Supporting Information

Enantioselective reductive allylic alkylation enabled by dual photoredox/palladium catalysis

Sheng Tang, ${ }^{\text {a }}$ Hong-Hao Zhang,*ab Shouyun Yu*a

${ }^{\text {a }}$ State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
E-mail: yushouyun@nju.edu.cn
${ }^{\mathrm{b}}$ School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
E-mail: zhanghonghao@cczu.edu.cn

Table of Contents

1. General information S2
2. Numberings and structures of all compounds S3
3. General procedure for the synthesis of racemic products $\mathbf{3}$ S7
4. General procedure for asymmetric allylic alkylation S8
5. Gram-scale preparation of $\mathbf{3 a}$ S10
6. Optimization of the conditions for $\mathbf{3 a}$ S11
7. Proof of stereochemistry S15
8. Mechanism Study S18
9. Product characterization S21
10. Attempt of other alkyl bromides S38
11. References S39
12. NMR spectra for all compounds. S40
13. HPLC spectra S72

1. General information

Commercial reagents were purchased from Aldrich Chemical, Alfa Aesar, TCI, Strem, Acros, Energy Chemical, J\&K Chemical, Innochem and were used as received. All catalytic reactions were run in dried glassware. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 ($300-400$ Mesh) using a forced flow of $0.5-$ 1.0 bar. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ were measured on a Bruker AVANCE III-400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s , singlet; d, doublet; t , triplet; q, quartet; m, multiplet. GC-MS spectra were performed on Agilent 5977A Series (EI Source). High Resolution Mass spectra were performed on Agilent 1260 Series (ESI Source). High-pressure liquid chromatography (HPLC) was performed on Agilent 1260 Series chromatographs using chiral columns as noted for each compound. Optical rotations were measured on an automatic polarimeter with $[\alpha]_{\mathrm{D}}{ }^{20}$ values reported in degrees; concentration (c) is in $\mathrm{g} / 100 \mathrm{~mL}$.

The allylic acetates $(\mathbf{1})^{1}$ and alkyl bromides $(\mathbf{2})^{2}$ and chiral allylic acetate $(S)-\mathbf{1 0}{ }^{3}{ }^{3}$ were prepared according to the literature procedure.

2. Numberings and structures of all compounds

1a

1d

1g

1j

1m

10'

1b

$1 e$

1h

1k

1 n

(S)-10'

2a

2d

2g

2j

2m

2p

2k

2n

2q

2f

$2 i$

21

20

6

3a

3d

$3 g$

3j

3b

3e

3h

3k

$3 i$

31

$3 m$

3n

3c

$3 f$

30

$3 r$

$3 u$

$3 x$

3aa

3p

3s

$3 v$

$3 y$

$3 a b$

$3 q$

3t

3w

$3 z$

3ac

3. General procedure for the synthesis of racemic products 3

General Procedure A: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl ($3.7 \mathrm{mg}, 0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%$), anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL}$) was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 2.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(65.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), HE ($50.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), allylic acetates $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), alkyl bromides 2 (0.3 mmol, 3.0 equiv) and anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4. General procedure for asymmetric allylic alkylation

General Procedure B (in-glovebox): In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%),(R)$ -2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl) $-\lambda^{2}$-phosphaneyl)-1,1'-binaphthalene (L1) (7.4 mg, $0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%$), anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}$, $2.0 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($65.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), $\mathrm{HE}(50.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), allylic acetates $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), alkyl bromides 2 ($0.3 \mathrm{mmol}, 3.0$ equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure B': In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%),(R)-2,2$ '-bis($(3,5-\mathrm{di}-$ tert-butyl-4-methoxyphenyl)- λ^{2}-phosphaneyl)-1,1'-binaphthalene (L1) ($7.4 \mathrm{mg}, 0.006 \mathrm{mmol}, 6$ $\mathrm{mol} \%$), anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 2.0 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($65.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), $\mathrm{HE}(50.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), allylic acetates 1 (0.1 mmol, 1.0 equiv), alkyl bromides 2 ($0.3 \mathrm{mmol}, 3.0$ equiv) and anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45 W blue LED lights at $0^{\circ} \mathrm{C}$ for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Reaction Setup

Medium-sized screw-cap test tubes (8 mL) were used for all 0.1 mmol scale reactions: Fisher13 x 100 mm tubes (Cat. No. 14-959-35C)

Cap with Septa: Thermo Scientific ASM PHN CAP w/PTFE/SIL (Cat. No. 03378316)

5. Gram-scale preparation of 3a

In a nitrogen-filled glovebox, a 500 mL round bottom flask, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(23 \mathrm{mg}, 0.025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, (R)- 2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl)- λ^{2}-phosphaneyl)-1,1'-binaphthalene (L1) ($74 \mathrm{mg}, 0.06 \mathrm{mmol}, 6 \mathrm{~mol} \%$), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(50.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(20.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 2.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(652 \mathrm{mg}, 2$ mmol, 2.0 equiv), HE ($50.7 \mathrm{mg}, 2 \mathrm{mmol}, 2.0$ equiv), allylic acetates $\mathbf{1 a}(220 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv), alkyl bromides $2 \mathbf{a}$ ($681 \mathrm{mg}, 3 \mathrm{mmol}, 3.0$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(50.0 \mathrm{~mL}$). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h .

The reaction mixture was then transferred to a 500 mL separatory funnel, rinsed/diluted with 200 mL ether, and washed with 200 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography ($53 \%(162.3 \mathrm{mg}) ; 90 \% e e ;>$ 95:5 rr; > 95:5 E:Z).

6. Optimization of the conditions for 3a

Table S1. Screening of the chiral ligands ${ }^{a}$

$34 \%, 78 \%$ ee, 86:14 rr

37\%, 84\% ee, 84:16 rr

34\%, 84\% ee, 83:17 rr

29\%, 71\% ee, 81:19 rr

24\%, 98\% ee, 95:5 rr

30%, 98% ee, $96: 4$ rr

Trace

42\%, 66\% ee, 81:19 rr

$51 \%, 94 \%$ ee, $91: 9 r r$

15\%, 96\% ee, 92:8 rr

27\%, 98\% ee, 94:6 rr
${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}), \mathrm{HE}(0.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($2.5 \mathrm{~mol} \%$), ligand ($6 \mathrm{~mol} \%$), and $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2 \mathrm{~mol} \%)$ in $\mathrm{MeCN}(4.0 \mathrm{~mL})$ was irradiated by 45 W blue LEDs for 12 h . ${ }^{b}$ The yield and regioselectivity ($r r$) were determined by GC. ${ }^{c}$ Enantiomeric excess (ee) values determined by HPLC on a chiral stationary phase. PMP = paramethoxyphenyl.

Table S2. Screening of the reductant ${ }^{a}$

50\%, 96\% ee, 93:7 rr

TEA

23\%, 92\% ee, 92:8 rr

DIPEA

15\%, 94\% ee, 92:8 rr

${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$
trace

22\%, 96\% ee, 95:5 rr

trace
${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol})$, the reductant $(0.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$, ligand ($6 \mathrm{~mol} \%$), and $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2 \mathrm{~mol} \%)$ in $\mathrm{MeCN}(4.0 \mathrm{~mL})$ was irradiated by 45 W blue LEDs for $12 \mathrm{~h} .{ }^{b}$ The yield and regioselectivity ($r r$) were determined by GC. ${ }^{c}$ Enantiomeric excess ($e e$) values determined by HPLC on a chiral stationary phase. PMP $=$ para-methoxyphenyl.

Table S3: Examination of Photocatalysts ${ }^{a}$

$R^{1}=R^{2}=H, \operatorname{lr}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}(\mathrm{I}):$
51\%, 94\% ee, 92:8 rr

$R^{1}=R^{2}=H, \operatorname{Ir}(p p y)_{2}(d M e b p y) P_{6}(V I I):$
30\%, 94\% ee, 94:6 rr

$$
\left.\begin{array}{c}
\mathrm{R}^{1}=\mathrm{CF}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \mathrm{Ir}(\mathrm{dFCF} \\
3
\end{array} \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(\mathrm{II}):
$$

$R^{1}=R^{2}=H, \operatorname{Ir}(\text { ppy })_{2}($ bpy $) P F_{6}(\mathrm{IV}):$ 30\%, 94\% ee, 94:6 rr

$\mathrm{R}^{1}=\mathrm{CF}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \operatorname{Ir}\left(\mathrm{dFCF} \mathrm{S}_{3} \mathrm{ppy}\right)_{2}(\mathrm{bpy}) \mathrm{PF}_{6}(\mathrm{~V}):$
N.D.

$$
\begin{gathered}
\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \mathrm{Ir}(\mathrm{dFMeppy})_{2}(\text { bpy }) \mathrm{PF}_{6}(\mathrm{VI}): \\
27 \%, 94 \% \text { ee, } 93: 7 \mathrm{rr}
\end{gathered}
$$

$\mathrm{R}^{1}=\mathrm{CF}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \operatorname{Ir}\left(\mathrm{dFCF}{ }_{3} \mathrm{ppy}\right)_{2}(\mathrm{dMebpy}) \mathrm{PF}_{6}(\mathrm{VIII}):$ N.D.
$\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{F}, \operatorname{Ir}(\mathrm{dFMeppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ (III):
29\%, 96\% ee, $93: 7$ rr
${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}), \mathrm{HE}(0.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($2.5 \mathrm{~mol} \%$), L1 ($6 \mathrm{~mol} \%$), and PC ($2 \mathrm{~mol} \%$) in $\mathrm{MeCN}(4.0 \mathrm{~mL}$) was irradiated by 45 W blue LEDs for $12 \mathrm{~h} .{ }^{b}$ The yield and regioselectivity ($r r$) were determined by GC. ${ }^{c}$ Enantiomeric excess (ee) values determined by HPLC on a chiral stationary phase. $\mathrm{PMP}=$ para-methoxyphenyl.

Table S4. Reaction conditions optimization ${ }^{a}$

 1a	 2a		 3a		PMP	 HE
Entry	$\mathbf{2 a}(\mathrm{x} \mathrm{mmol})$	$\mathbf{1 a}(\mathrm{y} \mathrm{mmol})$	HE(z mmol)	yield ${ }^{\text {b }}$	$e e^{c}$	$r r^{b}$
1	0.1	0.15	0.2	53\%	96\%	93:7
2	0.1	0.2	0.2	58\%	96\%	95:5
3	0.1	0.2	0.3	64\%	96\%	95:5
4	0.1	0.3	0.2	63\%	96\%	>95:5
5	0.1	0.3	0.3	60\%	96\%	>95:5
6	0.2	0.1	0.2	56\%	96\%	>95:5
7	0.2	0.1	0.3	63\%	96\%	>95:5
8	0.3	0.1	0.2	70\%	96\%	>95:5
9	0.3	0.1	0.3	66\%	96\%	>95:5

${ }^{a}$ Reaction conditions: 1a, 2a, HE, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$, ligand ($6 \mathrm{~mol} \%$), and $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2 \mathrm{~mol} \%)$ in $\mathrm{MeCN}(4.0 \mathrm{~mL})$ was irradiated by 45 W blue LEDs for $12 \mathrm{~h} .{ }^{b}$ The yield and regioselectivity ($r r$) were determined by GC. ${ }^{c}$ Enantiomeric excess ($e e$) values determined by HPLC on a chiral stationary phase. PMP = para-methoxyphenyl.

7. Proof of stereochemistry

In our previous work ${ }^{4}$, we described photoredox/Pd-cocatalyzed enantioselective coupling of allyl esters with 4-alkyl-1,4-dihydropyridines. The (R)-configuration of the product was established unambiguously by single crystal X-ray diffraction analysis (Figure S1a). When 1a was alkylated with 4-alkyl-1,4-dihydropyridines $\mathbf{6}$ under the same conditions, the absolute configuration of (S)-3w was also assigned as " S " based on the assumption that the two reactions proceed through a similar pathway (Figure S1b).
a) our previous work:

b) Synthesis of (S)-3w using our previous method:

Figure S1. Synthesis of (R) - 3w using our previous method.

The enantioselectivity of (S)-3w (96% ee) synthesized according to our previous methods could be determined by the HPLC analysis (Daicel Chiralpak OD-H, hexane/ethanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$). As shown in Figure $\mathbf{S 2}$, the retention time of (S)-3w under this HPLC conditions is 7.83 min , and the retention time of $(R)-3 \mathrm{w}$ is 11.59 min .

Figure S2. The HPLC spectrum of (S)-3w. HPLC conditions: Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$.

3w was synthesized under the standard conditions of this work (Figure S3), and its enantioselectivity was determined under the same HPLC conditions (Daicel Chiralpak OD-H, hexane/ethanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right)$.

Synthesis of 3w in this work:

1a

2j

L1
$\mathrm{Ar}=4-\mathrm{OMe}-3,5-$
$\left.{ }^{(t} \mathrm{Bu}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{2}$
Figure S3. Synthesis of 3w in this work.

Figure S4. The HPLC spectrum of $\mathbf{3 w}$ in this work. HPLC conditions: Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$.

8. Mechanism Study

Radical Trapping Experiment with TEMPO

Procedure C

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, (R) - 2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl)- λ^{2}-phosphaneyl)-1,1'-binaphthalene (L1) ($7.4 \mathrm{mg}, 0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%$), anhydrous $\mathrm{MeCN}(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . Then the following chemicals were added in turn: $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}\left(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 2.0 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (65.2 $\mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), $\mathrm{HE}(50.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), allylic acetates $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv), alkyl bromides 2a ($0.3 \mathrm{mmol}, 3.0$ equiv), TEMPO ($46.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12 h . Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum to afford a residue. The HRMS of the crude reaction mixture did not show the formation of product 3a, while a TEMPO- alkyl adduct 5 was observed.

Stern-Volmer fluorescence quenching experiments

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ solutions were excited at 410 nm and the emission intensity at 572 nm was observed. MeCN was degassed with a stream of Ar for 30 min . In a typical experiment, the emission spectrum of a $2 \times 10^{-5} \mathrm{M}$ solution of $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ in MeCN was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I_{0} and I represent the intensities of the emission in the absence and presence of the quencher at 572 nm .

Figure S5. The Stern-Volmer plot.

Stern-Volmer quenching experiments indicate that HE quenches photoexcited catalyst.

Excited-state palladium catalysis pathway

Figure S6. Proposed mechanisms for excited-state palladium catalysis pathway.

9. Product characterization

3a
(S,E)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-4-methoxybenzene (3a): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100 ; 1$; Reaction time $=12 \mathrm{~h}$; yield: $70 \%(21.6 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 18.4 (c 0.55, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.83$ $-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $157.76,143.54,135.23,131.32,130.17,128.36,128.29,126.55,125.51,113.18,57.66,55.20$, 43.03, 36.60, 30.49, 25.06, 24.75, 18.15; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}$ requires m / z 331.2032; found m / z 331.2023; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=$ 18.29 min (major), $\mathrm{t}_{\mathrm{R}}=43.53 \mathrm{~min}$ (minor). (\pm)-3a: According to General Procedure \boldsymbol{A}.

3b
(S,E)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-3-methoxybenzene (3b): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $63 \%(19.4 \mathrm{mg}) ; ~>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ $15.8\left(\mathrm{c} 0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.80$ - $6.71(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.04,144.74,143.47,130.98,128.60,128.36,128.29,126.89,125.52,121.98,115.64,110.76$,
58.56, 55.14, 43.13, 36.61, 30.48, 25.19, 24.83, 18.15.; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}$ requires m/z 331.2032; found m/z 331.2025; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=14.58 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=29.12 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 b}$: According to General Procedure \boldsymbol{A}.

3c
(S,E)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-2-methoxybenzene (3c): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $68 \%(21.0 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 17.0 (c 0.39, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11$ (m, 3H), $6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.09,143.87,131.88,131.56,129.78,128.37,128.23,126.58,125.39,119.92$, 110.68, 55.37, 42.94, 37.22, 30.54, 29.72, 24.59, 18.15; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 331.2032$; found $\mathrm{m} / \mathrm{z} 331.2027$; Enantiomeric ratio: $97: 3$, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=8.26 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=12.35 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 c}$: According to General Procedure \boldsymbol{A}.

3d
(S,E)-1-fluoro-4-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)benzene (3d): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=$ 100:0 to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $54 \%(17.6 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-10.2\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}$, $2 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=$
$9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.25(\mathrm{~d}, J=243.7 \mathrm{~Hz}), 157.61,138.74(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 135.37,130.90$, $130.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 129.15,127.06,114.48(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 113.76,57.74,55.26,43.20,36.51$, 29.46, 24.99, 24.66, 18.14.; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.71; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FNaO}$ requires $\mathrm{m} / \mathrm{z} 349.1938$; found $\mathrm{m} / \mathrm{z} 349.1927$; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25$ ${ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=21.87 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=20.21 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 d}$: According to General

Procedure A.

$3 e$
($\boldsymbol{S}, \boldsymbol{E}$)-1-chloro-4-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)benzene (3e): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100 ; 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $51 \%(17.5 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-12.2\left(\mathrm{c} 0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}$, $2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dd}, J=6.4,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$, 0.87 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.62,141.60,135.31,131.62,130.63,130.59$, $129.15,127.85,127.34,113.78,57.94,55.27,43.18,36.53,29.45,24.97,24.65,18.13$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClNaO}$ requires $\mathrm{m} / \mathrm{z} 365.1643$, found $\mathrm{m} / \mathrm{z} 365.1638$; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.7/0.3, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=45.04 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=35.85 \mathrm{~min}($ minor $) .(\pm)-3 \mathrm{e}:$ According to General Procedure A.

$3 f$
(S,E)-1-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)-2-methylbenzene (3f): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=$ 100:0 to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $57 \%(18.4 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-16.6\left(\mathrm{c} 0.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H})$, $0.99(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.58$, 141.77, 136.12, 135.54, 132.03, $130.51,129.18,128.69,126.41,125.47,125.30,113.75,55.27,52.23,43.46,37.71,29.59,24.70$, 24.48, 20.94, 18.14; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 345.2189$, found m/z 345.2181; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.51 \mathrm{~min}$ (major), t_{R} $=8.88 \mathrm{~min}$ (minor). (\pm)-3f: According to General Procedure \boldsymbol{A}.

3g
(S,E)-2-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-6-methoxynaphthalene (3g): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=$ 100:0 to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $34 \%(12.2 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-17.0\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.05-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.21,143.49,138.42,133.05,131.16,129.20,128.67$,
128.37, 128.30, 127.52, 126.96, 125.93, 125.52, 118.55, 105.46, 58.39, 55.31, 43.17, 36.89, 30.53, 25.22, 24.88, 18.19; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 381.2189$, found m/z 381.2182; Enantiomeric ratio: 91:9, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=99.5 / 0.5$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.82 \mathrm{~min}$ (major), t_{R} $=8.49 \mathrm{~min}$ (minor). (\pm)-3g: According to General Procedure \boldsymbol{A}.

3h
(S,E)-1-(3,3-dimethyl-4-phenyloct-5-en-1-yl)-4-methoxybenzene (3h): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $60 \%(19.4 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: \mathrm{Z}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 18.1 (c $0.48, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.79$ - $6.65(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H})$, $2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.60,145.17,143.14,134.06,129.41,129.22,128.79,127.72,125.88$, $120.80,114.13,110.82,58.25,55.12,42.93,36.60,30.53,25.77,25.17,24.87,13.90$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}$ requires m/z 345.2189, found m/z 345.2182; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=18.55 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=14.86 \mathrm{~min}$ (minor). $(\pm)-3 \mathrm{~h}:$ According to General Procedure A.

$3 i$
(S,E)-1-(3,3-dimethyl-4-phenylnon-5-en-1-yl)-4-methoxybenzene (3i): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $54 \%(18.2 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$
13.7 (c $0.45, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07$ - $7.02(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53$ (m, 2H), $2.05-1.94$ (m, 2H), $1.55-1.44$ (m, 2H), 1.38 (m, 2H), 0.93 (s, 3H), $0.90-0.84$ (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.56,143.20,135.52,132.30,130.05,129.40,129.16$, $127.68,125.83,113.72,58.37,55.26,43.26,36.56,34.88,29.48,25.14,24.87,22.64,13.77$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 359.2345$, found $\mathrm{m} / \mathrm{z} 359.2338$; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=16.25 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=14.06 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 i}:$ According to General Procedure A.

3j
(S,E)-1-(3,3-dimethyl-4-phenylundec-5-en-1-yl)-4-methoxybenzene ($\mathbf{3 j}$): According to General
Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $62 \%(20.7 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 13.1 (c 0.38, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.07$ - $7.02(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H})$, $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.57,143.20$, $135.53,132.54,129.83,129.41,129.16,127.68,125.83,113.72,58.35,55.26,43.29,36.56,32.74$, 31.44, 29.48, 29.19, 25.16, 24.82, 22.52, 14.07; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 387.2658$, found $\mathrm{m} / \mathrm{z} 387.2652$; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=$ 13.22 min (major), $\mathrm{t}_{\mathrm{R}}=17.18 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 j}$: According to General Procedure \boldsymbol{A}.

3k
(R)-1-(4-(cyclopent-1-en-1-yl)-3,3-dimethyl-4-phenylbutyl)-4-methoxybenzene (3k): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $54 \%(18.0 \mathrm{mg}) ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}$ $=-11.0\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.84-$ $6.75(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.57(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.26(\mathrm{~m}$, $4 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.56,144.55,141.84,135.54,130.19,129.17,127.57,126.37,125.97$, 113.74, 57.60, 55.26, 44.06, 37.43, 32.75, 29.76, 26.35, 25.57, 23.23; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 357.2189$, found $\mathrm{m} / \mathrm{z} 357.2183$; Enantiomeric ratio: 84:16, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=99.9 / 0.1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.61 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=12.73 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 k}$: According to

General Procedure A.

31
(R)-1-(4-(cyclohex-1-en-1-yl)-3,3-dimethyl-4-phenylbutyl)-4-methoxybenzene (31): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate = 100; 1 to $50: 1$; Reaction time $=12 \mathrm{~h}$; yield: $45 \%(15.7 \mathrm{mg}) ; ~>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}$ $=-9.5\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-$ $6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.79(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H})$, $2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$, 0.98 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.53,142.32,138.44,135.64,130.32,129.16$, $127.49,125.86,123.90,113.72,62.75,55.26,44.45,37.29,30.53,29.80,27.07,26.10,25.60,23.43$,
22.30; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 371.2345$, found m / z 371.2337; Enantiomeric ratio: 82:18, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=29.20 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=$ 27.47 min (minor). (\pm)-31: According to General Procedure A.

3m
(S)-1-(4,4-dimethyl-6-phenylhex-1-en-3-yl)-4-methoxybenzene (3m): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $32 \%(9.4 \mathrm{mg}) ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-23.4$ (c 0.35, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.26(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.77, $143.39,138.76,134.53,130.20,128.36,128.30,125.54,116.12,113.25,58.93,55.20,42.98,36.43$, 30.45, 24.98, 24.70; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 317.1876$, found m/z 317.1872; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.14 \mathrm{~min}$ (major), t_{R} $=22.61 \mathrm{~min}$ (minor). (\pm)-3m: According to General Procedure A.

3n
(S)-1-methoxy-4-(3,4,4-trimethyl-6-phenylhex-1-en-3-yl)benzene (3n): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $30 \%(9.3 \mathrm{mg}) ;>95: 5 \mathrm{rr}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-16.2(\mathrm{c} 0.25$,
$\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.75(\mathrm{~m}$, $2 H), 6.72(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.30, 144.47, 143.59, 137.93, $130.02,128.39,128.28,125.51,113.66,112.26,55.14,49.27,39.57,38.99,31.36,29.71,22.31$, 22.24, 20.42; HRMS (ESI) m/z: [M+Na] Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 331.2032$, found m / z 331.2028; Enantiomeric ratio: 89:11, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=22.00 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=$ 28.61 min (minor). (\pm)-3n: According to General Procedure A.

($\boldsymbol{S}, \boldsymbol{E}$)-1-fluoro-4-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)benzene (3o): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $56 \%(18.3 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-18.1\left(\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.09(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 159.88,139.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 135.13,131.26,130.15,129.58(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}), 126.59,114.97(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.19,57.65,55.19,43.19,36.57,29.67,25.01,24.76$, 18.15; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-118.29. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FNaO}$ requires $\mathrm{m} / \mathrm{z} 349.1938$, found $\mathrm{m} / \mathrm{z} 349.1935$ Enantiomeric ratio: 95:5, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $\left.0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=8.69 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.28 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 0}$: According to General Procedure \boldsymbol{A}.

3p
($\boldsymbol{S}, \boldsymbol{E}$)-1-chloro-4-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)benzene (3p): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=$ 100:0 to 100:1; Reaction time $=12 \mathrm{~h}$; yield: 60% (20.6 mg); a colourless sticky oil; > 95:5 rr; > 95:5 E:Z; $[\alpha]_{\mathrm{D}}{ }^{20}=-8.8\left(\mathrm{c} 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.02(\mathrm{~m}$, $4 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.80,141.94,135.07,131.21,130.14,129.68,128.36,126.64,113.20,113.12,57.68$, 55.20, 43.00, 36.58, 29.89, 24.98, 24.75, 18.14; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClNaO}$ requires $\mathrm{m} / \mathrm{z} 365.1643$, found $\mathrm{m} / \mathrm{z} 365.1637$; Enantiomeric ratio: $96: 4$, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.44 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=13.01 \mathrm{~min}$ (minor). (\pm)-3p: According to General Procedure \boldsymbol{A}.

$3 q$
(S,E)-1-(5,5-dimethyl-7-(4-(trifluoromethyl)phenyl)hept-2-en-4-yl)-4-methoxybenzene
According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $68 \%(25.6 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: \mathrm{Z}$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-9.4\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.10(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.83$, 147.67, 135.00, 131.15, 130.13, 128.63, 126.72, $125.21(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.41(\mathrm{q}, ~ J=270.0 \mathrm{~Hz}), 113.23,57.67,55.20,42.83,36.62,30.45,24.97$, 24.74, 18.13; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.25. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for
$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}$ requires m/z 399.1906, found m/z 399.1898; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $t_{R}=9.23 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=12.92 \mathrm{~min}($ minor $) .(\pm) \mathbf{3 q}:$ According to General Procedure A.

(S,E)-1-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)-3-(trifluoromethyl)benzene (3r): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $66 \%(24.8 \mathrm{mg})$; a colourless sticky oil; $>$ 95:5 $r r ; ~>~ 95: 5 ~ E: Z ;[\alpha]_{\mathrm{D}}{ }^{20}=-10.3\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.85,144.36,135.01,131.74,131.16,130.39,130.14,128.66,126.73$, $125.05(\mathrm{q}, J=4.2 \mathrm{~Hz}), 124.30(\mathrm{q}, J=270.0 \mathrm{~Hz}) 122.42(\mathrm{q}, J=4.2 \mathrm{~Hz}), 113.23,57.52,55.19,42.98$, 36.60, 30.37, 29.71, 25.03, 24.76, 18.10; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.54$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}$ requires m / z 399.1906, found $\mathrm{m} / \mathrm{z} 399.1898$; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.52 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=22.36 \mathrm{~min}($ minor $) .(\pm)-3 \mathrm{r}$: According to General Procedure A.

3s
(S,E)-1-(3,3-dimethyl-4-phenylhept-5-en-1-yl)-4-methoxybenzene (3s): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $54 \%(16.7 \mathrm{mg})$; a colourless sticky oil; > 95:5 rr; $>95: 5 \mathrm{E}: Z ;[\alpha]_{\mathrm{D}}{ }^{20}=-$ 12.6 (c $0.41, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07$

- $7.01(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.43(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.57,143.11,135.53,131.12,129.39,129.17,127.73,126.83,125.88$, 113.74, 58.55, 55.26, 43.29, 36.56, 29.49, 25.11, 24.78, 18.15; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 331.2032$, found $\mathrm{m} / \mathrm{z} 331.2028$; Enantiomeric ratio: $95: 5$, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 220$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=12.54 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=11.19 \mathrm{~min}($ minor $) .(\pm)-3 \mathrm{~s}$: According to General Procedure A.

$3 t$
(S,E)-1-(3,3-dimethyl-4-phenyloct-5-en-1-yl)-3-methoxybenzene (3t): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $56 \%(18.1 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 13.3 (c $0.29, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.79$ - $6.65(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H})$, $2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.60,145.17,143.14,134.06,129.41,129.22,128.79,127.72,125.88$, $120.80,114.13,110.82,58.25,55.12,42.93,36.60,30.53,25.77,25.17,24.87,13.90$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 345.2189$, found $\mathrm{m} / \mathrm{z} 345.2180$; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.3/0.7, flow rate $\left.0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=11.28 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.65 \mathrm{~min}(\mathrm{minor}) .(\pm)-3 \mathrm{t}:$ According to General Procedure A.

$3 u$
(S,E)-5-(3,3-dimethyl-4-phenylhept-5-en-1-yl)benzo[d][1,3]dioxole (3u): According to General

Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $48 \%(15.5 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 17.5 (c 0.26, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.70$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.45,145.36,143.05,137.34,131.08,129.37,127.75,126.88$, 125.92, 120.89, 108.85, 108.10, 100.69, 58.55, 43.35, 36.54, 30.21, 25.09, 24.78, 18.15; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{2}$ requires $\mathrm{m} / \mathrm{z} 345.1825$, found $\mathrm{m} / \mathrm{z} 345.1817$; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol $=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.47 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=9.92 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 u}$: According to General Procedure A.

(S,E)-1-(2,2-dimethyl-1-phenylhex-4-en-3-yl)-4-methoxybenzene (3v): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $64 \%(18.8 \mathrm{mg})$; a colourless sticky oil; $>95: 5 \mathrm{rr} ;>95: 5 E: Z ;[\alpha]_{\mathrm{D}}{ }^{20}=-$ 17.6 (c 0.46, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13$ - $7.06(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.82,139.42,135.21,131.34,130.90,130.31,127.52,127.15,125.65,113.22,59.45$, 55.20, 46.57, 37.74, 24.51, 23.96, 18.22; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}$ requires m / z 317.1876, found m / z 317.1877; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=$ 16.94 min (major), $\mathrm{t}_{\mathrm{R}}=26.57 \mathrm{~min}($ minor $) .(\pm)-3 \mathrm{v}$: According to General Procedure \boldsymbol{A}.

3w
(S,E)-1-(2,2-dimethylhex-4-en-3-yl)-4-methoxybenzene (3w): According to General Procedure \boldsymbol{B} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0 ;$ Reaction time $=12$ h ; yield: $50 \%(10.9 \mathrm{mg})$; > 95:5 rr; > 95:5 E:Z; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-18.2$ (c 0.37, CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.94-5.75(\mathrm{~m}$, $1 \mathrm{H}), 5.49-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 157.70, 135.68, 131.64, 129.95, 126.36, 113.09, 59.35, 55.19, 34.02, 29.70, 28.01, 27.74, 18.07 ; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}$ requires m / z 241.1563, found m/z 241.1564; Enantiomeric ratio: 95:5, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=7.58 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.16 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 w}$: According to General Procedure A.

3x
(S,E)-1-(5,5-dimethylnon-2-en-4-yl)-4-methoxybenzene (3x): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$; Reaction time $=12 \mathrm{~h}$; yield: $64 \%(16.6 \mathrm{mg})$; > 95:5 rr; > 95:5 E:Z; a colourless sticky oil; [$\alpha]_{\mathrm{D}}{ }^{20}=-24.7\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.47$ - $5.36(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 6 \mathrm{H}), 0.91-$ $0.85(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.64,135.55,131.55$, 130.16, 126.22, 113.06, 57.75, 55.17, 40.34, 36.36, 26.07, 24.90, 24.75, 23.63, 18.11, 14.23; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}$ requires m / z 283.2032, found m / z 283.2027; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, pentane/isopropanol =
$100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.20 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.88 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 x}$: According to General Procedure A.

$3 y$
(S,E)-1-methoxy-4-(5,5,9-trimethyldec-2-en-4-yl)benzene (3y): According to General Procedure \boldsymbol{B} Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to 100:1; Reaction time $=12 \mathrm{~h}$; yield: $59 \%(17.0 \mathrm{mg}) ; ~>95: 5 \mathrm{rr}$; > 95:5 E:Z; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-24.8(\mathrm{c}$ $0.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~m}$, $1 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ $1.18(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.64,135.54,131.55,130.15,126.23,113.06,57.82,55.17,40.86,39.99,36.46,27.98$, 24.90, 24.76, 22.72, 22.66, 21.48, 18.13; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 311.2345$, found $\mathrm{m} / \mathrm{z} 311.2338$; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/ isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=5.76$ \min (major), $\mathrm{t}_{\mathrm{R}}=9.66 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 y}$: According to General Procedure A.

$3 z$
(S,E)-1-(5,5-diethyl-7-phenylhept-2-en-4-yl)-4-methoxybenzene (3z): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$ to $100: 1$; Reaction time $=12 \mathrm{~h}$; yield: $65 \%(21.9 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 23.6 (c $0.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.79$ $(\mathrm{m}, 2 \mathrm{H}), 6.00-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}$, $2 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$157.78,143.78,135.30,132.32,130.34,128.33,128.28,125.90,125.55,113.25,55.24,55.20$, $41.23,37.55,30.52,27.70,27.49,18.18,8.72,8.67$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NaO}$ requires m/z 359.2345, found m/z 359.2339; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=99.5 / 0.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, 220 nm): $\mathrm{t}_{\mathrm{R}}=9.04 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.41 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 z}$: According to General Procedure \boldsymbol{A}.

$3 a a$
(S,E)-1-methoxy-4-(1-(1-methylcyclohexyl)but-2-en-1-yl)benzene (3aa): According to General Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$; Reaction time $=12 \mathrm{~h}$; yield: $25 \%(6.5 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-5.5$ (c 0.23, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.78(\mathrm{~m}$, $1 \mathrm{H}), 5.48-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 4 \mathrm{H})$, $1.41-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.12-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.66$, $135.13,131.13,130.24,126.38,113.03,58.71,55.18,36.19,36.16,29.70,26.35,21.99,21.93$, 20.67, 18.13; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 281.1876$, found m / z 281.1874; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.39 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=$ 10.98 min (minor). (\pm)-3aa: According to General Procedure A.

3ab
(R,E)-1-(1-cyclohexylbut-2-en-1-yl)-4-methoxybenzene (3ab): According to General Procedure
$\boldsymbol{B}^{\prime}\left(\mathbf{a t ~}^{\mathbf{o}} \mathbf{C}\right)$ Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$; Reaction time $=12 \mathrm{~h}$; yield: $40 \%(9.8 \mathrm{mg}) ;>95: 5 \mathrm{rr} ;>95: 5 \mathrm{E}: Z$; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-7.7$ (c 0.40, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.52(\mathrm{~m}$, $1 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59$ $(\mathrm{m}, 5 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.81-$ $0.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.63,137.05,134.16,128.67,125.02,113.67,55.41$, 55.20, 42.64, 31.39, 26.60, 26.44, 17.97; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}$ requires m / z 267.1719, found m / z 267.1718; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 220 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=7.38$ $\min (m a j o r), \mathrm{t}_{\mathrm{R}}=8.59 \mathrm{~min}($ minor $) .(\pm)-\mathbf{3 a b}:$ According to General Procedure A.

3ac
($\boldsymbol{R}, \boldsymbol{E}$)-1-methoxy-4-(2-methylhex-4-en-3-yl)benzene (3ac): According to General Procedure B, $\left(\mathbf{a t ~}^{\circ} \mathbf{C}\right)$ Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$; Reaction time $=12 \mathrm{~h}$; yield: $42 \%(8.6 \mathrm{mg})$; > 95:5 rr; > 95:5 E:Z; a colourless sticky oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-9.0$ (c 0.48, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.46(\mathrm{~m}$, $1 \mathrm{H}), 5.38-5.31(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 3 \mathrm{H}), 0.85$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.65,137.30,134.13$, $128.65,125.15,113.66,56.37,55.21,33.10,21.07,20.77,17.98$; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}$ requires $\mathrm{m} / \mathrm{z} 227.1406$, found m / z 227.1407; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=100 / 0$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, $220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=9.56 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=13.11 \mathrm{~min}$ (minor). $(\pm)-\mathbf{3 a c}$: According to General Procedure A.

10. Attempt of other alkyl bromides

(a) primary alkyl bromides (unsuccessful Substrtates)

(b) unsymmetric tertiary alkyl bromide

Figure S7. Attempt of other alkyl bromides.

Some alkyl bromides other than tertiary alkyl bromides were explored. As shown in Figure S7, Under the standard conditions, we were unable to obtain the reductive cross-coupling products with primary alkyl bromides. Unsymmetric tertiary alkyl bromide $\mathbf{2 q}$ was also suitable for this reaction, although no diastereoselectivity (1: 1 dr) was observed.

((3S,E)-2-(4-methoxyphenethyl)-2-methylhex-4-ene-1,3-diyl)dibenzene (3ad): According to General Procedure B' Flash column chromatography eluent, petroleum ether/ethyl acetate $=100: 0$; Reaction time $=12 \mathrm{~h}$; yield: $57 \%(21.9 \mathrm{mg})$; inseparable diastereoisomers 1:1 dr; > 95:5 rr ; > 95:5 $E: Z ;$ a colourless sticky oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.17(\mathrm{~m}, 16 \mathrm{H}), 7.13-7.07(\mathrm{~m}$, 4H), $7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 4 \mathrm{H}), 6.12-5.97$ (m, 2H), $5.67-$ $5.54(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=9.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.66-$ $2.56(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 2 \mathrm{H})$,
$0.88(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.65,142.83,138.95,135.22,131.00$, $130.88,130.82,130.76,129.81,129.76,129.12,127.86,127.68,127.47,127.32,126.09,125.84$, $125.79,113.79,113.71,56.63,56.34,55.27,55.25,43.05,40.23,40.15,39.21,38.66,28.92,22.35$, 18.30 .

11. References

[1] (a) A. Serra-Muns, A. Guerinot, S. Reymond and J. Cossy, Chem. Commun., 2010, 46, 41784180. (b) Marion, Nicolas, R. Gealageas, and S. P. Nolan, Org. Lett, 2007, 9, 2653-2656.
[2] (a) H. M. Huang, P. Bellotti, P. M. Pfluger, J. L. Schwarz, B. Heidrich and F. Glorius, J. Am. Chem. Soc., 2020, 142, 10173-10183. (b) A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc., 2012, 134, 10693-10697. (c) L. Wang and C. Wang, Org. Lett., 2020, 22, 8829-8835.
[3] F. Chen, Y. Zhang, L. Yu and S. Zhu, Angew. Chem. Int. Ed., 2017, 56, 2022-2025.
[4] H.-H. Zhang, J.-J. Zhao and S. Yu, J. Am. Chem. Soc., 2018, 140, 16914-16919.

12. NMR spectra for all compounds

3a

0
$寸$
$寸$
$寸$

$\stackrel{n}{N} \underset{\sim}{\sigma}{ }^{\circ}$

3d

300	180	160	140	120	100 $\mathrm{f} 1(\mathrm{ppm})$	80	60	40	20	0

(

N
N
∞
0
0
\&

$3 y$

Bn Me

Inseparable diastereoisomers $d r=1: 1$

13．HPLC spectra

峰 保留时间 类型 峰宽 峰面积 峰高 峰面积
$\stackrel{\#}{\#} \left\lvert\, \frac{[\min]}{1} \begin{array}{lll}18.288 \mathrm{BB} & 0.5846 & {[\mathrm{~min}]} \\ 2654.10547 & 67.52473 & 97.9020\end{array}\right.$
$\begin{array}{lllrrr}1 & 18.288 \mathrm{BB} & 0.5846 & 2654.10547 & 67.52473 & 97.9020 \\ 2 & 43.525 \mathrm{BB} & 0.9099 & 56.87577 & 7.37347 \mathrm{e}^{-1} & 2.0980\end{array}$

\＃	保留时间 类型 ［min］	$\begin{aligned} & \text { 峰宽 } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{array} \end{gathered}$	$\begin{aligned} & \text { 峰高 } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { 峰面积 } \end{gathered}$
1	18.656 BB	0.5400	119． 39038	3． 23964	2． 7708
2	41．709 BB	1． 6082	4189． 44678	35.67170	97． 229

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	8.256	BB	0.2902	1.65802 e 4	779.42249	97.4365
2	12.353	BB	0.3176	436.20856	21.05996	2.5635

峰	保留时间 ［min］		峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	20.314		0． 8817	3759． 93237	63.05514	48． 1096
2	22.006	VB	0． 8625	4055． 42114	70.67263	51.8904

峰	保留时间 ［min］		峰宽 [min]	峰面积 [mAU*s]	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	20.214		0.6258	850． 14056	19.22800	4． 4110
2	21.873	VB	0.8602	1．84231e4	325.54718	95.58

峰 $\#$	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [} \mathrm{mAU} * \mathrm{~s} \text {] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	35.853	BV	0． 7586	776． 34174	12． 01866	2． 8087
2	45.041	BB	1． 9308	2．68641e4	164． 19289	97． 1913

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	33.736	MF	1． 6108	2． 71880 e 4	281.30637	96． 7880
2	48.404	BB	1． 0898	902． 25824	9． 70365	3． 2120

峰 保留时间 类型 峰宽 峰面积 峰高 峰面积
\＃［min］［min］［mAU＊s］［mAU］$-\stackrel{-}{-}$
$\begin{array}{llllrr}1 & 8.875 \mathrm{VV} & 0.2808 & 829.25281 & 44.63480 & 5.9599 \\ 2 & 9.506 \mathrm{VB} & 0.2681 & 1.30847 \mathrm{e} 4 & 740.50671 & 94.0401\end{array}$

峰	保留时间 ［min］		峰宽 ［min］	峰面积 ［mAU＊s］	峰高 ［mAU］	峰面积 \％
1	9． 175		0． 2895	1．89759e4	981.96259	97.0990
2	10.446		0． 3094	566． 93842	27.17946	2． 9010

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	14.858	BB	0.5735	1518.11206	40.94632	2.7641
2	18.552	FM	0.8036	5.34046 e 4	1107.59863	97.2359

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s] }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.061		0.6471	3.02655 e 4	779.50464	96.5549
2	19.126	BB	0.7990	1079.88989	20.51896	3.4451

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	13.495 FM	0.4373	4005.58545	152.65329	51.68

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.220	BB	0.4881	1.99968 e 4	602.73242	96.6700
2	17.183	BB	0.5256	688.83740	20.1116	. 3

(S)-L1

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.533 MF	0.4676	2361.23193	84.16882	5.6944
2	15.300 VB	0.9629	3.91047	545.114	94.3056

峰 保留时间 类型 峰宽 峰面积 峰高 峰面积

| $\#$ | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | ［min］ | ［min］ | ［mAU＊s］ | ［mAU］ | $\%$ |
| 1 | 27.465 VV | 0.7487 | 4917.62012 | 97.45625 | 17.6842 |

$\begin{array}{llllll}2 & 29.200 \mathrm{VB} & 1.1570 & 2.28903 \mathrm{e} 4 & 279.34198 & 82.3158\end{array}$

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	17.544	BB	0.4452	3598.37817	120.55315	50.3979
2	22.227	BB	0.6794	3541.55298	74.39710	49.6021

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s] }} \end{gathered}$	Height [mAU]	Area \%
1	17.139		0.4737	9252.26563	284.26569	93.7203
2	22.607		0.6199	619.94385	16.66792	6.2797

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	22.939 BB	0.6500	3239.38599	72.53445	50.1514
2	28.242 BB	1.1781	3219.82861	36.25635	49.8486

\footnotetext{
WWD1 A, Wavelength=220 nm (E.DATAL20210920LCC 2022-01-18 21-04-241OnlineEdited-018.D)

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.995	BB	0.8084	1.34040e4	228.81059	89.1556
2	28.609	BB	1.0853	1630.39087	20.38013	10.8444

$\begin{array}{c}\text { 峰 保留时间 类型 } \\ \text { \＃} \\ \text {［min］}\end{array}$	$\begin{array}{c}\text { 峰宽 } \\ \text {［min］}\end{array}$	$\begin{array}{c}\text { 峰面积 } \\ \text {［mAU＊s］}\end{array}$	$\begin{array}{c}\text { 峰高 } \\ \text {［mAU］}\end{array}$	$\begin{array}{c}\text { 峰面积 } \\ \%\end{array}$	
1	10.437 BB	0.4421	1.84478 e 4	578.37506	96.2432

$\begin{array}{llllll}2 & 13.010 \mathrm{BB} & 0.6416 & 720.10278 & 13.23791 & 3.7568\end{array}$

峰	保留时间 类型 ［min］	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{aligned} & \text { 峰高 } \\ & {[\mathrm{mAU}]} \end{aligned}$	峰面积 \％
1	10.514 VV	0.4973	138． 2972	31.82	4． 6

VWD1 A，Wavelength＝220 nm （D：lzy 20220901 YH 2022－10－07 00－30－53iOnlineEdited－009．D）

峰	保留时间 ［min］		峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[m A U]} \end{gathered}$	峰面积 \％
1	19.231		0． 6073	1． 33137 e 4	307.98404	96． 0494
2	$2 \quad 12.917$	BV	1． 0558	547.60236	6． 09148	3． 9506

峰 $\#$	保留时间 ［min］		峰宽 ［min］	峰面积 ［mAU＊s］	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	9． 258		0． 5977	1188.54211	26． 18013	4． 9023
2	12.823	vB	1． 2033	2．30558e4	244． 23891	95.0977

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.517	MF	0.5488	5.08105 e 4	1543.13562	97.8
2	22.363		0.7072	1140.47046	24.13848	2.1

> | $\begin{array}{c}\text { 峰 } \\ \text { 保留时间 } \\ \text { [min] }\end{array}$ | $\begin{array}{c}\text { 类型 }\end{array}$ | $\begin{array}{c}\text { 峰宽 } \\ \text { [min] }\end{array}$ | $\begin{array}{c}\text { 峰面积 } \\ \text { [mAU*s] }\end{array}$ | $\begin{array}{c}\text { 峰高 } \\ \text { [mAU] }\end{array}$ | $\begin{array}{c}\text { 峰面积 } \\ \%\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.635 VV | 0.4244 | 1.80617 e 4 | 575.03711 | 49.8387 |
| 2 | 12.849 VB | 0.4201 | 1.81786 e 4 | 584.11682 | 50.1613 |

峰 保留时间 类型 峰宽 峰面积 峰高 峰面积

$\#$| $\#$ | $[\mathrm{~min}]$ | $[\mathrm{min}]$ |
| :---: | :---: | :---: |
| - | ［mAU＊s］［mAU］ | \％ |
| - | | |
| - | | |

$\begin{array}{llllll}1 & 11.194 \mathrm{VV} & 0.4597 & 2286.98975 & 66.08847 & 4.8750\end{array}$
2 12．543 VB $\quad 0.43464 .46261 \mathrm{e} 4 \quad 1424.19861 \quad 95.1250$

$\begin{array}{c}\text { 峰 保留时间 类型 } \\ \# \\ \# \mathrm{~min}]\end{array}$	$\begin{array}{c}\text { 峰宽 } \\ {[\mathrm{min}]}\end{array}$	$\begin{array}{c}\text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]}\end{array}$	$\begin{array}{c}\text { 峰高 } \\ {[\mathrm{mAU}]}\end{array}$	$\begin{array}{c}\text { 峰面积 } \\ \%\end{array}$

$\begin{array}{llllll}1 & 10.771 \mathrm{FM} & 0.2652 & 2813.16846 & 176.77815 & 50.2587\end{array}$
$\begin{array}{llllll}2 & 11.446 \mathrm{VB} & 0.2498 & 2784.21143 & 165.47011 & 49.7413\end{array}$

峰	保留时间 ［min］	类型	峰宽 $[\min]$	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
	10.647		0． 2540	718．09027	47． 12522	3． 2418

（S：Izy202206241YH 2022－07－13 09－49－331OnlineEdited－010．D）

峰	保留时间 ［min］		峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[m A U]} \end{gathered}$	峰面积 \％
1	10.651	MF	0． 2666	2． 37043 e 4	1482.07568	95．9106
2	11.310	FM	0． 2851	1010． 70020	59.07620	4． 0894

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	7.584	BB	0． 1682	1． 00925 e 4	877． 30048	95． 1781
2	11． 160	VB	0． 2443	511． 30676	31.33866	4． 8219

峰 保留时间 类型 峰宽 峰面积 峰高 峰面积
\＃［min］［min］［mAU＊s］［mAU］
$\begin{array}{llllll}1 & 7.617 \mathrm{BB} & 0.1588 & 526.09283 & 48.80503 & 5.3450\end{array}$
$\begin{array}{llllll}2 & 11.121 \mathrm{VB} & 0.2889 & 9316.60352 & 466.72687 & 94.6550\end{array}$

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
	17.203	VV R	0． 19	2． 29199	1804.09	97． 2379
	211.883		0． 2905	651.054	32.38	

峰 $\#$ $\#$	$\begin{gathered} \text { 保留时间 } \\ {[\mathrm{min}]} \end{gathered}$	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	7.334	FM	0． 1836	1429.02173	129． 71706	2． 9535
2	11.031	MF	0． 6766	4．69543e4	1156.53870	97． 0465

\[

\]

$\begin{array}{ccccc}\text { 峰 保留时间 类型 } & \text { 峰宽 } \\ \# & {[\mathrm{~min}]} & {[\mathrm{min}]} & \begin{array}{r}\text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]}\end{array} & \begin{array}{c}\text { 峰高 } \\ {[\mathrm{mAU}]}\end{array}\end{array} \begin{gathered}\text { 峰面积 } \\ \%\end{gathered}$
\＃［min］$|-|$［min］［mAU＊s］［mAU］$|-|$
$1 \quad 7.389 \mathrm{FM} \quad 0.1998 \quad 2466.83936 \quad 205.78412 \quad 97.638$
$\begin{array}{llllll}2 & 10.978 & \text { BV } & 0.2083 & 59.67376 & 4.00491\end{array} \quad 2.3619$

$\begin{array}{r} \text { 峰 } \\ \# \end{array}$	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	17.423	MF	0． 1921	282.34793	24．4902	6． 0411
2	$2 \quad 10.887$	MF	0． 3146	4391． 41357	232.662	93．9589

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{aligned} & \text { 峰面积 } \\ & \text { [mAU*s] } \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	7.38		0． 1858	1．71275e4	1375.55969	96．82
	8.59		0． 1923	，		

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	9． 557		0． 1999	79.84082	163． 10854	49． 5762
2	12． 927	MF	0． 303	2217． 11182	121． 7497	50． 42

\＃	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	19.556		0． 2344	5170.48730	367.69540	94.2132
2	13.110		0． 2468	317.58459	19.02051	5.78

峰	留时间 ［min］		峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	9.707		0． 2280	624.27020	45． 63062	5． 9373
2	13.119	MF	0． 3692	9890． 17188	446.45493	94.0627

