Supporting Information For:

Supramolecular Chiral Sensing by Supramolecular Helical Polymers

Takehiro Hirao^{1,†}, Sei Kishino^{1,†}, and Takeharu Haino^{1,2,*}

¹Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1–3–1

Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN.

²International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM²), Hiroshima University, 1–3–1

Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN.

To whom correspondence should be addressed: *E-mail: haino@hiroshima-u.ac.jp

[†]These two authors contributed equally.

General	
Method	S3
Scheme S1 Synthesis of 2	S4
Figure S1 ¹ H and ¹³ C NMR spectra of 2	S5
Figure S2–S4 2D NMR spectra of 2.	
Figure S5. Plot of ¹ H NMR signal intensities obtained from the diffusion experiments for 2	S9
Figure S6. HRMS spectrum of 2	S10
Figure S7. UV/vis spectra of 2	S10
Figure S8. AFM image of 2	S11
Figure S9. VT ECD spectra of 2	S11
Figure S10. ECD spectra of 2 in the mixture of (+)- and (–)- α -pinene with various ee values	
Figure S11. Plot of $\Delta \varepsilon$ values of 2 in the mixture of (+)- and (-)- α -pinene with various ee values	S13
References	S14

Contents

General

All solvents were commercial reagent grade and were used without further purification except where noted. Dry 1,2dichloroethane and dry NEt₃ was obtained by distillation over CaH₂ and KOH, respectively. ¹H,¹³C, and 2D NMR (DQF-COSY, NOESY, and HSQC) spectra were recorded on a JEOL ECA-600 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to residual pyridine (δ = 8.74 and 150.4 for ¹H and ¹³C, respectively). Diffusion-ordered ¹H NMR spectroscopic (DOSY) measurement was carried out on a JEOL ECA-500 spectrometer. Melting points (M.p.) were measured with a Yanagimoto micro melting point apparatus. Infrared (IR) spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZeSe ATR accessory. Preparative separations were performed by silica gel gravity column chromatography (Silica Gel 60 N (spherical, neutral)). Preparative medium pressure liquid chromatography (MPLC) separations were carried out with a YAMAZEN smart flash EPCLC AL-580S using a preparative Bio-Beads (S-X1) column. Recycling preparative GPC-HPLC separations were carried out on JAI LaboACE LC-5060 using preparative JAIGEL-2.5HH, 2HH columns in series. UV/vis absorption spectra were recorded on a JASCO V-760 spectrometer. Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectrometer. Morphological evaluation of the samples was performed using atomic force microscopy (AFM) using a Bruker Multimode 8HR under ambient conditions with a Bruker cantilever model NCHV in the tapping mode. NanoScope Analysis 2.0 was used for the AFM image analysis. **1**^[1] and 2-octyldecanol^[2] were synthesized according to reported methods.

Method

Determination of an affinity constant (K_a) corresponding to the intermolecular interactions between bis(porphyrin) moieties of **2**.^[3]

A hyperbolic curve was obtained by plotting the concentrations of **2** against the extinction coefficients (ε) (λ = 435 nm). Curve fitting analysis was performed using Igor pro program based on an isodesmic model. The fitting functions are given by eq. S1,

$$\varepsilon(C) = \frac{2K_aC + 1 - \sqrt{4K_aC + 1}}{2K_a^2C^2}(\varepsilon 1 - \varepsilon a) + \varepsilon a \tag{S1}$$

where C, K_a , ε_1 , and ε_a denote the total concentration of **2**, the affinity constant, the ε of the monomer, and the ε of the aggregate species, respectively.

Determination of diffusion coefficient (D) of the molecular species in the solution of 2.^[4]

Chloroform-*d* solutions of **2** were placed in an NMR sample tube (3 mm Φ). The pulse-field gradient diffusion NMR spectra were recorded using a bipolar pulse pair stimulated echo pulse sequence on a JEOL JNM-ECA500 spectrometer with a three mm inverse H3X/FG probe at 24 °C. The resulting DOSY data were analyzed using a MestReNova program to obtain the diffusion coefficient values (*D*) shown in Fig. 2b. The signal decay of the selected protons was fit to fitting functions given by eq. S2 (Fig. S5), where *I* and *I*₀ denote the NMR signal intensities in the presence and absence of gradient pulses, respectively. *D* is the diffusion coefficient value.

$$I = I_0 e^{-xD} \tag{S2}$$

The x denotes $[-\gamma^2 g^2 \delta^2 (\Delta - \delta/3)]$, where γ , g, δ , and Δ indicate the gyromagnetic ratio, gradient strength, its duration, and separation between the edges of the gradient pulses, respectively.

1) KOH, H₂O, 1,4-dioxane

2) 2-octyldecanol, dry NEt₃, diphenylphosphoryl azide, dry 1,2-dichloroethane

Scheme S1. Synthesis of 2.

bis(porphyrin) dimer 2: To a solution of **1** (61.2 mg, 20.6 μ mol) in 1,4-dioxane (9.8 mL) and water (0.82mL) was added potassium hydroxide (23.0 mg, 410 μ mol). The mixture was stirred for 2 h at 100 °C under a nitrogen atmosphere. The reaction mixture was acidified with 1M hydrochloric acid to pH 4. After concentrating the organic layer to 1/2 of its original volume, the resulting precipitate was filtered off, washed with water and MeOH, and dried over under the reduced pressure. The resulting solid was dissolved in dry 1,2-dichloroethane (2.7 mL) in a pressure tube, and dry triethylamine (50 μ L), diphenylphosphoryl azide (11.5 mg, 41.8 μ mol), and 2-octyldecanol (159 mg, 588 μ mol) were added at room temperature. The mixture was stirred for 20 h at 90 °C under a nitrogen atmosphere and diluted with CHCl₃. The organic layer was washed with aqueous NaHCO₃, dried over Na₂SO₄, and concentrated under the reduced pressure. MPLC (chloroform, eluent), subsequent silica-gel column chromatography (4% MeCN in toluene, eluent), and GPC gave the desired product **2** (25.0 mg, 35%, for 2 steps) as a purple solid.

M.p.: > 300 °C. ¹H NMR (pyridine- d_5 , 600 MHz): δ 11.39 (s, 2H), 11.27 (s, 4H), 9.25 (d, 4H, J = 5.0 Hz), 9.13 (d, 4H, J = 4.8 Hz), 9.11 (d, 4H, J = 4.8 Hz), 9.08 (d, 4H, J = 5.0 Hz), 8.98 (m, 8H), 8.87 (m, 8H), 8.52 (*overlapped*, 4H), 8.49 (*overlapped*, 8H), 8.43 (*overlapped*, 4H), 8.32 (*overlapped*, 10H), 8.16 (*overlapped*, 12H), 8.03 (m, 4H), 7.69–7.81 (*overlapped*, 16H), 7.63 (m, 4H), 7.55 (m, 8H), 4.52 (d, 4H, J = 6.3 Hz), 1.90 (m, 2H), 1.22–1.57 (m, 56H), 0.90 (t, 12H, J = 6.5 Hz), -2.51 (s, 4H), -2.55 (s, 4H). ¹³C{¹H} NMR (chloroform- d_1 , 100 MHz): δ 163.3, 163.2, 155.8, 144.5, 143.3, 143.2, 142.9, 142.8, 141.3, 139.5, 137.9, 137.8, 136.9, 135.4, 135.3, 132.1, 131.7, 128.7, 128.7, 128.3, 127.9, 127.7, 126.1, 122.1, 121.7, 121.5, 121.4, 121.1, 121.0, 120.5, 120.0, 118.0, 83.6, 76.6, 68.3, 38.8, 32.7, 32.2, 30.9, 30.4, 30.1, 27.7, 23.5, 14.8. HRMS (ESI⁺) calcd. for C₂₃₂H₂₀₁O₈N₂₄ *m*/*z* 1150.2014 [M+3H]³⁺, found *m*/*z* 1150.2024.

Figure S1. ¹H (600 MHz) and ¹³C{¹H} (150 MHz) spectra of **2** in pyridine- d_5 . The expanded views of the spectra and the full spectra are shown in panels (a), (c) and (b), (d), respectively. Asterisk (*) denotes residual chlorofom.

Figure S2. DQF-COSY spectrum of 2 in pyridine-d₅. Asterisk (*) denotes residual chlorofom.

Figure S3. NOESY spectrum of 2 in pyridine- d_5 . Asterisk (*) denotes residual chlorofom.

Figure S4. HSQC spectrum of **2** in pyridine- d_5 . CH₃ and CH carbons are phased up (red), and CH₂ carbons are phased down (blue). Asterisk (*) denotes residual chlorofom.

Figure S5. Plot of ¹H NMR signal intensities obtained from the diffusion experiments for **2** in chloroform-*d* at the concentrations of (a) 30, (b) 20, (c) 15, (d) 10, (e)8.0, (f) 5.0, (g) 2.0, and (h) 1.0 mmol L⁻¹ and their fitting curves (red lines).

Figure S6. HRMS (ESI⁺) spectrum of 2 (top panel) and its expanded view (bottom panel).

Figure S7. UV/vis spectral absorption changes seen for 2 in (+)-limonene at 90 °C. The concentrations are (a-t) 0.51, 1.0, 1.5, 2.0, 2.5, 3.5, 4.4, 5.3, 6.3, 7.2, 8.0, 8.9, 9.7, 10.6, 11.4, 12.2, 13.0, 14.0, 15.0, 15.8×10^{-8} mol L⁻¹. The blue and red lines indicate spectra of 2 at the concentrations of 0.51×10^{-8} mol L⁻¹ and 15.8×10^{-8} mol L⁻¹, respectively.

Figure S8. AFM image of the cast films of 2 on mica prepared from its (+)-limonene solution.

Figure S9. Valuable temperature ECD spectra of **2** ($2.5 \times 10^{-5} \text{ mol } L^{-1}$) in (a) (–)- α -pinene and (b) (–)- β -pinene. The temperatures are (a-j) 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 °C. The red and blue lines denote the spectra observed at 100 °C and 0 °C, respectively.

Figure S10. ECD spectra of **2** ($2.5 \times 10^{-5} \text{ mol } \text{L}^{-1}$) in the mixture of (+)- and (-)- α -pinene with various ee values. The ee values are 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, -10, -20, -30, -40, -50, -60, -70, -80, -90, -100%, where ee = ([(+)- α -pinene] - [(-)- α -pinene]) / ([(+)- α -pinene] + [(-)- α -pinene])}.

Figure S11. $\Delta \varepsilon$ values of **2** (2.5 × 10⁻⁵ mol L⁻¹) in the mixture of (+)- and (-)- α -pinene with various ee values and the linear regression lines for the ee vs $\Delta \varepsilon$ values observed at (a) 422 nm and (b) 437 nm. The x and y indicate ee and $\Delta \varepsilon$ values, respectively. Enantiomeric excess (ee) = {([(+)- α -pinene] – [(-)- α -pinene]) / ([(+)- α -pinene] + [(-)- α -pinene])}.

References

- [1] (a) T. Haino, T. Fujii, A. Watanabe, U. Takayanagi, *Proc. Natl. Acad. Sci., USA*, 2009, *106*, 10477-10481. (b) N. Hisano, T. Hirao, K. Tanabe, T. Haino, *J. Porphyr. Phthalocyanines*, 2022, *26*, 683-689.
- [2] M. Prehm, C. Enders, X. Mang, X. Zeng, F. Kiu, G. Ungar, U. Baumeister, C. Tschierske, Chem. Eur. J., 2018, 24, 16072-16084.
- [3] R. B. Martin, Chem. Rev., 1996, 96, 3043-3064.
- [4] L. Escobar, Y.-S. Li, Y. Cohen, Y. Yu, J. Rebek Jr., P. Ballester, Chem. Eur. J., 2020, 26, 8220-8225.