Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Synthesis of cyclopent-1-enecarbonitriles via a tandem Giese/HWE reaction initiated by visible light

Marek Moczulski ^a, Dariusz Deredas ^a, Elżbieta Kuśmierek ^b, Łukasz Albrecht ^a and Anna Albrecht ^{b*}

^a Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland

^b Institute of General and Ecological Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland

anna.albrecht@p.lodz.pl

Contents

1.	General Methods	S2
2.	Cyclic voltammetry	.S3
3.	Fluorescence Quenching	S5
4.	Light sources emission spectra	.S7
5.	Tandem Giese/HWE reaction initiated by visible light- optimization studies	S8
6.	General procedure for the synthesis of cyclopent-1-enecarbonitriles	S10
7.	Copies of ¹ H NMR and ¹³ C NMR and ¹⁹ F NMR	S14

1. General Methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively and on JEOL JNM-ECZL 376 MHz for ¹⁹F. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for 1H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization (referenced to the mass of the charged species). Analytical thin layer chromatography (TLC) was performed using precoated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka). Blue LED (50 W, λ = 456 nm), were purchased from commercial supplier Kessil LED photoreactor lightning. Fluorescence measurements were performed using Varian Cary Eclipse spectrofluorometer equipped with thermos stated cell holder. *N*-(Acyloxy)phthalimides **1** were prepared from the corresponding starting materials following the literature procedure. ^[1] Phosphonates **2** were synthetized according to the literature procedure.^[2] Figure **1** shows the 50W 456nm photochemical reaction setup. The reaction vials in front of the 50W 456 nm bulb at approximatively 4.5 cm distance. To maintain a stable reaction temperature two fans were placed in close proximity to the reaction vials (23±2 °C).

[1] A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal, *Science*, **2017**, *357*, 283.
[2] R. Chowdhury, S. K. Ghosh, *Eur. J. Org. Chem.* **2008**, 3868-3874.

Fig. S1. Photochemical reaction setup using 50W 456nm Kessil LED.

2. Cyclic voltammetry

Fig. 1. Cyclic voltammograms recorded in a solution of **1a** (electroreduction) and in the supporting electrolyte (0.1 M TBAP) in CH_3CN at the scan rate of 0.1 V/s.

Fig. 2. Cyclic voltammograms recorded in a solution of **2a** compound (electroreduction) and in the supporting electrolyte (0.1 M TBAP) in CH_3CN at the scan rate of 0.1 V/s.

Fig. 3. Cyclic voltammograms recorded in the solution of 2a (electrooxidation) and in the supporting electrolyte (0.1 M TBAP) in CH₃CN at the scan rate of 0.1 V/s.

 $E_{1/2}$ value determined for **1a** vs. SCE – electroreduction

 $1a - E_{1/2} = -1.227 V$

 $E_{1/2}$ value determined for **2a** vs. SCE – electroreduction

2a – E_{1/2} = -1.401 V

 $E_{1/2}$ value determined for $\boldsymbol{2a}\cdot$ vs. SCE – electrooxidation

 $2a - E_{1/2} = 2.444 V$

3. Fluorescence Quenching

All $Ir(ppy)_3$ solution were irradiated at 382 nm and approximately and the emission intensity from 450 nm to 700 nm was recorded by PMT-780 Spectrophotometer ($\lambda_{max\,emission} = 518 nm$). A 2 mL solution of $Ir(ppy)_3$ in DMSO (1µM) was added 1a or 2a (0 µM, 100 µM, 300 µM, 500 µM 900 µM in turn), emission spectra was collected instantly after each addition.

Fig.1 Fluorescent quenching of Ir(ppy)₃ by 1a

Fig. 2 Stern-Volmer plot of quenching of $Ir(ppy)_3$ by **1a**

Fig.3 Fluorescent quenching of Ir(ppy)₃ by 2a

Fig. 4 Stern-Volmer plot of quenching of $Ir(ppy)_3$ by **2a**

4. Light sources emission spectra

TECHNICAL SPECIFICATIONS

Power Consumption (AC)	370nm Gen 2 (max 44W), 370nm (max 43W), 390nm (max 52W), 427nm & 440nm (max 45W), 456nm (max 50W), 467nm (max 44W), 525nm (max 44W)
Input Voltage	100-240 VAC
Operating Temperature	0 - 40°C / 32 - 104°F
Beam Angle	56°
Wavelength Options	370nm, 390nm, 427nm, 440nm, 456nm, 467nm, 525nm
Average Intensity of PR160 series	399mW/cm2 (measured from 1 cm distance)
Dimensions (H x D)	4.49" x 2.48" / 11.4cm x 6.3cm

Figure : Kessil lights emission spectra used in project. The image downloaded from Kessil website: kessil.com/products/science_PR160L.php

5. Tandem Giese/HWE reaction initiated by visible light- optimization studies

Table 1. Tandem Giese/HWE reaction initiated by visible light- optimization studies^a

J	Ľ)
4	i IDNI	

				4GZIPN		
Entr y	EWG	Cat.	Sol- vent	Donor of electron [equiv.]	1a:2a	Yield [%]
1 ^b	CO ₂ Et	4a	CH_2CI_2	DIPEA [2]	1.5:1	-
2 ^b	CO₂ <i>t</i> Bu	4a	CH_2CI_2	DIPEA [2]	1.5:1	-
3 ^b	C(O)Ph	4a	CH_2Cl_2	DIPEA [2]	1.5:1	-
4 ^b	CN	4a	CH_2Cl_2	DIPEA [2]	1.5:1	35
5 ^b	CN	4b	CH_2Cl_2	DIPEA [2]	1.5:1	41
6 ^b	CN	4c	CH_2Cl_2	DIPEA [2]	1.5:1	45
7 ^c	CN	4d	CH_2Cl_2	DIPEA [2]	1.5:1	55
8 ^c	CN	4e	CH_2Cl_2	DIPEA [2]	1.5:1	-
9 °	CN	4f	CH_2Cl_2	DIPEA [2]	1.5:1	51
10 ^c	CN	4g	CH_2Cl_2	DIPEA [2]	1.5:1	-
11 ^c	CN	4h	CH_2Cl_2	DIPEA [2]	1.5:1	55
12 ^c	CN	4i	CH_2Cl_2	DIPEA [2]	1.5:1	26
13 ^c	CN	4d	Acetone	DIPEA [2]	1.5:1	56
14 ^c	CN	4d	DMF	DIPEA [2]	1.5:1	54
15°	CN	4d	MeCN	DIPEA [2]	1.5:1	52
16 ^c	CN	4d	DMSO	DIPEA [2]	1.5:1	65
17 ^c	CN	4d	Toluene	DIPEA [2]	1.5:1	29
18 ^c	CN	4d	AcOEt	DIPEA [2]	1.5:1	38
19 ^c	CN	4d	MeOH	DIPEA [2]	1.5:1	-
20 ^c	CN	4d	DMSO	Vit. C [2]	1.5:1	-
21 ^c	CN	4d	DMSO	TEA [2]	1.5:1	-
22 ^c	CN	4d	DMSO	DIPEA [1]	1.5:1	50
23°	CN	4d	DMSO	DIPEA [0.2]	1.5:1	-
24 ^c	CN	4d	DMSO	DIPEA [2]	2:1	78
25 ^{c, d}	CN	4d	DMSO	DIPEA [2]	2:1	76

26 ^{c , e}	CN	4d	DMSO	DIPEA [2]	2:1	72
27 ^{c,e}	CN	-	DMSO	DIPEA [2]	2:1	-
28 ^{c,e}	CN	4d	DMSO	-	2:1	-
29 ^{e,f}	CN	4d	DMSO	DIPEA [2]	2:1	-

^a All reactions were performed in a 0.20 mmol scale using **1a** (1.2 equiv.) and **2a** (1.0 equiv.) in the presence of the corresponding photoredox catalyst **4** (10 mol%) and the corresponding base (2 equiv.) in the solvent (3 mL). ^bReaction performed under irradiation with the green light. ^cReaction performed under irradiation with the blue light. ^d Reaction performed using 5 mol% of catalyst. ^e Reaction performed using 1 mol% of catalyst. ^fReaction performed in the dark.

6. General procedure for the synthesis of cyclopent-1-enecarbonitriles

In a 10 mL Schlenk flask equipped with a magnetic stirring bar, *N*-acyloxyphthalimide **1** (0.4 mmol, 2 equiv.), phosphonate **2** (0.2 mmol, 1 equiv.), $Ir(ppy)_3$ (0.002 mmol, 0.01 equiv.) and DIPEA (0.4 mmol, 2 equiv.) were placed and dissolved in DMSO (2 mL). Then the reaction mixture was degassed three times and filled the atmosphere with argon. The flask was placed about 5 cm away from the blue LED lamp and was irradiated for 24 hours. Then reaction mixture was quenched with saturated solution of Na₂CO₃ and washed the aqueous phase with CH₂Cl₂ three times (3 x 10 mL). The organic phase was washed with brine (1 x 20 mL) and dry organic residue with MgSO₄, then evaporated it under reduced pressure. The crude product was purified by column chromatography (petroleum ether : ethyl acetate 9:1) to obtain desire product.

2-methyl-5-phenylcyclopent-1-enecarbonitrile (3aa)

The product (26.4 mg, 72%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.33 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.26-7.23 (m, 1H), 7.19-7.16 (m, 2H), 4.09-4.05 (m, 1H), 2.67-2.60 (m, 1H) 2.58-2.47 (m, 2H), 2.11-2.09 (m, 3H), 1.95-1.88 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 161.9, 142.8, 129.0 (2C), 127.3 (2C), 127.2, 116.6, 113.0, 53.0, 37.8, 33.6, 17.0 HRMS calculated for C₁₃H₁₃N [M+Na]+ m/z: 206.0940, found: 206.0943

5-(2-bromophenyl)-2-methylcyclopent-1-enecarbonitrile (3ab)

The product (32.9 mg, 63%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a green oil. ¹H NMR (700 MHz, CDCl₃) δ 7.57 (dd *J* = 7.9, 1.3 Hz, 1H), 7.30 (td, *J* = 7.5, 1.3 Hz, 1H), 7.13 (dd *J* = 7.9, 1.8 Hz, 1H) 7.11 (td *J* = 7.5, 1.8 Hz, 1H) 4.59-4.54 (m, 1H) 2.66-2.50 (m, 3H), 2.15-2.12 (m, 3H), 1.78-1.72 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 163.6, 141.8, 133.3, 128.7, 128.1, 127.8, 124.3, 116.4, 111.4, 52.0, 37.4, 32.5, 17.1 HRMS calculated for C₁₃H₁₂BrN [M+Na]+ m/z: 284.0046, found: 284.0048

5-(4-bromophenyl)-2-methylcyclopent-1-enecarbonitrile (3ac)

The product (35.5 mg, 68%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a brown oil. ¹H NMR (700 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz 2H), 7.06 (d, *J* = 8.4 Hz 2H), 4.05-4.01 (m, 1H), 2.66-2.59 (m, 1H), 2.57-2.47 (m, 2H) 2.12-2.09 (m, 3H), 1.89-1.82 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.4, 141.8, 132.1, 129.0, 121.1, 116.3, 112.5, 52.4, 37.8, 33..6, 17.0 HRMS calculated for C₁₃H₁₂BrN [M+Na]+ m/z: 284.0046, found: 284.0042

5-(2-fluorophenyl)-2-methylcyclopent-1-enecarbonitrile (3ad)

The product (31.0 mg, 77%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a green oil. ¹H NMR (700 MHz, CDCl₃) δ 7.19-7.15 (m, 1H), 7.09 (td, *J* = 7.6, 1.9 Hz, 1H) 7.05 (td, *J* = 7.4, 1.2 Hz, 1H), 6.98 (dd *J* = 10.4, 8.2, 1.2 Hz, 1H), 4.35-4.30 (m, 1H), 2.61-2.54 (m, 1H), 2.52-2.43 (m, 2H), 2.07-2.03 (m, 3H), 1.87-1.79 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.7, 160.8 (d, *J* = 246.2 Hz), 129.5 (d, *J* = 13.9 Hz), 128.8 (d, *J* = 8.3 Hz) 128.4 (d, *J* = 4.3 Hz), 124.5 (d, *J* = 3.6 Hz), 116.4, 115.8 (d, 22.0 Hz,) 111.3, 46.0, 37.7, 32.3, 17.0 ¹⁹F NMR (376 MHz,

CDCl₃) δ -118.6 (dt, J = 11.4, 6.1 Hz) HRMS calculated for C₁₃H₁₃FN [M+Na]+ m/z: 224.0846, found: 224.0843

5-(3-fluorophenyl)-2-methylcyclopent-1-enecarbonitrile (3ae)

The product (30.2 mg, 75%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.31-7.28 (m, 1H), 6.99-6.96 (m, 1H), 6.96-6.93 (m, 1H), 6.89-6.87 (m, 1H), 4.09-4.04 (m, 1H), 2.67-2.60 (m, 1H), 2.57-2.48 (m, 2H), 2.12-2.09 (m, 3H), 1.94-1.85 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 163.3 (d, *J* = 246.3 Hz), 162.5, 145.4 (d, *J* = 6.7 Hz), 130.4 (d, *J* = 6.7 Hz), 123.0 (d, *J* = 2.8 Hz), 116.3, 114.2 (d, *J* = 9.9 Hz), 114.1 (d, *J* = 10.2 Hz), 112.4, 52.6, 37.7, 33.4, 16.9 ¹⁹F NMR (376 MHz,

CDCl₃) δ -112.6 (ddd J = 10.0, 8.7, 5.9) HRMS calculated for C₁₃H₁₃FN [M+Na]+ m/z: 224.0846, found: 224.0845

5-(4-chlorophenyl)-2-methylcyclopent-1-enecarbonitrile (3af)

The product (33.9 mg, 78%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a brown oil. ¹H NMR (700 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.13-7.10 (m, 2H), 4.06-4.02 (m, 1H), 2.66-2.59 (m, 1H), 2.58-2.46 (m, 2H), 2.11-2.08 (m, 3H), 1.89-1.82 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.4, 141.3, 133.0, 129.1 (2C), 128.6 (2C), 116.3, 112.6, 52.3, 37.7, 33.6, 17.0 HRMS calculated for C₁₃H₁₂ClN [M+Na]+ m/z: 240.0551, found: 240.0555

5-(2-chlorophenyl)-2-methylcyclopent-1-enecarbonitrile (3ag)

The product (30.4 mg, 70%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a brown oil. ¹H NMR (700 MHz, CDCl₃) δ 7.38 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.25 (td, *J* = 7.9, 1.3 Hz, 1H) 7.19 (td, *J* = 7.6, 1.7 Hz, 1H), 7.15 (dd, *J* = 7.6, 1.7 Hz, 1H), 4.61-4.55 (m, 1H), 2.65-2.50 (m, 3H), 2.15-2.13 (m, 3H), 1.81-1.74 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 163.5, 140.1, 133.7, 129.9, 128.4, 127.7, 127.4, 116.4, 111.3, 49.4, 37.5, 32.3, 17.1 HRMS calculated for C₁₃H₁₂ClN [M+Na]+ m/z: 240.0551, found: 240.0555

5-(3-methoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ah)

The product (26.4 mg, 62%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a colourless oil. ¹H NMR (700 MHz, CDCl₃) δ 7.28 (d, *J* = 8.1 Hz), 6.83-6.79 (m, 2H), 6.74 (dd, *J* = 2.6, 1.7 Hz, 1H), 4.08-4.04 (m, 1H), 3.83 (s, 3H), 2.69-2.60 (m, 1H), 2.58-2.48 (m, 2H), 2.14-2.10 (m, 3H), 1.97-1.90 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.0, 160.1, 144.4, 130.0, 119.6, 116.5, 113.3, 112.9, 112.3, 55.3, 52.9, 37.8, 33.5, 17.0 HRMS calculated for C₁₄H₁₅NO [M+Na]+ m/z: 236.1046, found: 236.1042

5-(4-methoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ai)

The product (30.6 mg, 72%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a colourless oil. ¹H NMR (700 MHz, CDCl₃) δ 7.12-7.07 (m, 2H), 6.88-6.84 (m, 2H), 4.04-4.00 (m, 1H), 3.79 (s, 3H), 2.65-2.58 (m, 1H), 2.55-2.44 (m, 2H), 2.10-2.08 (m, 3H), 1.92-1.83 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 161.5, 158.8, 134.9, 128.3 (2C), 116.7, 114.3 (2C), 113.4, 55.4, 52.2, 37.8, 33.7, 17.0 HRMS calculated for C₁₄H₁₅NO [M+Na]+ m/z: 236.1046, found: 236.1045

2-methyl-5-(m-tolyl)cyclopent-1-enecarbonitrile (3aj)

The product (30.0 mg, 76%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a brown oil. ¹H NMR (700 MHz, CDCl₃) δ 7.22 (td, *J* = 7.3, 1.3 Hz, 1H), 7.07-7.05 (m, 1H), 6.99-6.97 (m, 2H), 4.05-4.01 (m, 1H), 2.66-2.60 (m, 1H), 2.56-2.46 (m, 2H), 2.35 (s, 3H), 2.12-2.09 (m, 3H), 1.94-1.88 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 161.8, 142.7, 138.5, 128.8, 128.0 (2C), 124.3, 116.6, 113.1, 52.9, 37.8, 33.6, 21.6, 17.0 HRMS calculated for C₁₄H₁₅N [M+Na]+ m/z: 220.1097, found: 220.1099

5-(2,4-dimethoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ak)

The product (27.7 mg, 57%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a colourless oil. ¹H NMR (700 MHz, CDCl₃) δ 6.81 (d, *J* = 8.8 Hz, 1H), 6.73 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.65 (d, *J* = 3.0 Hz), 4.48-4.43 (m, 1H), 3.79 (s, 1H), 3.76 (s, 1H), 2.62-2.55 (m, 1H), 2.52-2.44 (m, 2H), 2.11-2.08 (m, 3H), 1.85-1.78 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.2, 153.9, 151.4, 132.2, 116.7, 114.2, 112.1, 111.9, 111.8, 56.3, 55.9, 46.2, 37.7, 32.2, 17.0 HRMS calculated for C₁₅H₁₇NO₂ [M+Na]+ m/z: 266.1151, found: 266.1153

5-(3,4-dimethoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3al)

N O O

The product (28.7 mg, 59%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 6.83 (d, *J* = 8.2 Hz, 1H), 6.72 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.62 (d, *J* = 2.1 Hz, 1H), 4.04-4.00 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 2.65-2.58 (m, 1H), 2.55-2.43 (m, 2H), 2.11-2.09 (m, 3H), 1.93-1.84 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 161.7, 149.4, 148.3, 135.3, 119.2, 116.6, 113.2, 111.6, 110.6, 56.1 (2C), 52.6, 37.8, 33.7, 17.0 HRMS calculated for C₁₅H₁₇NO₂ [M+Na]+ m/z: 266.1151, found: 266.1153

2-methyl-5-(naphthalen-1-yl)cyclopent-1-enecarbonitrile (3am)

The product (26.1 mg, 56%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.88 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.54 (ddd, *J* = 8.4, 6.8, 1.4 Hz, 1H), 7.51 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.45 (dd, *J* = 8.2, 7.1 Hz, 1H), 7.28 (dd, *J* = 7.1, 1.2 Hz, 1H) 4.92-4.88 (m, 1H), 2.75-2.68 (m, 1H), 2.67-2.54 (m, 2H), 2.21-2.19 (m, 3H) 1.95-1.87 (m, 1H), ¹³C (176 MHz, CDCl₃) δ 163.2, 138.5, 134.3, 131.5, 129.1, 127.7, 126.3, 125.8, 125.7, 123.3 (2C), 7.5 - 23.1, 17.1 URMS calculated for C. H. N(MLNAL m (r) 2.55 (1007, found) 2.55 (1008)

116.8, 111.7, 48.5, 37.5, 33.1, 17.1 HRMS calculated for C₁₇H₁₅N [M+Na]+ m/z: 256.1097, found: 256.1098

2-methyl-5-(naphthalen-2-yl)cyclopent-1-enecarbonitrile (3an)

The product (28.4 mg, 61%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.85-7.79 (m, 3H), 7.64 (d, *J* = 1.8 Hz, 1H), 7.50-7.44 (m, 2H), 7.30 (dd, *J* = 8.5, 1.8 Hz, 1H), 4.27-4.23 (m, 1H), 2.73-2.65 (m, 1H), 2.62-2.53 (m, 2H), 2.16-2.14 (m, 3H), 2.04-1.97 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 162.2, 140.1, 133.7, 132.8, 128.9, 127.9, 127.8, 126.3, 125.8 (2C), 125.4, 116.6, 112.9, 53.1, 37.9, 33.5, 17.0 HRMS calculated for C₁₇H₁₅N [M+Na]+ m/z: 256.1097, found:

256.1099

5-(furan-2-yl)-2-methylcyclopent-1-enecarbonitrile (3ao)

The product (13.8 mg, 40%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a colourless oil. ¹H NMR (700 MHz, CDCl₃) δ 7.34 (dd, *J* = 1.9, 09 Hz, 1H), 6.31 (dd, *J* = 3.2, 0.9, Hz, 1H), 6.14 (dd, *J* = 3.2, 1.9 Hz, 1H), 4.17-4.13 (m, 1H), 2.67-2.59 (m, 1H), 2.55-2.48 (m, 1H), 2.40-2.35 (m, 1H), 2.15-2.08 (m, 1H), 2.07-2.05 (m, 3H) ¹³C (176 MHz, CDCl₃) δ 162.4, 154.9, 142.1, 116.3, 110.6, 110.4, 105.8, 46.0, 37.5, 29.8, 17.0 HRMS calculated for C₁₁H₁₁NO [M+Na]+ m/z: 196.0733, found: 196.0735

2,5-diphenylcyclopent-1-enecarbonitrile (3ba)

The product (18.1 mg, 37%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a green oil. ¹H NMR (700 MHz, CDCl₃) δ 7.84-780 (m, 2H), 7.47-7.41 (m, 3H), 7.38-7.34 (m, 2H), 7.30-7.24 (m, 2H), 4.28-4.24 (m, 1H), 3.15-3.08 (m, 1H), 3.07-2.99 (m, 1H), 2.66-2.59 (m, 1H), 2.10-2.02 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 158.7, 142.3, 133.5, 130.3, 129.1 (2C), 128.9 (2C), 127.6 (2C), 127.5 (2C), 127.4, 117.7, 110.9, 54.7, 35.7, 33.1 HRMS calculated for C₁₈H₁₅N [M+Na]+ m/z: 268.1097, found: 268.1099

2-(4-methoxyphenyl)-5-phenylcyclopent-1-enecarbonitrile (3ca)

The product (22.0 mg, 40%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a colourless oil. ¹H NMR (700 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.38-7.32 (m, 2H), 7.28-7.24 (m, 3H), 6.97-6.94 (m, 2H), 4.26-4.22 (m, 1H), 3.86 (s, 3H), 3.12-3.06 (m, 1H), 3.02-2.93 (m, 1H), 2.62-2.57 (m, 1H), 2.06-1.99 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 161.2, 157.9, 142.7, 129.2 (2C), 129.0 (2C), 127.5 (2C), 127.4, 126.1, 118.3, 114.2 (2C), 108.4, 55.6, 54.6, 35.6, 33.1 HRMS calculated for C₁₉H₁₇NO [M+Na]+ m/z: 298.1203, found: 298.1206

2-(4-chlorophenyl)-5-phenylcyclopent-1-enecarbonitrile (3da)

The product (17.9 mg, 32%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as an yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 7.84-.7.81 (m, 2H), 7.47-7.41 (m, 3H), 7.38-735 (m, 2H), 7.30-7.26 (m, 2H), 4.28-4.24 (m, 1H), 3.16-3.10 (m, 1H), 3.07-2.99 (m, 1H), 2.67-2.58 (m, 1H), 2.09-2.03 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 158.7, 142.4, 133.5, 130.3, 129.0 (2C), 128.9 (2C), 127.6 (2C), 127.5 (2C), 127.4, 117.7, 110.9, 54.7, 35.7, 33.1 HRMS calculated for C₁₈H₁₄CIN [M+Na]+ m/z: 302.0707, found: 302.0705

2-phenyl-2,3,3a,4,5,6-hexahydropentalene-1-carbonitrile (3ea)

The product (dr 9:1, 18.8 mg, 45%) was purified with silica gel chromatography (petroleum ether : ethyl acetate 9:1) as a brown oil. ¹H NMR (700 MHz, CDCl₃) δ 7.37-7.33 (m, 2H), 7.28-7.25 (m, 1H), 7.24-7.22 (m, 2H), 4.40-4.33 (m, 1H), 3.14-3.07 (m, 1H), 2.65-2.60 (m, 1H), 2.60-2.44 (m, 2H), 2.27-1.98 (m, 3H), 1.59-1.51 (m, 1H), 1.32-1.21 (m, 1H) ¹³C (176 MHz, CDCl₃) δ 176.6, 141.9, 128.3 (2C), 127.6 (2C), 127.4, 116.3, 106.1, 58.4, 53.4, 42.9, 31.6, 28.2, 25.0 HRMS calculated for C₁₅H₁₅N [M+Na]+ m/z: 232.1097, found: 23.1094

7. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR

2-methyl-5-phenylcyclopent-1-enecarbonitrile (3aa)

5-(2-bromophenyl)-2-methylcyclopent-1-enecarbonitrile (3ab)

5-(3-fluorophenyl)-2-methylcyclopent-1-enecarbonitrile (3ae)

5-(2-chlorophenyl)-2-methylcyclopent-1-enecarbonitrile (3ag)

77728 66687 66882 66882 66882 66882 66882 66674 66676 666776 666776 66676 66776 6777 ſ NC С 1.14-II 3.60-II 3.48.∞ 1.17-<u>T</u> .00-2.16-<u>∓</u> 1.09.≖ 1.17<u>4</u> 2.43<u>4</u> .0 2.5 8.5 7.5 7.0 6.5 5.5 4.0 2.0 1.5 8.0 6.0 5.0 4.5 f1 (ppm) 3.5 3.0 1.0 0.5 ¹³C NMR ~ 161.99 ~ 160.07 — 144.42 - 129.95 112.89 112.28 119.59 116.53 113.26 -- 55.34 -- 52.93 — 37.80 — 33.48

5-(3-methoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ah)

¹H NMR

NC 110 100 f1 (ppm) 190 20 10 180 170 160 150 140 130 120 90 80 70 60 50 40 30

5-(4-methoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ai)

2-methyl-5-(m-tolyl)cyclopent-1-enecarbonitrile (3aj)

5-(2,4-dimethoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3ak)

5-(3,4-dimethoxyphenyl)-2-methylcyclopent-1-enecarbonitrile (3al)

2-methyl-5-(naphthalen-1-yl)cyclopent-1-enecarbonitrile (3am)

2-methyl-5-(naphthalen-2-yl)cyclopent-1-enecarbonitrile (3an)

5-(furan-2-yl)-2-methylcyclopent-1-enecarbonitrile (3ao)

2,5-diphenylcyclopent-1-enecarbonitrile (3ba)

2-(4-methoxyphenyl)-5-phenylcyclopent-1-enecarbonitrile (3ca)

2-(4-chlorophenyl)-5-phenylcyclopent-1-enecarbonitrile (3da)

2-phenyl-2,3,3a,4,5,6-hexahydropentalene-1-carbonitrile (3ea)

