Supporting Information

Adsorbate-dependent phase switching in the square lattice topology coordination

network [Ni(4,4'-bipyridine)₂(NCS)₂]_n

Shi-Qiang Wang, *a,b Shaza Darwish, a and Michael J. Zaworotko *a

^aBernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.

^bInstitute of Materials Research and Engineering, Agency of Science, Technology and Research, Singapore 138634.

*E-mail: <u>wangsq@imre.a-star.edu.sg</u>; <u>xtal@ul.ie</u>

Experimental section

Synthesis of sql-1-Ni-NCS

 $[Ni(bpy)_2(NCS)_2]_n$ (sql-1-Ni-NCS) was prepared by water slurry method.¹ NiSO₄·6H₂O (10 mmol, 2.63 g), NaSCN (20 mmol, 1.62 g) and 4,4'-bipyridine (20 mmol, 3.12 g) were added to 50 mL water in a 100 mL bottle. The slurry was stirred continuously for 3 h under room temperature to form the 1D chain CP precursor { $[Ni(bpy)(NCS)_2(H_2O)_2]$ ·bpy}_n which was then filtered, washed with water and air-dried (yield ~ 95 %). The powdered precursor was activated at 60 °C in vacuo for 5 h in order to induce transformation to the guest-free sql coordination network sql-1-Ni-NCS.

Gas sorption experiments

Gas sorption experiments were conducted on a Micromeritics 3 flex instrument. Around 100 mg sample of **sql-1-Ni-NCS** was used for each experiment. 77 K N₂ sorption experiments were maintained by a 4 L Dewar flask filled with liquid nitrogen. 195 K gas sorption experiments were maintained by a 4 L Dewar flask filled with the mixture of acetone and dry ice. 263 - 298 K C₃H₄ sorption experiments were maintained by a LAUDA Chiller. In our previous studies,¹⁻³ high pressue CO₂ sorption experiments were collected volumetrically by a Micromeritics HPVA instrument and gravimetrically by a Hiden XEMIS instrument. C₂H₂ sorption experiments (199 - 220 K) were conducted using a Micromeritics ASAP 2020 instrument. The profiles of switching gas sorption isotherms were found to be reproducible across different gas sorption instruments.

Molecular Simulations

The crystal structure of **sql-1-Ni-NCS·3CO₂** was determined by PXRD refinement and the locations of CO₂ molecules were calculated by density functional theory in our previous study (Fig. S6a).¹ Since CO₂ and C₃H₄ are both linear molecules with comparable kinetic diameters and exhibit the same sorption uptake (x = 3), it is reasonable to assume that **sql-1-Ni-NCS·3C₃H₄** is isostructural to **sql-1-Ni-NCS·3CO₂**. Therefore, the structure of **sql-1-Ni-NCS·3CO₂** was used as the template and the CO₂ molecules were replaced by C₃H₄ in a 2×2×2 supercell (*P1* space group) using materials studio software. The coordination network was constrained by fixing atom Cartesian position and then the locations of C₃H₄ molecules were geometrically optimised using the forcite module (ultra-fine quality) implemented in materials studio (Fig. S6b).

Switching CNs	gases	Test conditions	Ref.			
	N ₂	77 K/1bar; 298 K/53 bar				
	O ₂	298 K/53 bar (no switching observed)				
	CH ₄	298 K/36 bar (no switching observed)				
	H ₂	77 K/120 bar (no switching observed)				
DUT-8(Ni)	Xe	165 K/1bar	4-6			
	C ₄ H ₁₀	293 K/1 bar				
	CO ₂	196 K/1 bar; 298 K/53 bar				
	C ₂ H ₆	185 K/1bar				
	C ₂ H ₄	169 K/1bar				
	N ₂	77/87 K. 1bar; 298 K. 100 bar				
	H ₂	50/65/77/87 K, up to 65 bar; 298 K, 100 bar				
Co(bdp)	02	298 K. 1 bar (no switching observed)	7-10			
	CH ₄	CH ₄ 273/285/298/311/323 K. up to 70 bar				
	CO ₂ 298 K, 50 bar					
	CH ₄	303 K. 50 bar				
	Call	303 K 35 bar				
	C ₂ H ₀	303 K 10 bar				
MIL-53(Fe)	C.H.o	303 K 2 har	11-13			
	H ₂	77 K 72 har (no switching observed)				
		303 K 52 har				
	No.	77 K 1 bar				
		105 K 1 har: 273 K 30 har				
X-pcu-n-Zn	CH.	208 K 50 bar (no switching observed)	14,15			
in provin Em	Cri4 296 K, 50 bar (no switching observed)	105/208 K, 1 har	· · ·			
		105/208 K, 1 bar				
	N	77/208 K 1 bar				
		278/288/298 K, 1 bar				
	Δr	87 K 1 har				
	H	298 K 1 har (no switching observed)				
	H2 298 K, 1 bar (no switching observed) CH4 298 K, 1 bar (no switching observed) Oc 298 K, 1 bar (no switching observed)		-			
RPM3-Zn		208 K, 1 bar (no switching observed)	16.17			
	C H 272/282/202 K, 1 bar (no switching observed)					
		273/288/298 K, 1 bar				
	C_2H_4 27/3/288/298 K, 1 bar					
		215/200/276 K, 1 bar				
	C H	298 K, 1 bar				
	C.H.	200 K, 1 bar				
	С4П ₁₀	296 K, 1 0al				
		77 K 1 bar				
ELM-11	<u>0</u> 2	77 K 1 bar				
		// K, 1 bai				
	NO	82 K, I bar				
		121 K, 1 bar				
	СП4	303 K, 60 bar	18-22			
	CO ₂ 195/248/258/273/298 K, 1 bar; 253 K, 20 bar; 273 K, 35 bar; 298 K, 65 bar 180/105/200/205/210/215/220/225/220/					
	C_2H_2	273/278/283/288/293/298 K 1 har				
	C ₂ H ₄	273/298 K. 1 bar	1			
	C4H10	273 K 1 har				
	~4**10	270 11, 1 041	l			

Table S1. Switching coordination networks with at least 5 gaseous adsorbates studied.

	Switching easiness	Sorption uptakes
MIL-53(Fe)	$C_4H_{10} \ge CO_2 > C_3H_8 > C_2H_6 > CH_4 >> H_2$	~ 0 -155 cc/g
X-pcu-6-Zn	$C_2H_2 > CO_2 > C_2H_4 > N_2$	~ 150 - 290 cc/g
DUT-8(Ni)	$C_4H_{10} > C_2H_6 > C_2H_4 \sim CO_2 > N_2 > CH_4 > H_2$	~ 0 - 690 cc/g
RPM3-Zn	$\begin{array}{c} C_4H_{10}\!>\!C_3H_8\!\sim\!C_3H_6\!>\!CO_2\!>\!C_2H_2\!>\!C_2H_6\!>\\ C_2H_4\!>\!Ar\!>\!N_2 \end{array}$	~ 25 - 135 cc/g
ELM-11	$C_4 H_{10} \sim C_2 H_2 > CO_2 > CH_4 > N_2$	~ 80 - 325 cc/g
Co(bdp)	$CO_2 > CH_4 > N_2 > H_2$	~ 60 - 610 cc/g

Table S2. Adsorbate-dependent switching easiness and sorption uptakes for selected switching CNs.

Table S3. Calculated P_{ga} values (unit: bar) of CO_2 , C_2H_2 , and C_3H_4 for sql-1-Ni-NCS.

T/K	CO ₂	C_2H_2	C_3H_4
253	2.42	1.63	0.07
258	3.14	2.12	0.09
263	4.03	2.73	0.13
268	5.14	3.49	0.16
273	6.48	4.41	0.21
278	8.12	5.53	0.28
283	10.08	6.87	0.35
288	12.43	8.48	0.45
293	15.21	10.40	0.57
298	18.49	12.66	0.71

Table S4. Boiling point and vaporization enthalpy for studied gases (Source: NIST chemistry webbook).

Gases	Boiling point/K	Δ _{vap} H (kJ/mol)
N ₂	77.4	5.6
CH_4	111.7	8.2
CO_2	216.6 (T _{triple})	15.3
C_2H_6	184.6	14.7
C_2H_4	169.5	13.5
C_2H_2	189.6	16.8 (200 K)
C_3H_8	231.1	19.0
C_3H_6	225.6	18.4
C_3H_4	250.0	23.0 (242 K)

sql-1-M-NCS	refcode	SG	a∕Å	b /Å	c/Å	β/°	Z	V/Å ³	Ref.
sql-1-Ni-NCS	CIZFOG	C2/c	12.16	11.38	16.65	100.43	4	2264.9	23
sql-1-Ni-NCS·3CO ₂	TAPLUV	C2/c	12.60	11.37	19.56	93.40	4	2797.3	1
sql-1-Ni-NCS·4C ₂ H ₂	-	$P2_{I}/n$	10.12	16.12	10.07	104.21	2	1590.9	3
sql-1-Co-NCS	YUVROX	C2/c	12.25	11.42	16.55	100.17	4	2279.6	24
	YUVROX01	C2/c	12.10	11.40	16.54	99.94	4	2246.6	2
sql-1-Co-NCS·3CO ₂	VIBQUV	C2/c	12.61	11.47	19.68	92.92	4	2841.7	2
sql-1-Co-NCS·2TFT	VIBQOP	C2/c	23.35	11.52	13.78	108.76	4	3510.4	2
sql-1-Co-NCS·2C ₄ H ₁₀ O	RINPUZ	P2/c	11.48	11.40	13.61	107.55	2	1698.1	25
sql-1-Co-NCS·2EB	KODFIV	C2/c	21.85	11.47	13.44	103.14	4	3280.4	26
sql-1-Co-NCS·4OX	KODDUF	C2/c	20.64	11.46	22.92	116.25	4	4860.8	26
sql-1-Co-NCS·4MX	KODFAN	$P2_1/n$	11.39	16.10	13.33	97.91	2	2422.0	26
sql-1-Co-NCS·4PX	KODFER	C2/c	23.61	11.48	20.22	117.37	4	4866.4	26
sql-1-Fe-NCS	TAPLIJ	C2/c	12.17	11.54	16.67	100.33	4	2303.7	1
sql-1-Fe-NCS·3CO ₂	TAPLOP	C2/c	12.58	11.54	19.81	92.57	4	2871.6	1
sql-1-Fe-NCS·2S ₈	ETOFAW	C2/c	21.25	11.59	16.46	105.75	4	3902.0	27
sql-1-Fe-NCS·2C ₂ HCl ₃	QAGVUR	C2/c	22.51	11.55	12.36	103.30	4	3128.3	28
sql-1-Fe-NCS·2MB	QAGWAY	C2/c	21.33	11.58	12.99	99.35	4	3167.5	28
sql-1-Fe-NCS·2NB	QAGWEC	C2/c	22.47	11.61	13.21	103.08	4	3354.2	28
sql-1-Fe-NCS·2C ₄ H ₁₀ O	QAGWIG	P2/c	11.52	11.48	13.10	106.60	2	1660.4	28
sql-1-Fe-NCS·3CS ₂	QAGXED	P2/c	11.53	11.54	12.75	110.83	2	1585.5	28
sql-1-Fe-NCS·3MeOH	QAGWUS	C2/c	16.05	16.61	12.60	120.58	4	2891.8	28
sql-1-Fe-NCS·2NM·MeOH	QAGXAZ	C2/c	16.42	16.38	12.55	120.21	4	2916.2	28
sql-1-Fe-NCS·4C ₃ H ₆ O	QAGWOM	P2/c	11.55	11.54	15.45	114.37	2	1875.7	28
sql-1-Fe-NCS·4CHCl ₃	QAQTOT	C2/c	22.68	22.62	17.29	117.76	8	7849.7	29

Table S5. Structural parameters of previously reported sql CNs with chemical formula $[M(bpy)_2(NCS)_2] \cdot xG$ (sql-1-M-NCS·xG) (M = Fe, Co, and Ni, G = guest).

Note: SG = space group; TFT = trifluorotoluene; EB = ethylbenzene; OX = o-xylene; MX = m-xylene; PX = p-xylene; MB = methylbenzene; NB = nitrobenzene; NM = nitromethane.

Table S6. Category of sql-1-M-NCS·xG classified by unit cell volume increase as indicated in Fig. S5.

Category	Volume increase/%	Guest molecules per formular unit
A	23.5 - 28.8	3CO ₂ ; 3MeOH; 2NM+MeOH
В	38.1 - 40.5	2C ₂ HCl ₃ ; 2MB; 3CS ₂ ; 4C ₂ H ₂
С	44.8 - 55.0	2EB; 2C ₄ H ₁₀ O; 2NB; 2TFT
D	65.6 - 73.3	4C ₃ H ₆ O; 2S ₈ ; 4CHCl ₃
E	113.9 - 114.9	40X; 4MX; 4PX

Figure S1. 273 K C₃H₆ and C₃H₈ sorption isotherms of sql-1-Ni-NCS.

Figure S2. C₃H₄ (283 - 298 K) sorption isotherms of sql-1-Ni-NCS.

T/K	263	268	273	278	283	288			
P _{ga} /kPa	12.5	16.5	21.5	28.0	35.5	45.0			
P_{ga}/kPa 12.516.521.528.035.545.0Equation $y = a + b^*x$ WeightNoWeightingIntercept 17.29343 ± 0.05712 Slope -3.88334 ± 0.01571 ResidualSum of Squares $7.53188E-5$ Pearson's r -0.99997 R-Square(COD) 0.99993 Adj. R-Square 0.99992									
$Ln(P_{a_2}/kPa) = -3883/T+17.29; \Delta H = -32.3 kJ/mol$									

Figure S3. The linear fit parameters and results yielded from Clausius-Clapeyron equation $d\ln P/(d(1/T)) = \Delta H/R$.

The lower the switching pressure, the easier the switching can occur. C_3H_4 (298 K, 0.71 bar) > C_2H_2 (298 K, 12.66 bar) > CO_2 (298 K, 18.49 bar) CO_2 (195 K, 0.1 bar) > C_2H_4 (195 K, 0.86 bar) > C_2H_6 (195 K, 0.91 bar) > CH_4 (195 K, no switching before 1 bar) ≥ N_2 (77 K, no switching before 1 bar)

Figure S4. Analysis of the switching easiness based on the switching pressure under same temperatures.

Figure S5. Unit-cell volume (Z value normalized to 4) of sql-1-M-NCS·xG as listed in Table S5.

Figure S6. Layer packing modes (viewed along *b* axis) of sql-1-Ni-NCS·*x*G from each category as listed in Table S6: a) sql-1-Ni-NCS·3CO₂, b) sql-1-Ni-NCS·3C₃H₄ (this work), c) sql-1-Fe-NCS·3CS₂, d) sql-1-Fe-NCS·2NB, e) sql-1-Fe-NCS·2S₈, and f) sql-1-Co-NCS·4PX.

Figure S7. Host-guest interactions (C-H··· π and π ··· π , unit: Å) in **sql-1-Ni-NCS·3C₃H₄** as determined by molecular simulations.

References

- 1. S.-Q. Wang, S. Darwish, D. Sensharma and M. J. Zaworotko, Mater. Adv., 2022, 3, 1240-1247.
- S.-Q. Wang, Q.-Y. Yang, S. Mukherjee, D. O'Nolan, E. Patyk-Kazmierczak, K.-J. Chen, M. Shivanna, C. Murray, C. C. Tang and M. J. Zaworotko, *Chem. Commun.*, 2018, 54, 7042-7045.
- 3. S.-Q. Wang, S. Darwish, X.-Q. Meng, Z. Chang, X.-H. Bu and M. J. Zaworotko, *Chem. Commun.*, 2022, **58**, 1534-1537.
- N. Klein, C. Herzog, M. Sabo, I. Senkovska, J. Getzschmann, S. Paasch, M. R. Lohe, E. Brunner, S. Kaskel, *Phys. Chem. Chem. Phys.*, 2010, 12, 11778-11784.
- N. Klein, H. C. Hoffmann, A. Cadiau, J. Getzschmann, M. R. Lohe, S. Paasch, T. Heydenreich, K. Adil, I. Senkovska, E. Brunner, S. Kaskel, *J. Mater. Chem.*, 2012, 22, 10303-10312.
- V. Bon, N. Klein, I. Senkovska, A. Heerwig, J. Getzschmann, D. Wallacher, I. Zizak, M. Brzhezinskaya, U. Mueller, S. Kaskel, *Phys. Chem. Chem. Phys.*, 2015, 17, 17471-17479.
- 7. H. J. Choi, M. Dincă, J. R. Long, J. Am. Chem. Soc., 2008, 130, 7848-7850.
- F. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knofel, H. J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J. R. Long, G. Ferey, J. Am. Chem. Soc., 2010, 132, 13782-13788.
- J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, *Nature* 2015, 527, 357-361.

- M. K. Taylor, T. Runčevski, J. Oktawiec, J. E. Bachman, R. L. Siegelman, H. Jiang, J. A. Mason, J. D. Tarver, J. R. Long, *J. Am. Chem. Soc.*, 2018, **140**, 10324-10331.
- P. L. Llewellyn, P. Horcajada, G. Maurin, T. Devic, N. Rosenbach, S. Bourrelly, C. Serre, D. Vincent, S. Loera-Serna, Y. Filinchuk, G. Ferey, J. Am. Chem. Soc., 2009, 131, 13002-13008.
- C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P. L. Llewellyn and M. Latroche, *Dalton Trans.*, 2011, 40, 4879-4881.
- N. Guillou, S. Bourrelly, P. L. Llewellyn, R. I. Walton, F. Millange, *Crystengcomm*, 2015, 17, 422-429.
- A.-X. Zhu, Q.-Y. Yang, A. Kumar, C. Crowley, S. Mukherjee, K.-J. Chen, S.-Q. Wang, D. O'Nolan, M. Shivanna, M. J. Zaworotko, *J. Am. Chem. Soc.*, 2018, 140, 15572-15576.
- A.-X. Zhu, Q.-Y. Yang, S. Mukherjee, A. Kumar, C.-H. Deng, A. A. Bezrukov, M. Shivanna, M. J. Zaworotko, *Angew. Chem. Int. Ed.*, 2019, **58**, 18212-18217.
- 16. H. Wu, R. S. Reali, D. A. Smith, M. C. Trachtenberg, J. Li, Chem. Eur. J., 2010, 16, 13951-13954.
- 17. N. Nijem, H. Wu, P. Canepa, A. Marti, K. J. Balkus, T. Thonhauser, J. Li, Y. J. Chabal, *J. Am. Chem. Soc.*, 2012, **134**, 15201-15204.
- H. Kanoh, A. Kondo, H. Noguchi, H. Kajiro, A. Tohdoh, Y. Hattori, W.-C. Xu, M. Inoue, T. Sugiura, K. Morita, H. Tanaka, T. Ohba and K. Kaneko, *J. Colloid Interface Sci.*, 2009, **334**, 1-7.
- 19. M. Ichikawa, A. Kondo, H. Noguchi, N. Kojima, T. Ohba, H. Kajiro, Y. Hattori, H. Kanoh, *Langmuir*, 2016, **32**, 9722-9726.
- V. Bon, I. Senkovska, D. Wallacher, A. Heerwig, N. Klein, I. Zizak, R. Feyerherm, E. Dudzik, S. Kaskel, *Microporous Mesoporous Mater.*, 2014, 188, 190-195.
- S.-Q. Wang, X.-Q. Meng, M. Vandichel, S. Darwish, Z. Chang, X.-H. Bu, M. J. Zaworotko, ACS Appl. Mater. Interfaces, 2021, 13, 23877-23883.
- 22. A. Kondo, S.-i. Noro, H. Kajiro and H. Kanoh, Coord. Chem. Rev., 2022, 471, 214728.
- 23. Z. Yugen, J. Li, W. Deng, N. Masayoshi and I. Tsuneo, Chem. Lett., 1999, 28, 195-196.
- 24. M. Wriedt and C. Näther, Eur. J. Inorg. Chem., 2010, 2010, 3201-3211.
- 25. J. Lu, T. Paliwala, S. C. Lim, C. Yu, T. Niu, A. J. Jacobson, Inorg. Chem. 1997, 36, 923-929.
- S.-Q. Wang, S. Mukherjee, E. Patyk-Kaźmierczak, S. Darwish, A. Bajpai, Q.-Y. Yang and M. J. Zaworotko, *Angew. Chem. Int. Ed.*, 2019, 58, 6630-6634.
- 27. M.-T. Hao, C.-F. Du, C.-B. Tian, J.-R. Li and X.-Y. Huang, *Inorg. Chem. Commun.*, 2016, **72**, 128-131.
- 28. C. J. Adams, J. A. Real and R. E. Waddington, CrystEngComm, 2010, 12, 3547-3553.
- 29. C. J. Adams, M. C. Muñoz, R. E. Waddington and J. A. Real, Inorg. Chem., 2011, 50, 10633-10642.