Supporting Information For:

Supramolecular Chiral Sensing by Supramolecular Helical Polymers

Takehiro Hirao ${ }^{1, \uparrow}$, Sei Kishino ${ }^{1, \uparrow}$, and Takeharu Haino ${ }^{1,2, *}$
${ }^{1}$ Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN.
${ }^{2}$ International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM ${ }^{2}$), Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN.
To whom correspondence should be addressed: *E-mail: haino@hiroshima-u.ac.jp
${ }^{\dagger}$ These two authors contributed equally.

Contents

General S2
Method S3
Scheme S1 Synthesis of 2 S4
Figure $\mathbf{S} 1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 S5
Figure S2-S4 2D NMR spectra of $\mathbf{2}$. S6-S8
Figure S5. Plot of ${ }^{1} \mathrm{H}$ NMR signal intensities obtained from the diffusion experiments for $\mathbf{2}$ S9
Figure S6. HRMS spectrum of 2 S10
Figure S7. UV/vis spectra of 2 S10
Figure S8. AFM image of 2 S11
Figure S9. VT ECD spectra of 2 S11
Figure S10. ECD spectra of $\mathbf{2}$ in the mixture of $(+)$ - and $(-)$ - α-pinene with various ee values. S12
Figure S11. Plot of $\Delta \varepsilon$ values of $\mathbf{2}$ in the mixture of $(+)$ - and $(-)$ - α-pinene with various ee values S13
References S14

General

All solvents were commercial reagent grade and were used without further purification except where noted. Dry 1,2dichloroethane and dry NEt_{3} was obtained by distillation over CaH_{2} and KOH , respectively. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 2 D NMR (DQFCOSY, NOESY, and HSQC) spectra were recorded on a JEOL ECA-600 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to residual pyridine ($\delta=8.74$ and 150.4 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively). Diffusion-ordered ${ }^{1} \mathrm{H}$ NMR spectroscopic (DOSY) measurement was carried out on a JEOL ECA-500 spectrometer. Melting points (M.p.) were measured with a Yanagimoto micro melting point apparatus. Infrared (IR) spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZeSe ATR accessory. Preparative separations were performed by silica gel gravity column chromatography (Silica Gel 60 N (spherical, neutral)). Preparative medium pressure liquid chromatography (MPLC) separations were carried out with a YAMAZEN smart flash EPCLC AL-580S using a preparative Bio-Beads (S-X1) column. Recycling preparative GPC-HPLC separations were carried out on JAI LaboACE LC-5060 using preparative JAIGEL-2.5HH, 2HH columns in series. UV/vis absorption spectra were recorded on a JASCO V-760 spectrometer. Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectrometer. Morphological evaluation of the samples was performed using atomic force microscopy (AFM) using a Bruker Multimode 8HR under ambient conditions with a Bruker cantilever model NCHV in the tapping mode. NanoScope Analysis 2.0 was used for the AFM image analysis. $\mathbf{1}^{[1]}$ and 2-octyldecanol ${ }^{[2]}$ were synthesized according to reported methods.

Method

Determination of an affinity constant $\left(K_{a}\right)$ corresponding to the intermolecular interactions between bis (porphyrin) moieties of 2 . ${ }^{[3]}$

A hyperbolic curve was obtained by plotting the concentrations of 2 against the extinction coefficients $(\varepsilon)(\lambda=435 \mathrm{~nm})$. Curve fitting analysis was performed using Igor pro program based on an isodesmic model. The fitting functions are given by eq. S1,

$$
\begin{equation*}
\varepsilon(C)=\frac{2 K_{a} C+1-\sqrt{4 K_{a} C+1}}{2 K_{a}^{2} C^{2}}(\varepsilon 1-\varepsilon a)+\varepsilon a \tag{S1}
\end{equation*}
$$

where $C, K_{\mathrm{a}}, \varepsilon_{1}$, and ε_{a} denote the total concentration of 2 , the affinity constant, the ε of the monomer, and the ε of the aggregate species, respectively.

Determination of diffusion coefficient (D) of the molecular species in the solution of 2. ${ }^{[4]}$
Chloroform- d solutions of 2 were placed in an NMR sample tube ($3 \mathrm{~mm} \Phi$). The pulse-field gradient diffusion NMR spectra were recorded using a bipolar pulse pair stimulated echo pulse sequence on a JEOL JNM-ECA500 spectrometer with a three mm inverse $\mathrm{H} 3 \mathrm{X} / \mathrm{FG}$ probe at $24^{\circ} \mathrm{C}$. The resulting DOSY data were analyzed using a MestReNova program to obtain the diffusion coefficient values (D) shown in Fig. 2b. The signal decay of the selected protons was fit to fitting functions given by eq. S2 (Fig. S5), where I and I_{0} denote the NMR signal intensities in the presence and absence of gradient pulses, respectively. D is the diffusion coefficient value.

$$
\begin{equation*}
I=I_{0} e^{-x D} \tag{S2}
\end{equation*}
$$

The x denotes $\left[-\gamma^{2} g^{2} \delta^{2}(\Delta-\delta / 3)\right]$, where γ, g, δ, and Δ indicate the gyromagnetic ratio, gradient strength, its duration, and separation between the edges of the gradient pulses, respectively.

Scheme S1. Synthesis of 2.
bis(porphyrin) dimer 2: To a solution of $\mathbf{1}(61.2 \mathrm{mg}, 20.6 \mu \mathrm{~mol})$ in 1,4 -dioxane $(9.8 \mathrm{~mL})$ and water $(0.82 \mathrm{~mL})$ was added potassium hydroxide ($23.0 \mathrm{mg}, 410 \mu \mathrm{~mol}$). The mixture was stirred for 2 h at $100^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was acidified with 1 M hydrochloric acid to pH 4 . After concentrating the organic layer to $1 / 2$ of its original volume, the resulting precipitate was filtered off, washed with water and MeOH , and dried over under the reduced pressure. The resulting solid was dissolved in dry 1,2 -dichloroethane (2.7 mL) in a pressure tube, and dry triethylamine ($50 \mu \mathrm{~L}$), diphenylphosphoryl azide ($11.5 \mathrm{mg}, 41.8 \mu \mathrm{~mol}$), and 2-octyldecanol ($159 \mathrm{mg}, 588 \mu \mathrm{~mol}$) were added at room temperature. The mixture was stirred for 20 h at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere and diluted with CHCl_{3}. The organic layer was washed with aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under the reduced pressure. MPLC (chloroform, eluent), subsequent silica-gel column chromatography ($4 \% \mathrm{MeCN}$ in toluene, eluent), and GPC gave the desired product $\mathbf{2}$ (25.0 mg , 35%, for 2 steps) as a purple solid.
M.p.: > $300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (pyridine- $d_{5}, 600 \mathrm{MHz}$): $\delta 11.39(\mathrm{~s}, 2 \mathrm{H}), 11.27(\mathrm{~s}, 4 \mathrm{H}), 9.25(\mathrm{~d}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}), 9.13(\mathrm{~d}, 4 \mathrm{H}, J=$ $4.8 \mathrm{~Hz}), 9.11(\mathrm{~d}, 4 \mathrm{H}, J=4.8 \mathrm{~Hz}), 9.08(\mathrm{~d}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}), 8.98(\mathrm{~m}, 8 \mathrm{H}), 8.87(\mathrm{~m}, 8 \mathrm{H}), 8.52$ (overlapped, 4H), 8.49 (overlapped, 8H), 8.43 (overlapped, 4H), 8.32 (overlapped, 10H), 8.16 (overlapped, 12H), 8.03 (m, 4H), 7.69-7.81 (overlapped, 16H), $7.63(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~m}, 8 \mathrm{H}), 4.52(\mathrm{~d}, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.57(\mathrm{~m}, 56 \mathrm{H}), 0.90(\mathrm{t}, 12 \mathrm{H}, J=6.5 \mathrm{~Hz}),-2.51(\mathrm{~s}$, $4 \mathrm{H}),-2.55(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (chloroform $-d_{1}, 100 \mathrm{MHz}$): $\delta 163.3,163.2,155.8,144.5,143.3,143.2,142.9,142.8,141.3$, $139.5,137.9,137.8,136.9,135.4,135.3,132.1,131.7,128.7,128.7,128.3,127.9,127.7,126.1,122.1,121.7,121.5,121.4$, 121.1, 121.0, 120.5, 120.0, 118.0, 83.6, 76.6, 68.3, 38.8, 32.7, 32.2, 30.9, 30.4, 30.1, 27.7, 23.5, 14.8. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{232} \mathrm{H}_{201} \mathrm{O}_{8} \mathrm{~N}_{24} \mathrm{~m} / \mathrm{z} 1150.2014[\mathrm{M}+3 \mathrm{H}]^{3+}$, found m / z 1150.2024.

165	160	155	150	145	140 $\delta(\mathrm{ppm})$	135	130	125

Figure S1. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(150 \mathrm{MHz})$ spectra of $\mathbf{2}$ in pyridine- d_{5}. The expanded views of the spectra and the full spectra are shown in panels (a), (c) and (b), (d), respectively. Asterisk (*) denotes residual chlorofom.

Figure S2. DQF-COSY spectrum of $\mathbf{2}$ in pyridine- d_{5}. Asterisk $\left(^{*}\right)$ denotes residual chlorofom.

Figure S3. NOESY spectrum of $\mathbf{2}$ in pyridine- d_{5}. Asterisk (*) denotes residual chlorofom.

Figure S4. HSQC spectrum of $\mathbf{2}$ in pyridine- $d_{5} . \mathrm{CH}_{3}$ and CH carbons are phased up (red), and CH_{2} carbons are phased down (blue). Asterisk (*) denotes residual chlorofom.

Figure S5. Plot of ${ }^{1} \mathrm{H}$ NMR signal intensities obtained from the diffusion experiments for $\mathbf{2}$ in chloroform- d at the concentrations of (a) 30 , (b) 20 , (c) 15 , (d) 10 , (e) 8.0 , (f) 5.0 , (g) 2.0 , and (h) $1.0 \mathrm{mmol} \mathrm{L}^{-1}$ and their fitting curves (red lines).

Figure S6. HRMS (ESI ${ }^{+}$) spectrum of 2 (top panel) and its expanded view (bottom panel).

Figure S7. UV/vis spectral absorption changes seen for 2 in $(+)$-limonene at $90^{\circ} \mathrm{C}$. The concentrations are (a-t) $0.51,1.0$, $1.5,2.0,2.5,3.5,4.4,5.3,6.3,7.2,8.0,8.9,9.7,10.6,11.4,12.2,13.0,14.0,15.0,15.8 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$. The blue and red lines indicate spectra of 2 at the concentrations of $0.51 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$ and $15.8 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$, respectively.

Figure S8. AFM image of the cast films of $\mathbf{2}$ on mica prepared from its (+)-limonene solution.

Figure S9. Valuable temperature ECD spectra of $2\left(2.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in (a) (-)- α-pinene and (b) (-)- β-pinene. The temperatures are $(\mathrm{a}-\mathrm{j}) 100,90,80,70,60,50,40,30,20,10,0^{\circ} \mathrm{C}$. The red and blue lines denote the spectra observed at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively.

Figure S10. ECD spectra of $\mathbf{2}\left(2.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the mixture of $(+)$ - and $(-)-\alpha-$ pinene with various ee values. The ee values are $100,90,80,70,60,50,40,30,20,10,0,-10,-20,-30,-40,-50,-60,-70,-80,-90,-100 \%$, where ee $=([(+)-\alpha-$ pinene $]-[(-)-\alpha-$ pinene $]) /([(+)-\alpha-$ pinene $]+[(-)-\alpha-$ pinene $])\}$.

422 nm	
ee	$\Delta \varepsilon$
100	37.2927433
80	28.5187582
60	20.7358768
40	15.0092076
20	6.76389828
0	0.62267451
-20	-6.9165056
-40	-14.000052
-60	-22.297289
-80	-29.040231
-100	-36.354081

437 nm	
ee	$\Delta \varepsilon$
100	-37.903137
80	-32.181483
60	-25.824892
40	-18.178104
20	-11.68455
0	-2.6949081
-20	5.81970634
-40	15.2501915
-60	23.7771043
-80	32.7335909
-100	41.4838001

Figure S11. $\Delta \varepsilon$ values of $2\left(2.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the mixture of $(+)$ - and $(-)$ - α-pinene with various ee values and the linear regression lines for the ee vs $\Delta \varepsilon$ values observed at (a) 422 nm and (b) 437 nm . The x and y indicate ee and $\Delta \varepsilon$ values, respectively. Enantiomeric excess $(\mathrm{ee})=\{([(+)$ - α-pinene $]-[(-)$ - α-pinene $]) /([(+)$ - α-pinene $]+[(-)$ - α-pinene $])\}$.

References

[1] (a) T. Haino, T. Fujii, A. Watanabe, U. Takayanagi, Proc. Natl. Acad. Sci., USA, 2009, 106, 10477-10481. (b) N. Hisano, T. Hirao, K. Tanabe, T. Haino, J. Porphyr. Phthalocyanines, 2022, 26, 683-689.
[2] M. Prehm, C. Enders, X. Mang, X. Zeng, F. Kiu, G. Ungar, U. Baumeister, C. Tschierske, Chem. Eur. J., 2018, 24, 16072-16084.
[3] R. B. Martin, Chem. Rev., 1996, 96, 3043-3064.
[4] L. Escobar, Y.-S. Li, Y. Cohen, Y. Yu, J. Rebek Jr., P. Ballester, Chem. Eur. J., 2020, 26, 8220-8225.

