hz), 30.78 (s), 30.18 – 30.08 (m), 29.84 (t, *J* = 19.6 Hz), 27.81 (d, *J* = 16.9 Hz), 22.66 (d, *J* = 13.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 49.55 (s). HRMS (ESI-TOF) m/z: [M-H]⁺ calcd for C₂₆H₃₃FeOP 447.1534; Found:447.1739.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-methoxyl-(8aS)-8-(ditertbutyl-phosphine)-1,8-dihydrocyclopent [*a*]inden-1-yl] iron **(3h)**

Yellow oil, (69% yield). Rf (petroleum ether / ethyl acetate = 20/1, v/v) = $0.5.[\alpha]_D^{20}$ = +194 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J* = 8.2 Hz, 1H), 7.22 (s, 1H), 6.75 (dd, *J* = 8.2, 2.4 Hz, 1H), 4.61 (d, *J* = 2.2 Hz, 1H), 4.54 (d, *J* = 1.9 Hz, 1H), 4.27 (s, 1H), 4.12 (t, *J* = 2.3 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 5H), 1.48 (d, *J* = 11.1 Hz, 9H), 0.78 (d, *J* = 11.4 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 152.20 (d, *J* = 15.4 Hz), 137.37 (d, *J* = 3.9 Hz), 134.22 (s), 126.83 (dd, *J* = 10.3, 7.8 Hz), 119.17 (s), 95.40 (d, *J* = 6.2 Hz), 93.05 (s), 70.44 (s), 70.04 (s), 68.74 (s), 65.66 (s), 58.77 (s), 41.94 (s), 41.66 (s), 33.88 (s), 33.66 (s), 32.19 – 32.08 (m), 31.96 (d, *J* = 23.2 Hz), 31.00 (d, *J* = 13.4 Hz), 29.89 (d, *J* = 13.4 Hz), 27.81 (d, *J* = 16.8 Hz), 27.36 (d, *J* = 15.0 Hz), 21.51 (s). ³¹P NMR (202 MHz, CDCl₃) δ 51.27 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₃FeOP 449.1691; Found: 449.1694.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-methoxyl-(8aS)-8-(di(1-adama-ntyl)phosphi-ne)-1,8-dihydrocyclopent [a]inden-1-yl] iron (**3i**)

Yellow solid, (69% yield). m.p. = 60 °C. Rf (petroleum ether) = 0.22. ³¹P NMR (202 MHz, C₆D₆) δ 41.41 (s). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (t, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 8.2 Hz, 1H), 4.67 (d, *J* = 2.2 Hz, 1H), 4.60 (d, *J* = 2.4 Hz, 1H), 4.32 (s, 1H), 4.16 (s, 1H), 3.92 (s, 3H), 3.78 (s, 5H), 2.28 (q, *J* = 13.1 Hz, 6H), 2.17 - 2.12 (m, 3H), 1.93 - 1.83 (m, 7H), 1.70 (d, *J* = 12.7 Hz, 4H), 1.62 - 1.57 (m, 3H), 1.52 (d, *J* = 12.6 Hz, 3H), 1.37 (d, *J* = 11.2 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 155.8, 142.4, 139.5, 139.4, 127.44, 113.0, 108.9, 95.6, 95.6, 93.0, 70.4, 68.8, 66.0, 59.2, 56.0, 42.1, 42.0, 40.1, 40.0, 38.9, 38.6, 38.5, 38.2, 37.3, 37.2, 37.1, 36.8, 29.0, 28.9, 28.5, 28.5, 26.9.

 (R_p,S) - $(\eta 5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methyl-(8aS)-8-(dicyclohexyl-phosphine)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (**3j**)

Yellow oil, (69% yield). Rf (petroleum ether) = 0.4. $[\alpha]_D^{20} = +638$ (c = 0.001, *n*-hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 7.7 Hz, 1H), 7.23 (s, 1H), 6.96 (dd, *J* = 7.7, 0.7 Hz, 1H), 4.52 (d, *J* = 2.4 Hz, 1H), 4.42 (d, *J* = 2.2 Hz, 1H), 4.25 (d, *J* = 3.9 Hz, 1H), 4.15 (t, *J* = 2.3 Hz, 1H), 3.82 (s, 5H), 2.40 (s, 3H), 2.12 – 1.70 (m, 8H), 1.53 – 1.36 (m, 6H), 1.29 (dd, *J* = 19.5, 6.2 Hz, 6H), 1.14 – 1.07 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.66 (d, *J* = 7.5 Hz), 141.25 (d, *J* = 3.1 Hz), 135.73 (d, *J* = 1.6 Hz), 125.54 (s), 124.65 (d, *J* = 7.7 Hz), 120.70 (s), 95.64 (d, *J* = 2.6 Hz), 91.82 (s), 70.25 (s), 69.40 (s), 62.89 (s), 58.78 (s), 40.08 (s), 39.87 (s), 32.19 – 31.76 (m), 31.32 (dd, *J* = 17.3, 8.9 Hz), 30.25 (d, *J* = 7.8 Hz), 29.68 (d, *J* = 7.7 Hz), 27.38 (dd, *J* = 9.2, 5.3 Hz), 27.05 (d, *J* = 12.0 Hz), 26.58 (s), 26.30 (s), 21.53 (s). ³¹P NMR (202 MHz, CDCl₃) δ 13.67 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₃₀H₃₇FeP 484.1994; Found: 484.1982.

(*R_p*,*S*)-(η5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-η)-4-methyl-(8aS)-8-(ditertbutylphosphine)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (**3k**) Yellow oil, (79% yield). Rf (petroleum ether) = 0.55. [α]_D²⁵ = +324(c = 0.002, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 1H), 7.22 (s, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 4.65 (d, *J* = 2.2 Hz, 1H), 4.59 (d, *J* = 2.2 Hz, 1H), 4.28 (s, 1H), 4.17 (t, *J* = 2.3 Hz, 1H), 3.83 (s, 5H), 2.41 (s, 3H), 1.50 (d, *J* = 11.2 Hz, 9H), 0.79 (d, *J* = 11.4 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 149.07 (d, *J* = 15.4 Hz), 140.43 (d, *J* = 4.0 Hz), 135.57 (d, *J* = 1.9 Hz), 125.81 – 125.46 (m), 120.35 (s), 96.10 (d, *J* = 6.0 Hz), 92.92 (s), 70.53 (s), 68.98 (s), 65.80 (s), 58.94 (s), 41.78 (s), 41.49 (s), 33.92 (s), 33.69 (s), 32.11 (s), 31.92 (s), 31.08 (d, J = 13.5 Hz), 30.01 (d, J = 13.5 Hz), 27.90 (d, J = 17.1 Hz), 27.45 (d, J = 14.9 Hz), 26.74 (s), 21.52 (s). ³¹P NMR (202 MHz, CDCl₃) δ 50.13 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₆H₃₃FeP 432.1664; Found:432.1642.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-5-methyl-(8aS)-8-(diphenyl-phosphine)-1,8-dihydrocyclopent [$ *a*]inden-1-yl] iron (**3**l)

Yellow solid, (72% yield). mp. 62 °C. Rf (petroleum ether / ethyl acetate = 20/1, v/v) = 0.437. $[\alpha]_D^{20}$ = +740 (c = 0.001, CH₂Cl₂, 98% de). ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.39 (s, 3H), 7.30 (t, *J* = 7.5 Hz, 3H), 7.19 (dd, *J* = 16.0, 7.5 Hz, 3H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.62 (s, 1H), 4.79 (s, 1H), 4.39 (s, 1H), 4.12 (s, 1H), 3.97 (s, 1H), 3.84 (s, 5H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.43 (s), 138.66 (s), 133.86 (d, *J* = 19.7 Hz), 133.29 (d, *J* = 18.0 Hz), 128.90 (s), 128.68 (s), 128.17 (s), 127.75 (s), 127.44 (s), 126.34 (s), 119.65 (s), 93.68 (s), 91.79 (s), 69.69 (d, *J* = 107.4 Hz), 68.36 – 67.12 (m), 63.01 (s), 58.82 (s), 43.88 (d, *J* = 20.3 Hz), 21.46 (s). ³¹P NMR (202 MHz, CDCl₃) δ 1.72 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₀H₂₅FeP 473.1116; Found: 473.1119.

 $(R_p,S)-(\eta 5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-5-methyl-(8aS)-8-(diisopropylphosphine)-1,8-dihydrocyclopent[a]inden-1-yl]-iron ($ **3m**)

Yellow oil, (72% yield). Rf (petroleum ether / ethyl acetate = 20/1, v/v) = 0.4. $[\alpha]_D^{20}$ = +443 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (s, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 4.52 (d, *J* = 2.2 Hz, 1H), 4.46 (d, *J* = 2.2 Hz, 1H), 4.25 (d, *J* = 3.5 Hz, 1H), 4.15 (t, *J* = 2.3 Hz, 1H), 3.82 (s, 5H), 2.36 (s, 3H), 1.43 (s, 1H), 1.36 (dd, *J* = 10.9, 7.0 Hz, 3H), 1.15 (dd, *J* = 15.3, 6.9 Hz, 4H), 0.64 (dd, *J* = 10.9, 7.1 Hz, 3H), 0.52 (dd, *J* = 14.5, 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.33 (s), 138.36 (s), 134.86 (s), 128.25 (s), 127.60 (s), 119.87 (s), 92.22 (s), 89.65 (s), 70.43 (s), 69.87 (s), 63.46 (s), 59.46 (s), 45.02 (s), 44.60 (s), 25.51 (s), 25.02 (s), 24.11 (s), 23.62 (s), 21.53 (s), 16.54 (d, *J* = 2.6 Hz), 16.33 (dd, *J* = 4.5, 3.2 Hz), 15.67 (d, *J* = 3.5 Hz). ³¹P NMR (202 MHz, C₆D₆) δ 22.30 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₄H₂₉FeOP 404.1351; Found: 404.1411.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-chloro-8-(dicyclohexylphosphine) ne)-1,8-dicyclohexylphosphine[*a*]inden-1-yl] iron (**3n**) Yellow oil, (74% yield). Rf (petroleum ether / ethyl acetate = 20/1, v/v) = $0.5.[\alpha]_D^{20}$ = +553 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.17 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.54 (d, *J* = 2.2 Hz, 1H), 4.44 (d, *J* = 1.9 Hz, 1H), 4.25 (s, 1H), 4.19 (t, *J* = 2.3 Hz, 1H), 3.83 (s, 5H), 2.07 (d, *J* = 9.5 Hz, 1H), 1.95 (d, *J* = 9.6 Hz, 1H), 1.89 – 1.68 (m, 5H), 1.43 (s, 5H), 1.29 (dd, *J* = 14.0, 10.3 Hz, 5H), 0.85 (ddd, *J* = 38.4, 13.6, 8.7 Hz, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 151.70 (s), 140.02 (s), 130.32 (s), 126.53 (s), 125.44 (s), 120.46 (d, *J* = 2.8 Hz), 95.24 (s), 90.47 (d, *J* = 2.1 Hz), 70.35 (d, *J* = 2.9 Hz), 69.87 (d, *J* = 3.1 Hz), 63.15 (d, *J* = 5.1 Hz), 59.06 (d, *J* = 3.1 Hz), 40.40 (d, *J* = 3.5 Hz), 29.58 (d, *J* = 11.2 Hz), 27.26 (s), 26.86 – 26.78 (m), 26.51 (d, *J* = 3.5 Hz), 26.21 (d, *J* = 3.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 15.04 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₃₄ClFeP 505.1509; Found: 505.1507.

 (R_{p},S) - $(\eta^{5}-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,10a- η)-(10aS)-10-(diisopropylphosphine)-1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen-1-yl] iron **(30)** Yellow oil, (74% yield). Rf (petroleum ether) = 0.28. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 1H), 7.93 (t, J = 7.0 Hz, 1H), 7.75 – 7.69 (m, 2H), 7.60 (t, J = 7.1Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 4.89 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 1.6 Hz, 1H), 4.40 (s, 1H), 4.29 (t, J = 2.0 Hz, 1H), 3.85 – 3.81 (m, 5H), 1.42 (d, J = 3.8 Hz, 1H), 1.40 (d, J = 7.7 Hz, 1H), 1.18 (dd, J = 15.3, 6.9 Hz, 3H), 0.91 – 0.84 (m, 3H), 0.62 (dd, J = 10.7, 7.2 Hz, 3H), 0.50 (dd, J = 14.7, 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.45 – 174.29 (m), 173.88 (s), 146.74 (s), 132.86 (s), 128.54 (s), 128.14 (s), 125.69 (s), 125.00 (d, J = 14.8 Hz), 124.61 – 124.24 (m), 124.08 – 123.37 (m), 91.23 (s), 71.86 (s), 70.30 (s), 70.02 (d, J = 13.6 Hz), 63.07 (s), 61.04 (s), 42.23 (d, J = 1.6 Hz), 42.01 (s), 31.89 (s), 31.55 (s), 29.66 (s), 29.33 (s), 26.88 (s), 22.75 – 22.40 (m), 22.05 – 21.74 (m), 21.55 (s), 21.35 (s), 21.29 – 20.83 (m), 20.77 – 20.36 (m), 19.40 (t, J = 7.9 Hz), 16.42 (s), 14.08 (s). ³¹P NMR (202 MHz, CDCl₃) δ 20.04 (s). HRMS (ESI-TOF) m/z: [M-H]⁺ calcd for C₂₇H₂₉FeP 439.1272; Found:439.1219.

(*R_p*,*S*)-(η⁵-2,4-cyclopentadien-1-yl)[(1,2,3,3a,10a-η)-(10a*S*)-10-(dicyclohexylphosphine)-1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen-1-yl] iron **(3p)** Yellow oil, (77% yield). Rf (petroleum ether / ethyl acetate = 20/1, v/v) = 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.3 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 4.88 (d, *J* = 2.1 Hz, 1H), 4.56 (d, *J* = 2.0 Hz, 1H), 4.37 (s, 1H), 4.28 (t, *J* = 2.2 Hz, 1H), 3.81 (s, 5H), 2.18 (d, *J* = 11.4 Hz, 1H), 2.00 – 1.93 (m, 2H), 1.78 (s, 4H), 1.57 – 1.39 (m, 4H), 1.34 (d, *J* = 7.3 Hz, 4H), 1.06 (dd, *J* = 23.6, 8.7 Hz, 2H), 0.84 (t, *J* = 9.7 Hz, 2H), 0.77 – 0.65 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.00 (d, *J* = 7.3 Hz), 137.50 (d, *J* = 3.5 Hz), 132.83 (s), 128.54 (s), 128.17 (s), 125.61 (s), 124.93 (d, *J* = 9.9 Hz), 124.41 (s), 123.67 (d, J = 8.0 Hz), 95.80 (d, J = 2.5 Hz), 91.20 (s), 69.98 (d, J = 17.2 Hz), 63.12 (s), 60.94 (s), 41.40 (s), 41.19 (s), 32.07 – 31.64 (m), 31.31 (dd, J = 17.7, 6.2 Hz), 30.16 (d, J = 6.8 Hz), 29.86 – 29.25 (m), 27.76 – 26.68 (m), 26.52 (s), 26.13 (s). ³¹P NMR (202 MHz, CDCl₃) δ 11.70 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₃₃H₃₇FeP 520.1977; Found:520.1859.

($R_{p,S}$)-(η⁵-2,4-cyclopentadien-1-yl)[(1,2,3,3a,10a-η)-(10aS)-10-(ditertbutylphosphine) -1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen-1-yl] iron (**3q**) Brown solid, (80% yield). mp 172-173 °C. Rf (petroleum ether / ethyl acetate = 20/1, v/v) = 0.27. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 4.94 (d, *J* = 2.2 Hz, 1H), 4.79 (d, *J* = 2.1 Hz, 1H), 4.38 (d, *J* = 1.3 Hz, 1H), 4.29 (t, *J* = 2.3 Hz, 1H), 3.80 (s, 5H), 1.54 (d, *J* = 11.2 Hz, 9H), 0.76 (d, *J* = 11.5 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.11 (s), 149.14 (s), 136.58 (s), 132.82 (s), 128.56 (s), 128.00 (s), 125.61 (s), 125.14 – 125.04 (m), 124.73 (dd, *J* = 32.6, 18.8 Hz), 124.31 (s), 96.32 (s), 92.32 (s), 70.32 (s), 69.47 (s), 65.95 (s), 61.16 (s), 43.11 (s), 42.82 (s), 41.35 (s), 36.07 (s), 34.66 (s), 31.58 (s), 31.03 (d, *J* = 13.5 Hz), 29.89 (d, *J* = 13.6 Hz), 29.05 (s), 27.66 (s), 26.90 (s), 25.27 (s), 22.62 (d, *J* = 6.4 Hz), 20.67 (s), 20.43 (s), 19.41 (s), 18.73 (s), 14.29 (s), 14.08 (s), 11.40 (s). ³¹P NMR (202 MHz, CDCl₃) δ 47.47 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₃₃FeP 468.1664; Found:468.1599.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-(8aS)-8-(trimethylsilyl)-1,8-dihydrocyclopent[*a*]-inden-1-yl]-iron (**3r**)

Orange solid, (71% yield). mp 87 - 88 °C. Rf (petroleum ether) = 0.8. $[\alpha]_D^{20}$ = +936 (c = 0.001, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 7.4 Hz, 1H), 7.27 (s, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 1H), 4.57 (d, *J* = 1.9 Hz, 1H), 4.36 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 2.1 Hz, 1H), 3.79 (s, 5H), 3.44 (s, 1H), -0.10 (s, 9H). ¹³C NMR (126 MHz, cdcl₃) δ 149.89 (s), 141.49 (s), 125.13 (s), 124.04 (s), 123.87 (s), 120.11 (s), 95.92 (s), 91.47 (s), 74.96 (s), 74.50 (s), 74.06 (d, *J* = 18.4 Hz), 69.97 (s), 69.09 (s), 60.93 (s), 58.41 (s), 37.85 (s), -3.07 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₀H₂₂FeSi: 347.0913; Found: 347.0892.

5. General procedure for preparation of substrates (4a-4q)

Ferrocenyl phosphine ligands (1.0 equiv.) was dissolved in CH₂Cl₂, then aqueous H₂O₂ solution (excess amount) was added dropwise. After the reaction was complete (monitored by TLC) and the reaction mixture extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Mg₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / ethyl acetate = 1 / 20, v / v) to get the product **4**.

Table S2. Synthesis of novel ferrocenyl phosphine oxide with planar and central chirality ^{a,b,c}

^a3 (1.0 equiv.) in DCM, H₂O₂ (excess), rt, 2 h. ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

50%;96%ee;99%de

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-(8aS)-8-(diphenylphosphinyl)-1,8dihydrocyclopent[*a*] inden-1-yl]-iron (**4a**)

Brown yellow solid, (70% yield; 99% *ee*, 99% *de*). mp 90-91 °C. Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. $[\alpha]_D^{20}$ = +804 (c = 0.001, CH₂Cl₂, 93% *de*). ¹H NMR (500 MHz, cdcl₃) δ 7.61 – 7.53 (m, 3H), 7.45 – 7.37 (m, 3H), 7.35 – 7.28 (m, 3H), 7.22 (dt, *J* = 7.7, 5.2 Hz, 3H), 7.14 (d, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 5.03 (d, *J* = 21.2 Hz, 1H), 4.44 (d, *J* = 2.2 Hz, 1H), 4.06 (t, *J* = 2.2 Hz, 1H), 3.96 (d, *J* = 2.0 Hz, 1H), 3.84 (s, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 142.72 (d, *J* = 4.9 Hz), 142.02 (d, *J* = 5.0 Hz), 132.07 – 131.42 (m), 128.25 (d, *J* = 11.6 Hz), 127.85 – 127.37 (m), 126.32 (s), 124.63 (s), 119.99 (s), 91.82 (s), 89.20 (s), 70.26 (s), 63.92 (s), 59.53 (s), 47.96 (s), 47.45 (s). ³¹P NMR (202 MHz, CDCl₃) δ 31.85 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₃FeOP 475.0909; Found: 475.0905. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm ×25 cm), Hexane / IPA = 95 / 5, 1.0 mL / min, λ = 254 nm, t (major) = 14.118 min, t (minor) = 12.393 min.

 $(S_p,R)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(diphenylphosphinyl)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (4a)$

Brown yellow solid, (71% yield). mp 90 - 91 °C. Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. ¹H NMR (500 MHz, cdcl₃) δ 7.61 – 7.53 (m, 3H), 7.45 – 7.37 (m, 3H), 7.35 – 7.28 (m, 3H), 7.22 (dt, J = 7.7, 5.2 Hz, 3H), 7.14 (d, J = 7.7 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 5.03 (d, J = 21.2 Hz, 1H), 4.44 (d, J = 2.2 Hz, 1H), 4.06 (t, J = 2.2 Hz, 1H), 3.96 (d, J = 2.0 Hz, 1H), 3.84 (s, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 142.72 (d, J = 4.9 Hz), 142.02 (d, J = 5.0 Hz), 132.07 – 131.42 (m), 128.25 (d, J = 11.6 Hz), 127.85 – 127.37 (m), 126.32 (s), 124.63 (s), 119.99 (s), 91.82 (s), 89.20 (s), 70.26 (s), 63.92 (s), 59.53 (s), 47.96 (s), 47.45 (s). ³¹P NMR (202 MHz, CDCl₃) δ 31.85 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₂₃FeOP 474.0861; Found: 474.0863.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-(8aS)-8-(diisopropylphosphanyl)-1,8-dihydrocyclopent[a] inden-1-yl]-iron (**4b**)

Brown yellow solid, (67% yield, > 99% *ee*, 89.6% *de*). mp 95-96 °C. Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. $[\alpha]_D^{20} = +281$ (c = 0.001, CH₂Cl₂, 89.6% *de*). ¹H NMR (600 MHz, CDCl₃) δ 7.72 (s, 1H), 7.46 (d, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 6.9 Hz, 1H), 4.67 (d, *J* = 21.9 Hz, 1H), 4.62 (s, 1H), 4.56 (d, *J* = 6.6 Hz, 1H), 4.22 (s, 1H), 3.85 (s, 1H), 2.22 (d, *J* = 6.8 Hz, 1H), 1.73 (s, 1H), 1.39 (dd, *J* =

13.7, 5.9 Hz, 1H), 1.10 (dd, J = 14.3, 6.7 Hz, 1H), 0.81 (dd, J = 14.8, 7.0 Hz, 1H), 0.62 - 0.54 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.83 – 143.12 (m), 141.50 – 140.56 (m), 124.99 (s), 120.08 (d, J = 11.8 Hz), 75.13 (s), 65.85 (dd, J = 100.6, 29.6 Hz), 65.38 (s), 43.24 (d, J = 252.9 Hz), 41.26 (s), 34.48 (s), 32.81 (s), 30.61 (s), 29.77 (s), 28.25 (s), 26.69 (s), 25.74 (s), 21.38 (d, J = 114.0 Hz), 19.21 (s), -0.01 (s), -13.34 (s). ³¹P NMR (243 MHz, CDCl₃) δ 55.74 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₇FeOP 407.1222;Found:407.1249.The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 90 / 10, 1.0 mL / min, $\lambda =$ 254 nm, t (major) = 5.967 min, t (minor) = 9.599 min.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(dicyclohexylphosphinyl)-$ 1,8-dihydrocyclopent[*a*]inden-1-yl]-iron (**4c**)

Brown yellow solid, (73% yield, > 99% *ee*, 97.8% *de*). mp 81-82 °C .Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. $[\alpha]_D^{20}$ = +2000 (c = 0.001, CH₂Cl₂, 97.8% *de*). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.19 – 7.13 (m, 1H), 4.66 (d, *J* = 21.9 Hz, 1H), 4.61 (d, *J* = 2.3 Hz, 1H), 4.47 (d, *J* = 2.3 Hz, 1H), 4.22 – 4.18 (m, 1H), 3.83 (s, 5H), 2.07 (dd, *J* = 13.7, 1.8 Hz, 1H), 1.98 – 1.88 (m, 2H), 1.78 (dd, *J* = 12.2, 4.4 Hz, 1H), 1.72 (d, *J* = 12.1 Hz, 1H), 1.67 – 1.60 (m, 2H), 1.57 – 1.52 (m, 2H), 1.45 (dd, *J* = 14.1, 6.9 Hz, 3H), 1.38 – 1.29
(m, 2H), 1.27 - 1.15 (m, 3H), 0.86 (tdd, J = 28.7, 13.0, 2.9 Hz, 4H), 0.56 (ddd, J = 15.8, 11.7, 3.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.91 (s), 141.53 (s), 127.53 (s), 126.62 (s), 125.05 (s), 120.11 (s), 91.79 (s), 89.53 (s), 70.43 (s), 70.18 (s), 63.66 (s), 59.65 (s), 44.32 (s), 43.97 (s), 35.76 (s), 35.35 (s), 34.26 (s), 33.85 (s), 26.81 (dd, J =24.7, 12.1 Hz), 26.38 (d, J = 11.9 Hz), 26.14 (d, J = 15.5 Hz), 25.75 (d, J = 5.4 Hz), 25.44 (d, J = 2.4 Hz), 25.12 (s). ³¹P NMR (243 MHz, CDCl₃) δ 51.13 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₃₄FeOP 486.1807; Found: 486.1813. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 10.979 min, t (minor) = 19.181 min.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(ditertbutylphosphinyl)-1,8-dihydrocyclopent[a]inden-1-yl]-iron(4d)$

Brown yellow solid, (70% yield, > 99% *ee*, 98.4% *de*). mp 88-89 °C Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. $[\alpha]_D^{20}$ = +1588 (c = 0.001, CH₂Cl₂, 98.4% *de*). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (s, 1H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.1 Hz, 1H), 7.14 (t, *J* = 7.0 Hz, 1H), 4.77 (d, *J* = 20.6 Hz, 1H), 4.64 (d, *J* = 14.0 Hz, 2H), 4.19 (s, 1H), 3.79 (s, 5H), 1.54 (s, 9H), 0.72 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 145.10 (s), 140.50 (s), 128.04 (s), 126.98 (s), 124.52 (s), 119.36 (s), 92.55 (s), 90.21 (s), 70.38 (s), 69.52 (s), 64.74 (s), 59.55 (s), 44.59 (s), 44.29 (s), 37.84 (d, *J* = 53.7 Hz), 36.45 (s),

36.08 (s), 27.32 (s), 26.78 (s), 22.04 (s), 20.79 (s), 13.96 (s).

³¹P NMR (202 MHz, cdcl₃) δ 60.27 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₅H₃₁FeOP 434.1457; Found: 434.1474. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 14.581 min, t (minor) = 20.821 min.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-(8aS)-8-(di(1-adamantyl)phosphi-nyl)-1,8-dihydrocyclopent[a]inden-1-yl]-iron (4e)$

Brown yellow solid, (69% yield). mp 198-199 °C. Rf (ethyl acetate / petroleum ether = 20/1, v/v) = 0.2. [α]_D²⁰ = +714 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, cdcl₃) δ 7.93 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 6.7 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.14 – 7.09 (m, 1H), 4.69 (d, J = 19.9 Hz, 1H), 4.66 – 4.58 (m, 2H), 4.17 (d, J = 2.2 Hz, 1H), 3.78 (d, J = 5.6 Hz, 5H), 2.36 (d, J = 20.1 Hz, 6H), 2.16 (s, 3H), 1.86 (s, 6H), 1.69 (s, 3H), 1.59 (d, J = 14.0 Hz, 6H), 1.37 (d, J = 24.7 Hz, 6H). ¹³C NMR (126 MHz, cdcl₃) δ 145.68 (d, J = 4.3 Hz), 140.39 (d, J = 4.3 Hz), 128.09 (s), 126.81 (s), 124.65 (s), 119.40 (s), 93.05 (d, J = 2.4 Hz), 90.21 (t, J = 2.6 Hz), 70.42 (s), 69.37 (s), 65.58 (s), 59.56 (s), 43.12 (s), 42.69 (s), 42.51 (s), 42.15 (s), 40.84 (s), 40.40 (s), 37.23 (s), 36.67 (s), 36.24 (d, J = 22.8 Hz), 36.14 – 35.70 (m), 28.00 (d, J = 8.7 Hz), 27.40 (d, J = 8.9 Hz). ³¹P NMR (202 MHz, cdcl₃) δ 51.58 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₃₇H₄₃FeOP 590.2396;

Found: 590.2418.

 $(R_{\nu},S)-(\eta^5-2,4-\text{cyclopentadien-1-yl})[(1,2,3,3a,8a-\eta)-4-\text{methoxyl}-(8aS)-8-(\text{dicyclohexy-})]$ lphosphinyl)-1,8-dihydrocyclopent [a]inden-1-yl] iron (4f) Brown oil, (71% yield, > 99% *ee*, 97% *de*). Rf (ethyl acetate) = 0.28. $[\alpha]_D^{20} = +635$ (c = 0.0002, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 6.69 (dd, J = 8.4, 2.2 Hz, 1H), 4.58 (d, J = 21.6 Hz, 2H), 4.44 (d, J = 1.5 Hz, 1H), 4.17 (s, 1H), 3.84 (s, 3H), 3.82 (s, 5H), 1.89 (dd, *J* = 31.1, 12.6 Hz, 3H), 1.78 -1.50 (m, 8H), 1.44 (s, 3H), 1.29 (d, J = 9.2 Hz, 3H), 0.88 -0.77 (m, 4H), 0.62 -0.54(m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.57 (s), 142.92 (d, J = 4.5 Hz), 135.62 (d, J = 4.2 Hz), 126.87 (d, J = 2.1 Hz), 110.07 (d, J = 1.3 Hz), 106.30 (s), 91.42 (d, J = 1.7Hz), 90.34 (s), 70.41 (s), 70.12 (s), 63.73 (s), 59.59 (s), 55.31 (s), 43.33 (s), 42.91 (s), 35.52 (s), 35.03 (s), 34.17 (s), 33.68 (s), 26.60 (ddd, *J* = 43.0, 30.5, 12.1 Hz), 26.31 (d, J = 11.9 Hz), 26.38 - 25.88 (m), 25.67 (d, J = 2.8 Hz), 25.37 (s), 25.34 - 24.76 (m), 20.93 (s), 14.08 (s). ³¹P NMR (202 MHz, CDCl₃) δ 51.4 6 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₀H₃₇FeO₂P 517.1953; Found: 517.1979. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm \times 25 cm), Hexane / IPA = 80 / 20, $1.0 \text{ mL} / \text{min}, \lambda = 254 \text{ nm}, \text{ t} \text{ (major)} = 7.668 \text{ min}, \text{ t} \text{ (minor)} = 8.215 \text{ min}.$

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methoxyl-(8aS)-8-(ditertbutylphosphinyl)-1,8-dihydrocyclopent [a]inden-1-yl] iron (4g)

Yellow solid, (76% yield, > 99% *ee*, 94.5% *de*). mp 183-185 °C. Rf (petroleum ether / ethyl acetate = 10/1, v/v) = 0.3. $[\alpha]_D^{20}$ = +457 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.70 (dd, *J* = 8.5, 2.4 Hz, 1H), 4.69 (s, 1H), 4.63 (d, *J* = 2.0 Hz, 2H), 4.19 (t, *J* = 2.3 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 5H), 1.55 (d, *J* = 10.6 Hz, 9H), 0.74 (d, *J* = 11.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 159.34 (s), 141.95 (d, *J* = 4.3 Hz), 137.27 (d, *J* = 5.0 Hz), 128.55 (s), 109.86 (s), 105.63 (s), 92.45 (s), 91.43 (d, *J* = 5.0 Hz), 70.52 (s), 69.55 (s), 64.98 (s), 59.57 (s), 55.22 (s), 43.88 (d, *J* = 47.8 Hz), 37.80 (d, *J* = 61.3 Hz), 29.89 (d, *J* = 4.4 Hz), 29.49 (d, *J* = 4.8 Hz), 27.64 - 27.52 (m), 27.20 (d, *J* = 61.3 Hz), 26.35 (s), 25.59 (s), 22.67 (s), 22.51 (s), 13.95 (d, *J* = 4.1 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 59.53 (s). HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₆H₃₃FeO₂P 487.1460; Found: 487.1400. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 95 / 5, 1.0 mL / min, λ = 254 nm, t (major) = 6.987 min, t (minor) = 9.200 min.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-methoxyl-(8aS)-8-(ditertbutyl-phosphinyl)-1,8-dihydrocyclopent [a]inden-1-yl] iron **(4h)**

Yellow oil, (70% yield, > 99% *ee*, 92% *de*). Rf (petroleum ether / ethyl acetate = 10/1, v/v) = 0.2. $[\alpha]_D^{20}$ = +432 (c = 0.001, CH₂Cl₂, 92% *de*). ¹H NMR (500 MHz, CDCl₃) δ 7.75 - 7.67 (m, 1H), 7.33 (d, J = 8.3 Hz, 1H), 6.86 (dd, J = 8.5, 2.2 Hz, 1H), 4.76(s, 0.5H), 4.72(s, 0.5H) 4.61 (m, 2H), 4.17 (t, J = 2.4 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 5H), 1.59 (d, J = 13.5 Hz, 9H), 0.78 (d, J = 13.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6, 146.6, 131.7, 120.1, 114.7, 113.3, 92.6, 89.8, 70.6, 69.2, 64.6, 59.2, 55.5, 41.3, 36.1, 34.7, 33.7, 31.6, 29.1, 27.7, 27.6, 27.1, 25.3, 22.7, 22.6, 20.7, 20.5, 19.5, 18.8. ³¹P NMR (202 MHz, CDCl₃) δ 60.06. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₃FeO₂P 465.1640; Found: 465.1676. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 6.149 min, t (minor) = 7.175 min.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methyl-(8aS)-8-(dicyclohexyl-phosphinyl)-1,8-dicyclohexylphosphine[a]inden-1-yl] iron (**4j**)

Brown solid, (51% yield, 99.2% *ee*, 88.5% *de*). mp 60-61 °C. Rf (ethyl acetate) = 0.25. [α] $_{D}^{25}$ = +29 (c = 0.0018, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 6.8 Hz, 1H), 7.29 (d, *J* = 11.2 Hz, 1H), 6.99 (d, *J* = 6.3 Hz, 1H), 4.66 (d, *J* = 21.8 Hz, 1H), 4.59 (s, 1H), 4.47 (s, 1H), 4.20 (s, 1H), 3.85 (s, 5H), 2.41 (s, 3H), 2.10 (d, *J* = 25.3 Hz, 2H), 1.94 (s, 3H), 1.85 – 1.75 (m, 3H), 1.72 (d, *J* = 10.7 Hz, 2H), 1.61 – 1.54 (m, 3H), 1.53 – 1.45 (m, 3H), 0.97 – 0.82 (m, 5H), 0.68 – 0.59 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 129.9, 127.8, 125.0, 120.0, 71.9, 69.5, 69.1, 64.6, 62.7, 58.6, 38.8, 38.6, 38.5, 30.9, 29.5, 28.7, 28.6, 28.3, 26.0, 25.8, 25.7, 25.1, 24.9, 24.7, 24.4, 24.1, 21.7, 20.6, 18.2, 13.2, 13.1, 12.7.³¹P NMR (202 MHz, CDCl₃) δ 52.09. MS (MALDI-TOF) m/z: [M]⁺ calcd for C₃₀H₃₇FeOP 500.4; Found:500.4, [M+H]⁺ calcd for C₃₀H₃₇FeOP 501.5; Found:501.5. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 90 /10, 1.0 mL / min, λ = 254 nm, t (major) = 9.161 min, t (minor) = 7.711 min.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-4-methyl-(8aS)-8-(ditertbutylpho-sphinyl)-1,8-dicyclohexylphosphine[a]inden-1-yl] iron (**4**k)

Yellow solid, (52% yield, 93% *ee*, 98.9% *de*). Rf (petroleum ether / ethyl acetate = 10/1, v/v) = 0.2. $[\alpha]_D^{20} = +86(c = 0.0005, CH_2Cl_2)$. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.25 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 4.70 (d, *J* = 20.4 Hz, 1H), 4.63 (d, *J* = 2.1 Hz, 2H), 4.19 (t, J = 2.3 Hz, 1H), 3.82 (s, 5H), 2.40 (s, 3H), 1.56 (d, J = 10.0 Hz, 9H), 0.75 (d, J = 9.2 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 142.47 (s), 140.58 (s), 136.75 (s), 127.87 (s), 125.69 (s), 120.31 (s), 92.92 (s), 90.94 (s), 70.55 (s), 69.49 (s), 64.91 (d, J = 8.5 Hz), 59.52 (s), 44.42 (dd, J = 46.3, 1.4 Hz), 29.60 (s), 27.54 (s), 27.05 (s), 26.44 (s), 22.60 (s), 21.40 (s), 18.85 (s), 14.04 (s), 13.67 (s). ³¹P NMR (202 MHz, CDCl₃) δ 59.77 (s). HRMS (ESI-TOF) m/z: [M-H]⁺ calcd for C₂₆H₃₃FeOP 447.1534; Found: 447.1572. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), Hexane / IPA = 95 / 5, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 5.597 min, t (minor) = 6.638 min.

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-5-methyl-(8aS)-8-(diphenylphosp-hinyl)-1,8- dihydrocyclopent[a] inden-1-yl]-iron (4l)$

Yellow solid, (70% yield, 97.4% ee, 99.1% de). mp 105 °C. Rf (petroleum ether / ethyl acetate = 5/1, v/v) = 0.115. [α]_D²⁰ = +484 (c = 0.001, CH₂Cl₂, 98% de). ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.53 (d, *J* = 7.4 Hz, 1H), 7.44 (d, *J* = 7.0 Hz, 2H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.22 (t, *J* = 6.9 Hz, 2H), 7.14 (s, 2H), 6.95 (d, *J* = 7.3 Hz, 1H), 4.96 (d, *J* = 21.4 Hz, 1H), 4.41 (s, 1H), 4.02 (s, 1H), 3.88 (s, 1H), 3.83 (s, 5H), 2.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 132.11 – 131.27 (m), 128.17 (dd, *J* = 38.0, 31.9 Hz), 127.69 (s), 127.32 (s), 119.70 (s), 92.19 (s), 89.13 (s),

70.28 (s), 69.91 (s), 63.74 (d, J = 1.5 Hz), 59.31 (s), 48.02 (s), 47.51 (s), 21.45 (s). ³¹P NMR (202 MHz, CDCl₃) δ 31.63 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₀H₂₅FeOP 489.1065; Found: 489.1063. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 90 / 10, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 7.345min, t (minor) = 10.900 min.

 (R_p,S) - $(\eta 5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-methyl-(8aS)-8-(diisopropylphosphinyl)-1,8-dihydrocyclopent[a]inden-1-yl]-iron (4m)

Yellow oil, (70% yield, > 99% *ee*, 96% *de*). Rf (petroleum ether / ethyl acetate = 10/1, v/v) = 0.2. [α]_D²⁰ = +291 (c = 0.001, CH₂Cl₂, 96% *de*). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 4.63 – 4.56 (m, 2H), 4.50 (d, *J* = 2.1 Hz, 1H), 4.18 (t, *J* = 2.3 Hz, 1H), 3.84 (s, 5H), 2.36 (s, 3H), 2.24 – 2.17 (m, 1H), 1.70 (dt, *J* = 14.0, 7.3 Hz, 1H), 1.41 (dd, *J* = 14.7, 7.2 Hz, 3H), 1.12 (dd, *J* = 14.4, 7.1 Hz, 3H), 0.80 (dd, *J* = 14.9, 7.4 Hz, 3H), 0.58 (dd, *J* = 15.0, 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.32 (d, *J* = 4.7 Hz), 138.34 (d, *J* = 4.5 Hz), 134.87 (d, *J* = 1.9 Hz), 128.26 (d, *J* = 1.4 Hz), 127.61 (d, *J* = 2.1 Hz), 119.87 (s), 92.23 (d, *J* = 2.2 Hz), 89.66 (d, *J* = 1.6 Hz), 70.43 (s), 69.87 (s), 63.46 (s), 59.46 (s), 45.02 (s), 44.60 (s), 25.51 (s), 25.02 (s), 24.11 (s), 23.62 (s), 21.53 (s), 16.54 (d, *J* = 2.6 Hz), 16.33 (dd, *J* = 4.5, 3.2 Hz), 15.67 (d, *J* = 3.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 54.74 (s). HRMS

(ESI-TOF) m/z: $[M+H]^+$ calcd for C₂₄H₂₉FeOP 421.1378; Found: 421.1393. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 90 / 10, 1.0 mL / min, λ = 254 nm, t (major) = 6.833min, t (minor) = 9.868 min.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-5-chloro-8-(dicyclohexylphosphinyl)-1,8-dicyclohexylphosphine[*a*]inden-1-yl] iron (**4n**)

Yellow solid, (75% yield, 90% *ee*, 95% *de*). Rf (petroleum ether / ethyl acetate = 10/1, v/v) = 0.1. $[\alpha]_D^{20}$ = +173 (c = 0.001, CH₂Cl₂, 95% *de*).¹H NMR (500 MHz, CDCl3) δ 7.72 - 7.71 (m, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.28 (m, 1H), 4.62 - 4.60 (m, 1.5H), 4.56 (s, 1H), 4.47 (d, *J* = 2.3 Hz, 1H), 4.23 (t, *J* = 2.4 Hz, 1H), 3.85 (s, 5H), 2.00 - 1.98 (m, 2H), 1.73 - 1.64 (m, 2H), 1.54 - 1.20 (m, *J* = 101.1 Hz, 12H), 0.96 - 0.71 (m, 5H), 0.60 - 0.49 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.01, 140.27, 130.79, 127.77, 127.05, 120.65, 90.74, 89.76, 70.56, 70.48, 63.79, 59.80, 44.71, 44.30, 36.28, 35.79, 34.43, 33.93, 26.98, 26.88, 26.84, 26.74, 26.69, 26.34, 26.25, 25.81, 25.77, 25.52, 25.14. ³¹P NMR (202 MHz, CDCl₃) δ 49.91. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₃₄ClFeOP 521.1458; Found: 521.1458. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 98 / 2, 1.0 mL / min, λ = 254 nm, t (major) = 10.113 min, t (minor) = 13.545 min.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,10a- η)-(10aS)-10-(diisopropylphosphinyl)-1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen9-1-yl] iron (40) Brown solid, (55% yield, 98.7% ee, 98.7% de). mp 92-94 °C. Rf (ethyl acetate) = 0.2. $[\alpha]_D^{25} = -78$ (c = 0.0005, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.52 (dd, J = 9.5, 4.9 Hz, 1H), 4.94 (d, J = 2.2 Hz, 1H), 4.76 (s, 1H), 4.67 (d, J = 2.0 Hz, 1H), 4.34 - 4.32 (m, 1H), 3.84 (s, 1H), 1.72 - 1.66 (m, 1H), 1.48 (dd, J = 14.9, 7.2 Hz, 2H), 1.15 (dd, J = 14.6, 7.1 Hz, 3H), 0.93 – 0.89 (m, 1H), 0.80 (dd, J = 15.0, 7.4 Hz, 3H), 0.55 (dd, J = 15.2, 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.45 – 174.29 (m), 173.88 (s), 146.74 (s), 132.86 (s), 128.54 (s), 128.14 (s), 125.69 (s), 125.00 (d, J = 14.8Hz), 124.61 – 124.24 (m), 124.08 – 123.37 (m), 91.23 (s), 71.86 (s), 70.30 (s), 70.02 (d, J = 13.6 Hz), 63.07 (s), 61.04 (s), 42.23 (d, J = 1.6 Hz), 42.01 (s), 31.89 (s), 31.55 (s), 29.66 (s), 29.33 (s), 26.88 (s), 22.75 - 22.40 (m), 22.05 - 21.74 (m), 21.55 (s), 21.35 (s), 21.29 - 20.83 (m), 20.77 - 20.36 (m), 19.40 (t, J = 7.9 Hz), 16.42 (s), 14.08 (s). ³¹P NMR (202 MHz, CDCl₃) δ 57.05 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₇H₂₉FeOP 456.3; Found: 456.3, [M+H]⁺ calcd for C₂₇H₂₉FeOP 457.4; Found: 457.4. The enantiomeric excess was determined by Daicel Chiralpak AD-H ($0.46 \text{ cm} \times 25 \text{ cm}$), Hexane / IPA = 90 / 10, 1.0 mL / min, λ = 254 nm, t (major) = 9,879 min, t (minor) =

11.177 min.

 $(R_{\nu}S)$ - $(\eta^{5}-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,10a- η)-(10aS)-10-(dicyclohexylphosphinyl)-1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen-1-yl] iron (4p) Brown solid, (59% yield, 99.2% ee, 91.1% de). mp 80-82 °C. Rf (ethyl acetate) = 0.2. $[\alpha]_D^{25} = +28$ (c = 0.0017, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 1H), 7.95 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.54 - 7.50 (m, 1H), 4.94 (d, J = 2.2 Hz, 1H), 4.74 (s, 1H), 4.58 (d, J = 2.0 Hz, 1H), 4.33 - 4.31 (m, 1H), 3.82 (s, 1H), 2.18 (d, J = 13.6 Hz, 1H), 1.99 (d, J = 12.1 Hz, 1H), 1.81 (s, 1H), 1.77 - 1.68 (m, 3H), 1.53 (dd, J = 39.1, 9.4 Hz, 3H), 1.39 (s, 3H), 1.26 (d, J = 7.2 Hz, 2H), 0.83 (d, J = 9.8 Hz, 2H), 0.76 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.00 (d, J = 7.3 Hz), 137.50 (d, J = 3.5 Hz), 132.83 (s), 128.54 (s), 128.17 (s), 125.61 (s), 124.93 (d, J = 9.9 Hz), 124.41 (s), 123.67 (d, J = 8.0 Hz), 95.80 (d, J =2.5 Hz), 91.20 (s), 69.98 (d, J = 17.2 Hz), 63.12 (s), 60.94 (s), 41.40 (s), 41.19 (s), 32.07 -31.64 (m), 31.31 (dd, J = 17.7, 6.2 Hz), 30.16 (d, J = 6.8 Hz), 29.86 - 29.25 (m), 27.76 – 26.68 (m), 26.52 (s), 26.13 (s). ³¹P NMR (202 MHz, CDCl₃) δ 51.20. HRMS (ESI-TOF) m/z: $[M]^+$ calcd for C₃₃H₃₇FeOP 536.4; Found: 536.3, $[M+H]^+$ calcd for C₃₃H₃₇FeOP 537.5; Found: 537.5. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm \times 25 cm), Hexane / IPA = 90 / 10, 1.0 mL / min, λ = 254 nm,

t (major) = 15.819 min, t (minor) = 11.244 min.

 (R_p,S) - $(\eta^5-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,10a- η)-(10aS)-10-(ditertbutylphosphiny-1)-1,10-dihydro-10-oxopenthaleno [1,2-b] naphthalen9-1-yl] iron (4q) Brown solid, (50% yield, 95.5% ee, 99.4% de). mp 79-80 °C. Rf (ethyl acetate) = 0.38. $[\alpha]_D^{25} = +20$ (c = 0.00005, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 5.7 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.50 (dd, J = 11.0, 4.0 Hz, 1H), 4.99 (d, J = 2.1 Hz, 1H), 4.84 (s, 1H), 4.77 (s, 1H), 4.33 – 4.32 (m, 1H), 3.79 (s, 1H), 1.62 (d, J = 11.9 Hz, 8H), 0.74 (d, J = 12.4 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.11 (s), 149.14 (s), 136.58 (s), 132.82 (s), 128.56 (s), 128.00 (s), 125.61 (s), 125.14 – 125.04 (m), 124.73 (dd, *J* = 32.6, 18.8 Hz), 124.31 (s), 96.32 (s), 92.32 (s), 70.32 (s), 69.47 (s), 65.95 (s), 61.16 (s), 43.11 (s), 42.82 (s), 41.35 (s), 36.07 (s), 34.66 (s), 31.58 (s), 31.03 (d, J = 13.5 Hz), 29.89 (d, J = 13.6 Hz), 29.05 (s), 27.66 (s), 26.90 (s), 25.27 (s), 22.62 (d, J = 6.4 Hz), 20.67 (s), 20.43 (s), 19.41 (s), 18.73 (s), 14.29 (s), 14.08 (s), 11.40 (s). ³¹P NMR (202 MHz, C_6D_6) δ 61.98 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₃₃FeOP 484.4; Found: 484.3, [M+H]⁺ calcd for C₂₉H₃₃FeOP 485.4; Found: 485.4. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm \times 25 cm), Hexane / IPA = 95 / 5, 1.0 mL / min, $\lambda = 254$ nm, t (major) = 6.066 min, t (minor) = 15.078 min.

6. General procedure for preparation of substrates (5)

Compound **2f** (2 mmol), Pd(OAc)₂ (1% mol), Ruphos (2% mol), NaO^LBu (1.4 equiv.), morpholine (1.2 equiv.), and 5 mL toluene were mixed in a 25 mL Schlenk-type sealed tube. The mixture was stirred at 80 °C under argon atmosphere for 24 hours. When the reaction was completed, the solvent was eliminated under vacuum pump and water and dichloromethane was added and the layers were separated. The aqueous phase was extracted three times with dichloromethane. The combined organic phase was dried over anhydrous MgSO₄. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / ethyl acetate = 20 / 1, v / v) to get the product **5**.

 (S_p) -(η^5 -2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-(4-morpholino)-1,8-dihydrocyclopent[*a*] inden-1-yl]iron **(5)** Orange solid, (87% yield). Rf (hexane) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.0 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 4.52 (d, *J* = 2.1 Hz, 1H), 4.47 (d, J = 2.0 Hz, 1H), 4.15 (t, J = 2.2 Hz, 1H), 3.90 (t, J = 4.6 Hz, 4H), 3.86 (s, 5H), 3.73 (d, J = 20.1 Hz, 1H), 3.47 (d, J = 20.1 Hz, 1H), 3.12 – 3.05 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 149.26 (s), 143.39 (s), 139.72 (s), 127.87 (s), 115.55 (s), 114.82 (s), 92.45 (d, J = 16.3 Hz), 70.08 (s), 69.36 (s), 67.45 (s), 62.94 (s), 58.87 (s), 51.67 (s), 31.81 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₂₂OFeN 360.1045; Found: 360.1049.

7. General procedure for preparation of substrates (6)

R = Tert-butyl

Ferrocenyl indene (1mmol, 1.0 equiv.) was dissolved in THF under argon. The mixture was cooled to -78 °C and n-BuLi in hexanes (1.6 M, 1.1 equiv.) was added drop wise. The addition was complete then the mixture was stirred at 40 $^{\circ}\mathrm{C}$ for 6-12 h. Cooled to -78 °C and R₂PCl (1.1 equiv.) in THF was added drop wise. After the addition was complete, the mixture was stirred at 40 $^{\circ}$ C for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / DCM = 15 / 2, v / v) to get the product 6.

 $(R_p, S)-(\eta^5-2, 4-\text{cyclopentadien-1-yl})[(1, 2, 3, 3a, 8a-\eta)-6-(4-\text{morpholino})-(8aS)-8-(\text{ditertb-})](1, 3, 3a, 8a-\eta)-6-(4-\text{morpholino})-(8aS)-8-((1, 3, 3a, 8a-\eta))-(1, 3, 3a, 8a-\eta)-(1, 3, 3a-\eta)-(1, 3a-\eta)$ utylphosphine)-1,8-dihydrocyclopent [*a*]inden-1-yl] iron (6) Yellow solid, (70% yield). mp 179 °C. Rf (petroleum ether / ethyl acetate = 20/1, v/v) = 0.4. $[\alpha]_D^{20}$ = +367 (c = 0.001, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.22 - 7.19 (m, S51

1H), 7.17 (d, J = 6.9 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 4.66 (d, J = 2.0 Hz, 1H), 4.60 (d, J = 2.1 Hz, 1H), 4.43 (s, 1H), 4.16 (t, J = 2.3 Hz, 1H), 3.91 (t, J = 4.6 Hz, 4H), 3.74 (s, 5H), 3.12 – 3.08 (m, 2H), 3.01 – 2.96 (m, 2H), 1.51 (d, J = 10.4 Hz, 9H), 0.66 (d, J = 11.0 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 149.88 (d, J = 2.5 Hz), 147.40 (d, J = 11.2 Hz), 142.64 (d, J = 3.9 Hz), 127.47 (s), 119.29 (s), 116.46 (s), 95.02 (d, J = 6.1 Hz), 92.72 (s), 70.43 (s), 69.04 (s), 67.07 (s), 59.16 (s), 53.09 (s), 41.92 (s), 41.63 (s), 33.76 (s), 33.54 (s), 32.81 (s), 32.60 (s), 31.59 (d, J = 13.8 Hz), 29.97 (d, J = 15.9 Hz). ³¹P NMR (202 MHz, C₆D₆) δ 47.51 (s). HRMS (ESI-TOF) m/z: [M]⁺ calcd for C₂₉H₃₈FeNOP 503.2035; Found: 503.2024.

8. General procedure for preparation of substrates (7)

Ferrocenyl phosphine ligands (1.0 equiv.) was dissolved in CH_2Cl_2 , then aqueous H_2O_2 solution (excess amount) was added dropwise. After the reaction was complete (monitored by TLC) and the reaction mixture extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over anhydrous Mg_2SO_4 and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum / ethyl acetate = 1 / 20, v / v) to get the product 7.

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-(4-morpholino)-(8aS)-8-(ditertbu-tylphosphinyl)-1,8-dihydrocyclopent [a]inden-1-yl] iron (7)

Yellow solid, (76% yield, >99.9% *ee*, >99.9% *de*). mp 186 °C. Rf (ethyl acetate) = 0.3. $[\alpha]_D^{20} = +343$ (c = 0.001, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, *J* = 5.7 Hz, 1H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 4.96 (d, *J* = 15.6 Hz, 1H), 4.68 (s, 1H), 4.64 (s, 1H), 4.22 (s, 1H), 3.90 (s, 4H), 3.76 (s, 5H), 3.14 (s, 2H), 2.97 (s, 2H), 1.59 (s, 9H), 0.87 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 152.26 (s), 128.64 (s), 119.79 (s), 116.64 (s), 89.55 (s), 70.51 (s), 69.41 (s), 67.37 (s), 65.93 (s), 60.10 (s), 53.26 (s), 44.07 (s), 43.78 (s), 39.30 (s), 38.95 (s), 37.23 (s), 36.87 (s), 27.73 (s), 27.25 (s). ³¹P NMR (243 MHz, CDCl₃) δ 58.27 (s). HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for C₂₉H₃₈FeNO₂P 520.2063; Found: 520.2052. The enantiomeric excess was determined by Daicel Chiralpak OD-H (0.46 cm × 25 cm), Hexane / IPA = 95 / 5, 1.0 mL / min, λ = 254 nm, t (major) = 7.643min, t (minor) = 10.383 min.

Figure S1. X-ray crystal structure of and (*R_p*,*S*)-7. Selected bond lengths [Å] and bond angles[°] for 7: Fe1-Cp1 1.665 (av.), Fe1-Cp2 1.646 (av.), C6-C10 1.422(3), C6-C13 1.457(3), C12-C13 1.413(3), C11-C12 1.535(3), C10-C11 1.515(3), C11-P1 1.882(2), C10-C11-C12 100.97(17), C10-C11-P1 117.05(15), C12-C11-P1 112.83(14).

9. ¹H, ¹³C and ³¹P NMR spectra

Figure S3. ¹³C NMR of 1a (126 MHz, CDCl₃)

Figure S5. ¹³C NMR of 1b (126 MHz, CDCl₃)

Figure S7. ¹³C NMR of 1c (126 MHz, CDCl₃)

Figure S9. ¹³C NMR of 1d (126 MHz, CDCl₃)

Figure S11. ¹³C NMR of 1e (126 MHz, CDCl₃)

Figure S17. ¹³C NMR of 2b (126 MHz, CDCl₃)

Figure S18. ¹H NMR of 2c (500 MHz, CDCl₃)

Figure S19. ¹³C NMR of 2c (126 MHz, CDCl₃)

Figure S21. ¹³C NMR of 2d (126 MHz, CDCl₃)

Figure S24. ¹H NMR of 2f (500 MHz, CDCl₃)

Figure S41. ³¹P NMR of 3b (202 MHz, CDCl₃)

Figure S42. ¹H NMR of 3c (500 MHz, CDCl₃)

Figure S43. ¹³C NMR of 3c (126 MHz, CDCl₃)

Figure S47. ³¹**P NMR** of **3d** (202 MHz, CDCl₃)

Figure S49. ¹³C NMR of 3e (126 MHz, CDCl₃)

50 130 110 -140 -180 -240 90 80 70 40 20 10 -60 -100 -120 -160 -200 -220

Figure S50. ³¹P NMR of 3e (202 MHz, CDCl₃)

Figure S53. ³¹P NMR of 3f (202 MHz, CDCl₃)

Figure S59. ³¹P NMR of 3h (202 MHz, CDCl₃)

Figure S61. ¹³C NMR of 3i (126 MHz, CDCl₃)

Figure S65. ³¹P NMR of 3j (202 MHz, CDCl₃)

Figure S71. ³¹P NMR of 3l (202 MHz, CDCl₃)

Figure S72. ¹H NMR of 3m (500 MHz, CDCl₃)

Figure S73. ¹³C NMR of 3m (126 MHz, CDCl₃)

Figure S74. ³¹P NMR of 3m (202 MHz, CDCl₃)

Figure S77. ³¹P NMR of 3n (202 MHz, CDCl₃)

Figure S79. ¹³C NMR of **30** (126 MHz, CDCl₃)

Figure S81. ¹H NMR of 3p (500 MHz, CDCl₃)

Figure S83.³¹P NMR of 3p (202 MHz, CDCl₃)

Figure S91. ³¹P NMR of 4a (202 MHz, CDCl₃)

Figure S95. ¹H NMR of 4c (500 MHz, CDCl₃)

Figure S97. ³¹P NMR of 4c (202 MHz, CDCl₃)

Figure S99. ¹³C NMR of 4d (126 MHz, CDCl₃)

Figure S102. ¹³C NMR of 4e (126 MHz, CDCl₃)

Figure S103. ³¹P NMR of 4e (202 MHz, CDCl₃)

Figure S104. ¹H NMR of 4f (500 MHz, CDCl₃)

Figure S107. ¹H NMR of 4g (500 MHz, CDCl₃)

Figure S109. ³¹P NMR of 4g (202 MHz, CDCl₃)

Figure S114. ¹³C NMR of 4j (151 MHz, CDCl₃)

¹⁵⁰ ¹²⁰ ¹¹⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ²⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻⁵⁰ ⁻⁷⁰ ⁻⁹⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹⁵⁰ ⁻¹⁷⁰ ⁻¹⁹⁰ ⁻²¹⁰ ⁻²²⁰ Figure S115. ³¹P NMR of **4j** (202 MHz, CDCl₃)

Figure S116. ¹H NMR of 4k (500 MHz, CDCl₃)

Figure S119. ¹H NMR of 4I (500 MHz, CDCl₃)

Figure S121. ³¹P NMR of 4l (202 MHz, CDCl₃)

Figure S122. ¹H NMR of 4m (500 MHz, CDCl₃)

Figure S123. ¹³C NMR of 4m (126 MHz, CDCl₃)

Figure S127. ³¹P NMR of 4n (202 MHz, CDCl₃)

Figure S128. ¹H NMR of 40 (500 MHz, CDCl₃)

Figure S133.³¹P NMR of 4p (202 MHz, CDCl₃)

Figure S137. ¹H NMR of 5 (500 MHz, CDCl₃)

Figure S141.³¹P NMR of 6 (202 MHz, CDCl₃)

Figure S142. ¹H NMR of 7 (500 MHz, CDCl₃)

Figure S144. 31 **P NMR** of **7** (202 MHz, CDCl₃)

10. Crystal data for compound

 (S_p) - $(\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,3a, 8a- η)-1,

8-dihydrocyclopent[a]inden-1-yl] iron (2a)

Table S3. Sample and crystal data for 2a.

Identification code	2a		
Chemical formula	$C_{17}H_{14}Fe$		
Formula weight	274.13 g/mol		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal size	0.200 x 0.200 x 0.200 mm		
Crystal system	orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 7.700(2) Å	$\alpha = 90^{\circ}$	
	b = 10.814(3) Å	$\beta = 90^{\circ}$	
	c = 29.940(8) Å	$\gamma = 90^{\circ}$	
Volume	2493.0(12) Å ³		
Z	8		
Density (calculated)	1.461 g/cm^3		
Absorption coefficient	1.185 mm ⁻¹	1.185 mm ⁻¹	
F(000)	1136		

Table S4. Data collection and structure refinement for 2a.

Theta range for data collection	2.00 to 25.00 °	
Index ranges	-9<=h<=9, -12<=k<=12, -34<=l<=33	
Reflections collected	13144	
Independent reflections	3899 [R(int) =	0.0492]
Max. and min. transmission	0.7970 and 0.7970	
Structure solution technique	direct methods	
Structure solution program	SUPERFLIP (Palatinus & Chapuis,2007)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3899 / 0 / 326	
Goodness-of-fit on F ²	1.030	
Δ/σ_{max}	0.001	
Final R indices	3579 data; Ι>2σ(Ι)	R1 = 0.0467, wR2 = 0.1215
	all data	R1 = 0.0513, $wR2 = 0.1270$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0907P) ² +0.4100P] where P=(F_o^2 +2 F_c^2)/3	
Absolute structure parameter	0.0(0)	
Largest diff. peak and hole	0.633 and -0.687 eÅ ⁻³	
R.M.S. deviation from mean	0.092 eÅ ⁻³	

 $(R_p)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-6-chloro-1]$

,8-dihydrocyclopent[a] inden-1-yl]iron (2f)

Table S5 Crystal data and structure refinement for 2f.

Identification code	2f
Empirical formula	C ₁₇ ClFeH ₁₃
Formula weight	308.57
Temperature/K	273.0
Crystal system	monoclinic
Space group	P21/c
a/Å	12.2854(6)
b/Å	20.4848(10)
c/Å	10.5744(4)
α/°	90
β/°	90.403(2)
γ/°	90
Volume/Å ³	2661.1(2)
Z	8
$\rho_{calc}g/cm^3$	1.540
μ/mm ⁻¹	1.314
F(000)	1264.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	5.178 to 49.998
Index ranges	$-14 \le h \le 14, -24 \le k \le 24, -12 \le l \le 11$
Reflections collected	48421

Independent reflections	4679 [$R_{int} = 0.0295, R_{sigma} = 0.0147$]
Data/restraints/parameters	4679/12/331
Goodness-of-fit on F ²	1.080
Final R indexes [I>=2σ (I)]	$R_1 = 0.0854, wR_2 = 0.2454$
Final R indexes [all data]	$R_1 = 0.0924, wR_2 = 0.2503$
Largest diff. peak/hole / e Å ⁻³	2.98/-1.27

 $(R_{p,S})$ - $(\eta^{5}-2,4$ -cyclopentadien-1-yl)[(1,2,3,3a,10a- η)-(10aS)-

10-(ditertbutylphosphine) -1,10-dihydro-10-oxopenthaleno

[1,2-b] naphthalen-1-yl] iron (3q)

Table S6. Sample and crystal data for 3q.

Identification code	shanhe20201217
Chemical formula	C ₂₉ H ₃₃ FeP
Formula weight	468.37 g/mol
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P 1 21/c 1

Unit cell dimensions	a = 7.7863(12) Å	$\alpha = 90^{\circ}$
	b = 16.223(3) Å	$\beta = 91.630(3)^{\circ}$
	c = 19.281(3) Å	$\gamma = 90^{\circ}$
Volume	2434.5(7) Å ³	
Z	4	
Density (calculated)	1.278 g/cm ³	
Absorption coefficient	0.699 mm ⁻¹	
F(000)	992	

Table S7. Data collection and structure refinement for 35.

Theta range for data collection	1.64 to 28.25 °	
Index ranges	-9<=h<=10, -21<=k<=12, -25<=l<=25	
Reflections collected	16614	
Independent reflections	6011 [R(int) = 0.0339)]
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$	
Data / restraints / parameters	6011 / 0 / 286	
Goodness-of-fit on F ²	1.051	
Final R indices	4026 data; I>2σ(I)	R1 = 0.0558, wR2 = 0.1479
	all data	R1 = 0.0877, wR2 = 0.1664
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0754P) ² +1.4616P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.540 and -0.316 eÅ ⁻³	
R.M.S. deviation from mean	0.065 eÅ ⁻³	

 $(R_p,S)-(\eta^5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-\eta)-5-methyl-(8aS)-8-(dicyclohexyl-phosphinyl)-1,8-dicyclohexylphosphine[a]inden-1-yl] iron ($ **4j**)

Table S8. Sample and crystal data for 4j.

Identification code	S4j	
Chemical formula	C ₃₀ H ₃₅ FeOP	
Formula weight	498.40 g/mol	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.4885(9) Å	$\alpha = 88.962(2)^{\circ}$
	b = 10.5604(10) Å	$\beta = 79.165(2)^{\circ}$
	c = 15.0107(15) Å	$\gamma = 79.812(2)^{\circ}$
Volume	1453.8(2) Å ³	
Ζ	2	
Density (calculated)	1.139 g/cm ³	
Absorption coefficient	0.591 mm ⁻¹	
F(000)	528	

Table S9. Data collection and structure refinement for 4j.

Theta range for data collection	1.96 to 25.00 °	
Index ranges	-11<=h<=11, -12<=k<=12, -17<=l<=17	
Reflections collected	15766	
Independent reflections	5098 [R(int) = 0.	0176]
Refinement method	Full-matrix least-	-squares on F ²
Refinement program	SHELXL-2018/3	(Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$	
Data / restraints / parameters	5098 / 10 / 297	
Goodness-of-fit on F ²	1.042	
Δ/σ_{max}	0.001	
Final R indices	4418 data; I>2σ(I)	R1 = 0.0485, wR2 = 0.1364
	all data	R1 = 0.0553, wR2 = 0.1442
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0926P) ² +0.6842P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.914 and -0.407 eÅ ⁻³	
R.M.S. deviation from mean	0.062 eÅ ⁻³	

 (R_p, S) - $(\eta^5-2, 4$ -cyclopentadien-1-yl)[(1,2,3,3a,8a- η)-6-(4-morpholino)-(8As)-8-(ditertb-u-tylphosphinyl)-1,8-dihydrocyclopent [*a*]inden-1-yl]

iron (7b)

Table S10 Crystal data and structure refinement for 7b

Identification code	mo_211231a_0m_a	
Empirical formula	C ₃₀ H ₃₉ NO ₂ PFeCl ₃	
Formula weight	638.79	
Temperature/K	273.0	
Crystal system	monoclinic	
Space group	$P2_1/n$	
a/Å	11.2416(3)	
b/Å	19.7855(6)	
c/Å	14.5494(4)	
a/°	90	
β/°	107.3950(10)	
γ/°	90	
Volume/Å ³	3088.09(15)	
Z	4	
ρ _{calc} g/cm ³	1.374	
μ/mm ⁻¹	0.827	
	S134	

F(000)	1336.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/	°5.056 to 52.832
Index ranges	$\text{-}14 \leq h \leq 14, \text{-}24 \leq k \leq 24, \text{-}18 \leq l \leq 18$
Reflections collected	62603
Independent reflections	$6316 [R_{int} = 0.0455, R_{sigma} = 0.0243]$
Data/restraints/parameters	6316/23/337
Goodness-of-fit on F ²	1.021
Final R indexes [I>=2σ (I)]	$R_1 = 0.0441, wR_2 = 0.1024$
Final R indexes [all data]	$R_1 = 0.0627, wR_2 = 0.1125$
Largest diff. peak/hole / e Å ⁻³	0.64/-0.47

11. HRMS (ESI-TOF) spectra

Figure S147. HRMS spectra of 1c

Figure S149. HRMS spectra of 1e

S137

Figure S153. HRMS spectra of 2c

S139

Figure S160. HRMS spectra of 2j

Figure S161. HRMS spectra of 2k

Figure S164. HRMS spectra of 3c

Figure S167. HRMS spectra of 3f

Figure S170. HRMS spectra of 3j

Figure S172. HRMS spectra of 3l

Figure S173. **HRMS** spectra of **3m**

Figure S174. HRMS spectra of 3n

Figure S177. HRMS spectra of 3q

Figure S178. HRMS spectra of 3r

Figure S179. HRMS spectra of 4a

Figure S182. **HRMS** spectra of **4d**

Figure S194. MS spectra of 4q

Figure S195. HRMS spectra of 5

Figure S197. HRMS spectra of 7

12. HPLC spectra

(*S_p*)- (2b) yield 99% ; ee=95%

¢,	RT(min)₊	Area	Area%₀	Height₽	Height‰
1.0	38.937+	509585₽	49.1891.	8574₽	54.0878 🕹
2+2	42.084+2	526388+	50.8109+	7278+2	45.9122 🛛

ę	RT(min)₊	Area₽	Area%₄≀	Height₽	Height‰
1₽	38.747.	13781.	0.9562+2	292₽	1.5355 🖓
2₽	41.607+2	1427449.	99.0438	18724~	98.4645 🕹

(*S_p*)- (2d) yield 97% ; ee=98.1%

(*S_p*)- (2e) yield 77% ; ee=99%

(*S_p*)- (2f) yield 97% ; ee=91.2%

(*S_p*)- (2g) yield 98% ; ee>99%

ш

ę	RT(min)₊	Area₽	Area%∉	Height₽	Height%₽
1.⇔	10.273	13074603@	96.2335+	480547.0	97.6210₽
20	11.930+	511725+	3.7665+	11711.	2.3790+

(*S_p*)- (2i) yield 94% ; ee=92.5%

yield 88%; ee=99%

сь С	RT(min)↔	Area₽	Area%⊷	Height₽	Height‰∘
1 🖓	9 .577₽	51370014	49.9329₽	270621+	48.7633*
2*3	10.6194	5150808₽	50.0671.	284348+2	51.2367+2

ę	RT(min)	Area₽	Area%₀	Height₽	Height‰
10	9.922₽	89641644	94.8359₽	436177*	95.6336₽
2+3	11.258#	488128	5.1641.	1991 5₽	4.3664.0

(*S_p*)- (2k) yield 63% ; ee=90%

(*R_p*,*S*)- (3a) yield 70% ; ee>99% ; de>99%

¢,	RT(min)₊3	Area⇔	Area‰∘	Height₽	Height‰≀
10	5.468₽	22562+2	0.2118+2	2679₽	0.3099₽
2+2	5.967₽	10046878+2	94.5479₽	823955₽	95.31450
3⇔	7.631₽	4038*2	0.038043	447∻	0.0517+2
4₽	9.599₽	552818+2	5.2024↩	37378↩	4.32394

(*R_p*,*S*)- (4b) 67% yield, ee > 99.6%; de =90.38%

¢	RT(min)¢	Area	Area‰	Height₽	Height‰
1₽	9.292₽	5709658₽	47.8134	179417¢	52.476943
2⇔	11.099+2	5763673₽	48.2657¢	145819+2	42.650040
3⊷	13.831¢	224809₽	1.8826+3	9865₽	2.8854
4₽	19.395+2	243415	2.0384	6796↩	1.9877₽

ę	RT(min)₽	Area₽	Area‰	Height₽	Height‰	4
10	9.430₽	50445₽	0.2650+2	2252₽	0.4445	4
240	10.979¢	18779021~	98.6421¢	498645₽	98.4278	4
3₽	15. 8 33¢	567₽	0.0030¢	87¢	0.0172+2	4
4₽	19.181¢	207507~	1.0900+3	5626₽	1.11050	4

 (R_p,S) - (4c) yield 73%; ee = 99.5%; de=97.8%

 (R_p,S) - (4d) yield 70%; ee > 99%; de=98.4%

ą	RT(min)₀	Area	Area‰ [,]	Height₽	Height‰
1₽	7.689₽	3481317¢	47.9108¢	255554+2	57.6695₽
2¢	8.193₽	2164594	2.9790₽	15100¢	3.4076
3⇔	8.919₽	6526₽	0.0898₽	768⊷	0.1733¢
4₽	9.680↩	3561946	49.0204	171713@	38.7495₽

42	RT(min)+3	Area₽	Area‰	Height₽	Height‰
142	7.668↩	6200270¢	98.4810¢	451910₽	97.6792+2
240	8.215+2	852170	1.3535+2	100590	2.1743¢
3₽	8.575₽	1273.0	0.02024	193	0.0417₽
4₽	9.672₽	9146₽	0.1453+2	485₽	0.1048₽

 (R_p,S) - (4f) yield 71%, ee > 99.7%, de = 97.3%

ę	RT(min)	Area₽	Area‰	Height₽	Height‰
1₽	8.797₽	1675977 ₽	47.3242*	109186	53.0828+2
2₽	9.909₽	911₽	0.0257	480₄⊃	0.2334
3₽	11.0894	18607694	52.5421₽	94152₽	45.7737₽
3⇔	12.272+2	3826	0.1080	1872+2	0.9101

¢	RT(min)	Area₽	Area‰	Height₽	Height%₽
1₽	8.98 7₽	4453756₽	97.4923₽	208553~	98.1 537₽
2₽	11.200+2	114560+	2.5077₽	3923₽	1.8463

 (R_p,S) - (4g) yield 76%; ee > 99%; de = 95.0%.

 (R_p,S) - (4h) yield 70%; ee > 99%; de = 91.7%

¢,	R1(mm)↔	Area	Area‰₽	Height₽	Height%+
10	7.521+	149550+2	2.5753+	17192 @	6.5909+
2 🕫	7.701.0	194351.0	3.3468+	18612.0	7.1354@
3 ₽	9.159+	2748714	47.3342*	144251+2	55.3021+2
4 ₽	13.927+	2714420*	46.7436	80787 🖓	30.9716

ę	RT(min)	Area	Area%₽	Height @	Height%₽
10	7.300₽	2451.0	0.0376	253 e	0.0700+2
2 🖓	7.711₽	373145÷	5.7213 @	36637∻	10.1532.
3 🕫	9.161₽	6122892 <i>+</i>	93.8794	323174+	89.5616+
4₽	13.980 <i>÷</i>	23597÷	0.3618	777∻	0.2152*

 (R_p,S) - (4j) yield 51%; ee = 99.2%; de =88.5%

Ą	RT(min)₽	Area	Area‰	Height₽	Height%₽
1₽	4.916₽	3648805¢	48.71490	247249	58.4987
2₽	5.875₽	2682142	0.3581₽	2692₽	0.6369+2
3⇔	6.277¢	3670810¢	49.0087	166413	39.37310
4₽	7.445₽	143685	1.9183+	6304~	1.4914+

ę	RT(min)+	Area₽	Area‰	Height₽	Height‰
10	5.597₽	4832669+	96.4019₽	268070	96.1038+2
24	6.638₽	154872¢	3.0894	9386₽	3.3649@
3₽	7.241	25500₽	0.5087₽	1482	0.5313

 (R_p,S) - (4k) yield 52%; ee =93.4%; de= 99.0%

÷	RT(min).	Area	Area‰	Height	Height‰
1.	7.345.	25907338.	93.9359.	1407944.	94.4067.
2.	8.512.	1457397.	5.2843.	74092 _e	4.9681
3.	10.900 _°	20620 _°	0.0748-	844.	0.0566
4.	12.069.	194463.	0.7051.	8481.	0.5687.

(*R_p*,*S*)- (41) yield 70%, ee =89.3%, de = 98.4%

 (R_p,S) - **(4m)** yield 70% ; ee > 99% ; de = 96%

	RT(min)	Area	Area%	Height	Height%
1	8.926	2427348	47.8134	73244	53.0962
2	2 10.498	10.498 2550328	48.2657	59447	43.0950
3	13.622	89966	1.8826	3234	2.3446
4	17.247	92765	2.0384	2020	1.4643

	RT(min)	Area	Area%	Height	Height%
1	8.812	278512	4.9677	8614	5.9797
2	10.113	5181307	92.4163	129062	89.5893
3	13.543	146676	2.6162	6383	4.4310
4	17.258	0	0.000	0	0.0000

 (R_p,S) - (4n) yield 75%; ee = 89.8%; de = 94.8%

ę	RT(min)+	Area	Area%₽	Height @	Height%₽
1 🖓	7.253 🕫	30191 +	0.7199+	2572.0	1.01550
2 🕫	8.186	1995653 e	47.5829 <i>₽</i>	1310140	51.7224 <i>•</i>
3 🕫	9.885₽	2131186@	50.8144+2	117659₽	46.4501
4.0	11.181.0	37025 +2	0.8828	2057.0	0.8119+

¢	RT(min)+	Area	Area%₽	Height @	Height%₽
10	7.450₽	912 <i>÷</i>	0.0242*	147	0.0702+2
2 +2	8.268.0	23418	0.6225	1865.0	0.8912،
3 ↔	9.879₽	3710843	98.6382+	205331.0	98.1149 <i>-</i> 2
4 ↔	11.177+2	26901 ~	0.7151.	1933.	0.9237.0

(*R_p,S*)- (40) yield 55%, ee =98.7%, de =98.5%

ę	RT(min)∉	Area 🖉	Area%₽	Height <i>«</i>	Height%₽
1 🖓	9.003+2	7458₽	0.1403 +	403 🖓	0.2626
2 🖓	11.244.0	228440÷	4.2961.~	14437.0	9.4174₽
3 🕫	15.819÷	5062127 <i>÷</i>	95.1992₽	138282	90.2034.0
4₽	28.463 @	19380+2	0.3645.	179 🖓	0.1166.

 (R_p, S) - (4p) yield 59%, ee > 99.2%, de = 91.1%

ę	RT(min)₽	Area	Area‰	Height₽	Height‰
1₽	9.066₽	6650204	9 7.7714 <i>v</i>	374060₽	98.1785 ₽
2₽	16.078+2	151585+2	2.2286	6940₽	1.8215

 $(R_{p,S})$ - (4q) yield 50%, ee =95.5%, de > 99.9%

¢	RT(min)₽	Area₽	Area‰	Height₽	Height‰≀
1∉	7.789₽	13887019	50.9693₽	442387~	61.4888
2₽	10.383	13358851	49.0307¢	277073	38.5112+2

÷	RT(min)₽	Area₽	Area‰₂	Height₽	Height‰
1₽	7.643₽	26791330&	100.000043	819518	100.000043

 (R_p,S) - (7) yield 76% ; ee > 99.9% ; de >99.9%