Pr³⁺-doped Nanoscintillators with Concentration-

Quenching-Free Property

Lin Zhang, Yantao Li, Huiru Ye, Lei Zhao, Qingwei Song, Weidong Du, Yue Zhou,

Xukai Chen, Wei Wei*

MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral

Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631,

China

* Corresponding author: weiwei@scnu.edu.cn.

Experimental Details

Materials

Praseodymium(III) acetate hydrate (PrAc₃ $@xH_2O$, 99.9%), gadolinium(III) acetate hydrate (GdAc₃ $@xH_2O$, 99.9%), europium(III) acetate hydrate (EuAc₃ $@xH_2O$, 99.9%), terbium(III) acetate hydrate (TbAc₃ $@xH_2O$, 99.9%), terbium(III) acetate hydrate (YbAc₃ $@xH_2O$, 99.9%), yttrium(III) oxide (Y₂O₃, 99.9%), terbium(III) oxide (Tb₄O₇, 99.9%), sodium hydroxide (NaOH, \geq 98%), ammonium fluoride (NH₄F, \geq 99.9%), 1-octadecene (ODE, \geq 90%), cyclohexane (99.5%), methanol (99.5%) were purchased from Macklin (Shanghai, China). Oleic acid (OA, 90%) was purchased from Sigma-Aldrich. All the reagents were used without further purification.

Characterization

Transmission Electron Microscopy (TEM) images were obtained using a JEOL JEM-1400 PLUS operating at 120 kV. X-ray powder diffraction (XRD) patterns were conducted on a BRUKER D8 ADVANCE diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) from 10° to 70° at a step of 0.02°/s. The emission spectra were recorded with a Horiba FluoroMax Plus Spectrofluorometer, in conjunction with X-ray laser (50 KV, 200 μ A) and 980 nm (CNI MDL-III-980, China) continuous-wave lasers.

Synthesis of NaYF₄:Pr nanoscintillators with different Pr³⁺ doping concentrations.

The scintillator NaYF₄:Pr were synthesized by using a co-precipitation method. Firstly, the mixture of oleic acid (7.5 mL) and 1-octadecene (15 mL), and 1 mmol of REAc₃ (RE = Y, Pr) with designed concentrations were contemporaneously added into a 100-mL three-necked flask under vigorous stirring (the ratio of RE varied according to the experiment requirements). The resulting mixture was heated at 160 °C for 1 hour with nitrogen protection, and then cooled down to room temperature. After that a methanol solution (10 mL) containing NaOH (0.1 g) and NH₄F (0.148 g) was then added into the flask. The temperature was first elevated to 80 °C, during which methanol can be removed from the mixture. After the methanol was evaporated completely, the mixture was increased to 120 °C to remove the water and oxygen. This reaction was then heated to 300 °C for 1 hour. All the above reactions were in nitrogen atmosphere. After that, the temperature was cooled down to room temperature. The as-prepared nanoparticles were collected by centrifugation at 7500 rpm for 5 min, and then dispersed in cyclohexane (5 mL).

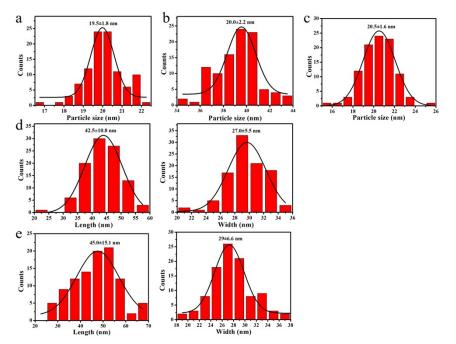
Synthesis of NaGdF₄:Yb40%,Pr1% UCNPs and NaYF₄: Eu nanoscintillators with different Eu³⁺ doping concentrations.

The synthetic procedure for NaGdF₄:Yb40%,Pr1% and NaYF₄: Eu were identical to the synthesis of NaYF₄:Pr, except for the use of different lanthanides and ratios.

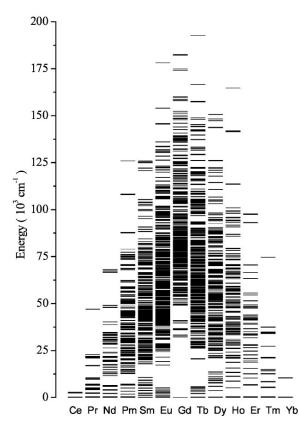
Synthesis of NaYF₄: Tb nanoscintillators with different Tb³⁺ doping concentrations.

The scintillator NaYF₄:Tb were synthesized by using a thermal decomposition method. Firstly, a gross of 1 mmol

 Y_2O_3 and Tb_4O_7 with designed concentrations, CF₃COOH (5 mL), and deionized water (5 mL) were together added into a 100-mL three-necked flask. Then, the mixture was heated at 100 °C under vigorous stirring. After the residual water and acid were evaporated to dryness, the solid cooled down to room temperature. Next, CF₃COONa (0.136 g), OA (10 mL) and ODE (10 mL) were added into the flask. The system was heated to 120 °C in order to remove the water in the mixture and kept for 15 min under nitrogen environment and then risen to 300 °C and kept for 1 hour. After that, the temperature was cooled down to room temperature. The as-prepared nanoparticles were collected by centrifugation at 7500 rpm for 5 min, and then dispersed in cyclohexane (5 mL).


Synthesis of NaLnF₄@NaYF₄ (Ln=Pr, Eu, Tb) and NaGdF₄:Yb40%,Pr1%@NaPrF₄ core@shell NPs

These four core@shell NPs were separately synthesized by employing the initial NaPrF₄, NaEuF₄, NaTbF₄ and NaGdF₄:Yb40%,Pr1% core as seeds. Briefly, a gross of 0.5 mmol Y₂O₃, CF₃COOH (5 mL), and deionized water (5 mL) were together added into a 100-mL three-necked flask. Then, the mixture was heated at 100 °C under vigorous stirring. After the residual water and acid were evaporated to dryness, the solid cooled down to room temperature. Next, CF₃COONa (0.068 g), OA (10 mL), ODE (10 mL), and the NaPrF₄ core seeds (0.5 mmol) were added into the flask. The system was heated to 80 °C in order to remove the cyclohexane from the mixture under N₂ atmosphere. Then the temperature was increased to 120 °C to remove the water in the mixture and kept for 20 min and then risen to 300 °C and kept for 30 min under nitrogen environment. After cooling down to room temperature, the assynthesized NaPrF₄@NaYF₄ core@shell NPs were obtained by centrifugation at 7500 rpm for 5min. Finally, they were dispersed in cyclohexane (10 mL). The synthetic procedure for NaEuF₄@NaYF₄, NaTbF₄@NaYF₄ and NaGdF₄:Yb40%,Pr1%@NaPrF₄ were identical to the synthesis of NaYF₄:Pr, except for the use of different lanthanides.


Preparation of PDMS film with NaGdF₄:Yb40%,Pr1%@NaPrF₄ NPs

1 mmol NaGdF₄:Yb40%,Pr1%@NaPrF4 NPs were redispersed in 5 mL methanol by sonication. Then 0.55 g PDMS (prepolymer and crosslinker in a 10:1 weight ratio) was mixed with the above solution and sonicated for 5 min to ensure a uniform distribution of NPs. Then, the mixture was heated to 70 °C under vigorous stirring in order to remove the methanol. After cooling down to room temperature, the NPs-containing solution was coated on the transparent PDMS film in the shape of "SCNU", and the obtained film was solidified at 60 °C for 4 h.

Supplementary Figures

Fig. S1. Corresponding size distributions of the samples in (a) Fig. 1a, (b) Fig. 1b, (c) Fig. 1c, (d) Fig. 1d, (e) Fig. 1e.

Fig. S2. Complete $4f^n$ energy level diagram for the trivalent lanthanides calculated using parameters reported by Carnall¹.

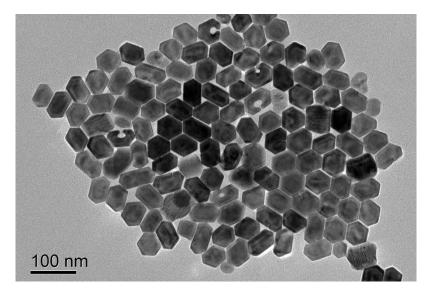
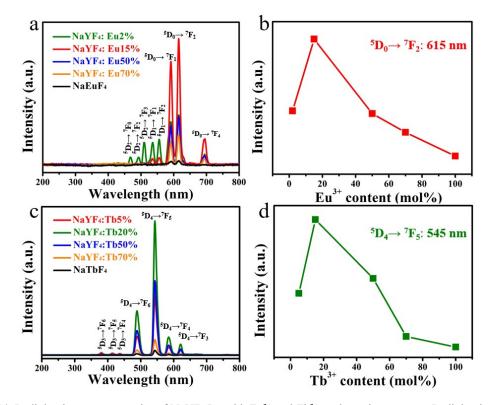
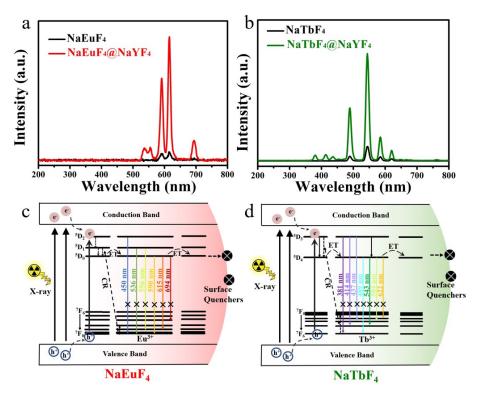




Fig. S3. TEM image of NaPrF₄@ NaYF₄.

Fig. S4. Radioluminescent properties of NaYF₄:Ln with Eu^{3+} and Tb³⁺ as the activators. a, c, Radioluminescence spectra of NaYF₄:Ln (Ln= Eu, Tb) nanoscintillators with different Ln contents. b, d, Their corresponding characteristic peak intensity trend graph.

Fig. S5. Radioluminescence intensity change by the surface-passivated core-shell structure. a, b, Radioluminescence spectra of NaLnF₄ and NaLnF₄@NaYF₄ (Ln= Eu, Tb) nanoscintillators monitored in the range of 200-800 nm. c, d, Their corresponding energy transfer mechanisms at high doping concentration levels.

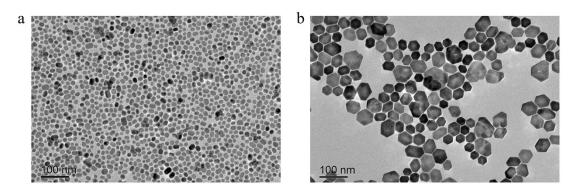


Fig. S6. TEM images of $NaEuF_4$ (a) and $NaTbF_4$ (b).

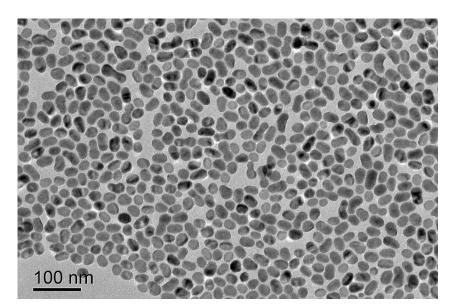


Fig. S7. TEM image of NaGdF₄:Yb40%,Pr1%@NaPrF₄.

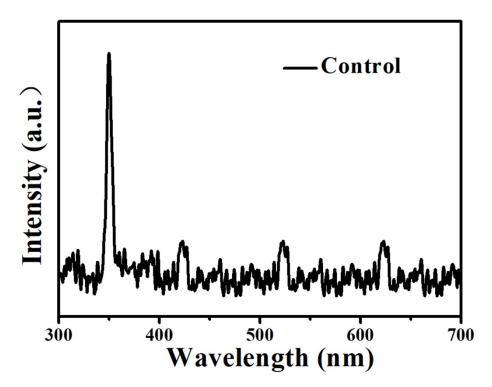


Fig. S8. The spectrum of the instrument with the absence of sample as control.

References

1. Peijzel PS, Meijerink A, Wegh RT, Reid MF, Burdick GW. A complete energy level diagram for all trivalent lanthanide ions. Journal of Solid State Chemistry. 2005;178(2):448-453.