Supporting Information

Enantioselective reductive allylic alkylation enabled by dual photoredox/palladium catalysis

Sheng Tang,^a Hong-Hao Zhang,^{*ab} Shouyun Yu^{*a}

^a State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

E-mail: yushouyun@nju.edu.cn

^b School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

E-mail: zhanghonghao@cczu.edu.cn

Table of Contents

1.	General information	S2
2.	Numberings and structures of all compounds	S3
3.	General procedure for the synthesis of racemic products 3	S7
4.	General procedure for asymmetric allylic alkylation	S8
5.	Gram-scale preparation of 3a	S10
6.	Optimization of the conditions for 3a	S 11
7.	Proof of stereochemistry	S15
8.	Mechanism Study	S 18
9.	Product characterization	S21
10.	Attempt of other alkyl bromides	.S38
11.	References	S39
12.	NMR spectra for all compounds	.S40
13.	. HPLC spectra	.S72

1. General information

Commercial reagents were purchased from Aldrich Chemical, Alfa Aesar, TCI, Strem, Acros, Energy Chemical, J&K Chemical, Innochem and were used as received. All catalytic reactions were run in dried glassware. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 (300–400 Mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F (376 MHz) were measured on a Bruker AVANCE III–400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra were performed on Agilent 1260 Series (ESI Source). High-pressure liquid chromatography (HPLC) was performed on Agilent 1260 Series chromatographs using chiral columns as noted for each compound. Optical rotations were measured on an automatic polarimeter with $[\alpha]_D^{20}$ values reported in degrees; concentration (c) is in g/100 mL.

The allylic acetates $(1)^1$ and alkyl bromides $(2)^2$ and chiral allylic acetate (*S*)-10^{, 3} were prepared according to the literature procedure.

2. Numberings and structures of all compounds

2d

2e

2f

2g

2h

2i

Me Me Me Br

2k

21

Me

2p

Br

Me

2n

20

3b

3d

3k

31

3m

3n

3q

30

3r

3u

Me Me Me Me ÓМе

Et Et Me ÓМе

3у

3z

3. General procedure for the synthesis of racemic products 3

General Procedure A: In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 2.5 mol%), racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (3.7 mg, 0.006 mmol, 6 mol%), anhydrous MeCN (2.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol, 2.0 equiv), HE (50.7 mg, 0.2 mmol, 2.0 equiv), allylic acetates **1** (0.1 mmol, 1.0 equiv), alkyl bromides **2** (0.3 mmol, 3.0 equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

4. General procedure for asymmetric allylic alkylation

General Procedure B (in-glovebox): In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with Pd₂(dba)₃ (2.3 mg, 0.0025 mmol, 2.5 mol%), (*R*)-2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl)- λ^2 -phosphaneyl)-1,1'-binaphthalene (L1) (7.4 mg, 0.006 mmol, 6 mol%), anhydrous MeCN (2.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol, 2.0 equiv), HE (50.7 mg, 0.2 mmol, 2.0 equiv), allylic acetates **1** (0.1 mmol, 1.0 equiv), alkyl bromides **2** (0.3 mmol, 3.0 equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

General Procedure B': In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with Pd₂(dba)₃ (2.3 mg, 0.0025 mmol, 2.5 mol%), (*R*)- 2,2'-bis((3,5-ditert-butyl-4-methoxyphenyl)- λ^2 -phosphaneyl)-1,1'-binaphthalene (**L1**) (7.4 mg, 0.006 mmol, 6 mol%), anhydrous MeCN (2.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol, 2.0 equiv), HE (50.7 mg, 0.2 mmol, 2.0 equiv), allylic acetates **1** (0.1 mmol, 1.0 equiv), alkyl bromides **2** (0.3 mmol, 3.0 equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at 0 °C for 12h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography.

Reaction Setup

Medium-sized screw-cap test tubes (8 mL) were used for all 0.1 mmol scale reactions: Fisher13 x 100 mm tubes (Cat. No. 14-959-35C)

Cap with Septa: Thermo Scientific ASM PHN CAP w/PTFE/SIL (Cat. No. 03378316)

5. Gram-scale preparation of 3a

In a nitrogen-filled glovebox, a 500 mL round bottom flask, equipped with a magnetic stir bar, charged with Pd₂(dba)₃ (23 mg, 0.025 mmol, 2.5 mol%), (*R*)- 2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl)- λ^2 -phosphaneyl)-1,1'-binaphthalene (**L1**) (74 mg, 0.06 mmol, 6 mol%), anhydrous CH₃CN (50.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: Ir(ppy)₂(dtbbpy)PF₆ (20.0 mg, 0.02 mmol, 2.0 mol%), Cs₂CO₃ (652 mg, 2 mmol, 2.0 equiv), **HE** (50.7 mg, 2 mmol, 2.0 equiv), allylic acetates **1a** (220 mg, 1 mmol, 1.0 equiv), alkyl bromides **2a** (681 mg, 3 mmol, 3.0 equiv) and anhydrous CH₃CN (50.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12h.

The reaction mixture was then transferred to a 500 mL separatory funnel, rinsed/diluted with 200 mL ether, and washed with 200 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum and purified by chromatography (53% (162.3mg); 90% *ee*; > 95:5 *rr*; > 95:5 *E*:*Z*).

6. Optimization of the conditions for 3a

Table S1. Screening of the chiral ligands^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), HE(0.2 mmol), Cs₂CO₃(0.2 mmol), Pd₂(dba)₃ (2.5 mol %), ligand (6 mol %), and Ir(ppy)₂(dtbbpy)PF₆ (2 mol %) in MeCN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}The yield and regioselectivity (*rr*) were determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), the reductant (0.2 mmol), Cs₂CO₃(0.2 mmol), Pd₂(dba)₃ (2.5 mol %), ligand (6 mol %), and Ir(ppy)₂(dtbbpy)PF₆ (2 mol %) in MeCN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}The yield and regioselectivity (*rr*) were determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

Table S3: Examination of Photocatalysts^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), HE(0.2 mmol), Cs₂CO₃(0.2 mmol), Pd₂(dba)₃ (2.5 mol %), L1 (6 mol %), and PC (2 mol %) in MeCN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}The yield and regioselectivity (*rr*) were determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

OAc PMP N 1a	le ⁺ Ph → Br - 2a	HE Ir(ppy) ₂ (dtbbpy)PF ₆ Pd ₂ (dba) ₃ , L1 Cs ₂ CO ₃ , MeCN, N ₂ blue LED, 12 h	→ Ph → Me PMP 3a	He Me	e PMP Me	EtO ₂ C Me HE
Entry	2a (x mmol)	1a (y mmol)	HE(z mmol)	yield ^b	<i>ee</i> ^c	rr ^b
1	0.1	0.15	0.2	53%	96%	93:7
2	0.1	0.2	0.2	58%	96%	95:5
3	0.1	0.2	0.3	64%	96%	95:5
4	0.1	0.3	0.2	63%	96%	>95:5
5	0.1	0.3	0.3	60%	96%	>95:5
6	0.2	0.1	0.2	56%	96%	>95:5
7	0.2	0.1	0.3	63%	96%	>95:5
8	0.3	0.1	0.2	70%	96%	>95:5
9	0.3	0.1	0.3	66%	96%	>95:5

Table S4. Reaction conditions optimization^a

^{*a*}Reaction conditions: **1a**, **2a**, **HE**, Cs₂CO₃, Pd₂(dba)₃ (2.5 mol %), ligand (6 mol %), and Ir(ppy)₂(dtbbpy)PF₆ (2 mol %) in MeCN (4.0 mL) was irradiated by 45 W blue LEDs for 12 h. ^{*b*}The yield and regioselectivity (*rr*) were determined by GC. ^{*c*}Enantiomeric excess (*ee*) values determined by HPLC on a chiral stationary phase. PMP = *para*-methoxyphenyl.

7. Proof of stereochemistry

In our previous work⁴, we described photoredox/Pd-cocatalyzed enantioselective coupling of allyl esters with 4-alkyl-1,4-dihydropyridines. The (*R*)-configuration of the product was established unambiguously by single crystal X-ray diffraction analysis (**Figure S1a**). When **1a** was alkylated with 4-alkyl-1,4-dihydropyridines **6** under the same conditions, the absolute configuration of (*S*)-**3w** was also assigned as "*S*" based on the assumption that the two reactions proceed through a similar pathway (**Figure S1b**).

a) our previous work:

b) Synthesis of (S)-3w using our previous method:

Figure S1. Synthesis of (*R*)-3w using our previous method.

The enantioselectivity of (*S*)-**3w** (96% ee) synthesized according to our previous methods could be determined by the HPLC analysis (Daicel Chiralpak OD-H, hexane/ethanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm). As shown in **Figure S2**, the retention time of (*S*)-**3w** under this HPLC conditions is 7.83 min, and the retention time of (*R*)-**3w** is 11.59 min.

Figure S2. The HPLC spectrum of (*S*)-**3w**. HPLC conditions: Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm.

3w was synthesized under the standard conditions of this work (Figure S3), and its enantioselectivity was determined under the same HPLC conditions (Daicel Chiralpak OD-H, hexane/ethanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm).

Figure S3. Synthesis of 3w in this work.

Figure S4. The HPLC spectrum of **3w** in this work. HPLC conditions: Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm.

8. Mechanism Study

Radical Trapping Experiment with TEMPO

Procedure C

In a nitrogen-filled glovebox, an 8 mL screw-cap test tube, equipped with a magnetic stir bar, charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol, 2.5 mol%), (*R*)- 2,2'-bis((3,5-di-tert-butyl-4-methoxyphenyl)- λ^2 -phosphaneyl)-1,1'-binaphthalene (L1) (7.4 mg, 0.006 mmol, 6 mol%), anhydrous MeCN (2.0 mL) was added and the mixture was stirred for 30 min. Then the following chemicals were added in turn: $Ir(ppy)_2(dtbbpy)PF_6$ (2.0 mg, 0.002 mmol, 2.0 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol, 2.0 equiv), HE (50.7 mg, 0.2 mmol, 2.0 equiv), allylic acetates **1a** (0.1 mmol, 1.0 equiv), alkyl bromides **2a** (0.3 mmol, 3.0 equiv), TEMPO (46.9 mg, 0.3 mmol, 3.0 equiv) and anhydrous MeCN (2.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. The reaction mixture was stirred vigorously under 45W blue LED lights at room temperature for 12h. Next, the reaction mixture was transferred to a 250 mL separatory funnel, rinsed/diluted with 100 mL ether, and washed with 100 mL deionized water (twice) and finally 100 mL brine. The organic phase was concentrated under vacuum to afford a residue. The HRMS of the crude reaction mixture did not show the formation of product **3a**, while a TEMPO- alkyl adduct **5** was observed.

Stern-Volmer fluorescence quenching experiments

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All $Ir(ppy)_2(dtbbpy)PF_6$ solutions were excited at 410 nm and the emission intensity at 572 nm was observed. MeCN was degassed with a stream of Ar for 30 min. In a typical experiment, the emission spectrum of a 2×10^{-5} M solution of $Ir(ppy)_2(dtbbpy)PF_6$ in MeCN was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I₀ and I represent the intensities of the emission in the absence and presence of the quencher at 572 nm.

Figure S5. The Stern–Volmer plot.

Stern–Volmer quenching experiments indicate that HE quenches photoexcited catalyst.

Excited-state palladium catalysis pathway

Figure S6. Proposed mechanisms for excited-state palladium catalysis pathway.

9. Product characterization

(*S*,*E*)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-4-methoxybenzene (3a): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100;1; Reaction time = 12 h; yield: 70% (21.6 mg); > 95:5 *rr*; > 95:5 *E*:*Z*; a colourless sticky oil; $[\alpha]_D^{20} =$ -18.4 (c 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.18 – 7.08 (m, 5H), 6.83 – 6.79 (m, 2H), 5.86 (m, 1H), 5.48 (m, 1H), 3.78 (s, 3H), 3.11 (d, *J* = 9.9 Hz, 1H), 2.62 – 2.54 (m, 2H), 1.68 (m, 3H), 1.53 – 1.43 (m, 2H), 0.92 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.76, 143.54, 135.23, 131.32, 130.17, 128.36, 128.29, 126.55, 125.51, 113.18, 57.66, 55.20, 43.03, 36.60, 30.49, 25.06, 24.75, 18.15; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈NaO requires m/z 331.2032; found m/z 331.2023; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 18.29 min (major), t_R = 43.53 min (minor). (±)-**3a**: According to *General Procedure A*.

(*S*,*E*)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-3-methoxybenzene (3b): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 63% (19.4 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -$ 15.8 (c 0.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.21 – 7.09 (m, 4H), 6.80 – 6.71 (m, 3H), 5.87 (m, 1H), 5.50 (m, 1H), 3.79 (s, 3H), 3.13 (d, *J* = 9.9 Hz, 1H), 2.58 (t, *J* = 8.8 Hz, 2H), 1.69 (m, 3H), 1.58 – 1.44 (m, 2H), 0.95 (s, 3H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.04, 144.74, 143.47, 130.98, 128.60, 128.36, 128.29, 126.89, 125.52, 121.98, 115.64, 110.76,

58.56, 55.14, 43.13, 36.61, 30.48, 25.19, 24.83, 18.15.; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈NaO requires m/z 331.2032; found m/z 331.2025; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 14.58 \text{ min (major)}, t_R = 29.12 \text{ min (minor)}.$ (+)-3b: According to General Procedure A.

(S,E)-1-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-2-methoxybenzene (3c): According to General *Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 68% (21.0 mg); > 95:5 rr; > 95:5 E:Z; a colourless sticky oil; $[\alpha]_D^{20} = -$ 17.0 (c 0.39, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.21 (m, 2H), 7.18 – 7.11 (m, 3H), 6.93 - 6.82 (m, 2H), 5.93 - 5.79 (m, 1H), 5.50 (m, 1H), 3.90 (d, J = 9.9 Hz, 1H), 3.78 (s, 3H), 2.65 – 2.55 (m, 2H), 1.67 (m, 3H), 1.55 (m, 2H), 0.94 (s, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.09, 143.87, 131.88, 131.56, 129.78, 128.37, 128.23, 126.58, 125.39, 119.92, 110.68, 55.37, 42.94, 37.22, 30.54, 29.72, 24.59, 18.15; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈NaO requires m/z 331.2032; found m/z 331.2027; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = $25 \,^{\circ}$ C, 220 nm): $t_R = 8.26 \text{ min (major)}, t_R = 12.35 \text{ min (minor)}. (+)-3c$: According to *General Procedure A*.

(S,E)-1-fluoro-4-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)benzene (3d): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 54% (17.6 mg); > 95:5 rr; > 95:5 E:Z; a colourless sticky oil; $[\alpha]_D^{20} = -10.2$ (c 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.10 (m, 2H), 7.07 – 7.01 (m, 2H), 6.99 – 6.91 (m, 2H), 6.84 – 6.79 (m, 2H), 5.85 (m, 1H), 5.49 (m, 1H), 3.78 (s, 3H), 3.14 (d, J = 9.8 Hz, 1H), 2.56 – 2.45 (m, 2H), 1.69 (m, 3H), 1.53 – 1.40 (m, 2H), 0.91 (s, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.25 (d, J = 243.7 Hz), 157.61, 138.74 (d, J = 3.4 Hz), 135.37, 130.90, 130.57 (d, J = 7.7 Hz), 129.15, 127.06, 114.48 (d, J = 20.9 Hz), 113.76, 57.74, 55.26, 43.20, 36.51, 29.46, 24.99, 24.66, 18.14.; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.71; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₇FNaO requires m/z 349.1938; found m/z 349.1927; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 21.87 min (major), t_R = 20.21 min (minor). (+)-**3d**: According to *General Procedure A*.

(*S*,*E*)-1-chloro-4-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)benzene (3e): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;0 to 100:1; Reaction time = 12 h; yield: 51% (17.5 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -12.2$ (c 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.20 (m, 2H), 7.12 – 7.08 (m, 2H), 7.06 – 7.01 (m, 2H), 6.84 – 6.79 (m, 2H), 5.84 (m, 1H), 5.49 (m, 1H), 3.78 (s, 3H), 3.12 (d, *J* = 9.8 Hz, 1H), 2.56 – 2.46 (m, 2H), 1.69 (dd, *J* = 6.4, 1.5 Hz, 3H), 1.53 – 1.40 (m, 2H), 0.91 (s, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.62, 141.60, 135.31, 131.62, 130.63, 130.59, 129.15, 127.85, 127.34, 113.78, 57.94, 55.27, 43.18, 36.53, 29.45, 24.97, 24.65, 18.13; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₇ClNaO requires m/z 365.1643, found m/z 365.1638; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.7/0.3, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 45.04 min (major), t_R = 35.85 min (minor). (±)-3**e**: According to *General Procedure A*.

(*S*,*E*)-1-(7-(4-methoxyphenyl)-5,5-dimethylhept-2-en-4-yl)-2-methylbenzene (3f): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 57% (18.4 mg); > 95:5 *rr*; > 95:5 *E*:*Z*; a colourless sticky oil; $[\alpha]_D^{20} = -16.6$ (c 0.41, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.09 – 7.03 (m, 3H), 6.83 – 6.79 (m, 2H), 5.81 (m, 1H), 5.50 – 5.40 (m, 1H), 3.78 (s, 3H), 3.53 (d, *J* = 9.6 Hz, 1H), 2.58 – 2.47 (m, 2H), 2.36 (s, 3H), 1.66 (m, 3H), 1.60 – 1.55 (m, 2H), 0.99 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.58, 141.77, 136.12, 135.54, 132.03, 130.51, 129.18, 128.69, 126.41, 125.47, 125.30, 113.75, 55.27, 52.23, 43.46, 37.71, 29.59, 24.70, 24.48, 20.94, 18.14; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₃₀NaO requires m/z 345.2189, found m/z 345.2181; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.5/0.5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 9.51 min (major), t_R = 8.88 min (minor). (±)-**3f**: According to *General Procedure A*.

(*S*,*E*)-2-(5,5-dimethyl-7-phenylhept-2-en-4-yl)-6-methoxynaphthalene (3g): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 34% (12.2 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -17.0$ (c 0.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (m , 2H), 7.54 (m, 1H), 7.31 (m, 1H), 7.28 – 7.22 (m, 2H), 7.19 – 7.07 (m, 5H), 6.05 – 5.95 (m, 1H), 5.59 – 5.48 (m, 1H), 3.90 (s, 3H), 3.30 (d, *J* = 9.8 Hz, 1H), 2.61 (m, 2H), 1.70 (m, 3H), 1.62 – 1.50 (m, 2H), 0.99 (s, 3H), 0.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.21, 143.49, 138.42, 133.05, 131.16, 129.20, 128.67,

128.37, 128.30, 127.52, 126.96, 125.93, 125.52, 118.55, 105.46, 58.39, 55.31, 43.17, 36.89, 30.53, 25.22, 24.88, 18.19; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₂₆H₃₀NaO requires m/z 381.2189, found m/z 381.2182; Enantiomeric ratio: 91:9, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.5/0.5, flow rate 0.8 mL/min, T = 25 °C, 220 nm): t_R = 7.82 min (major), t_R = 8.49 min (minor). (\pm)-**3g**: According to *General Procedure A*.

3h

(*S*,*E*)-1-(3,3-dimethyl-4-phenyloct-5-en-1-yl)-4-methoxybenzene (3h): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 60% (19.4 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -18.1$ (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 – 7.15 (m, 4H), 6.79 – 6.65 (m, 3H), 5.87 (m, 1H), 5.54 (m, 1H), 3.78 (s, 3H), 3.16 (d, *J* = 9.9 Hz, 1H), 2.57 (m, 2H), 2.10 – 1.99 (m, 2H), 1.57 – 1.43 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.94 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.60, 145.17, 143.14, 134.06, 129.41, 129.22, 128.79, 127.72, 125.88, 120.80, 114.13, 110.82, 58.25, 55.12, 42.93, 36.60, 30.53, 25.77, 25.17, 24.87, 13.90; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₃₀NaO requires m/z 345.2189, found m/z 345.2182; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 18.55 min (major), t_R = 14.86 min (minor). (±)-**3h**: According to *General Procedure A*.

(*S*,*E*)-1-(3,3-dimethyl-4-phenylnon-5-en-1-yl)-4-methoxybenzene (3i): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 54% (18.2 mg); > 95:5 *rr*; > 95:5 *E*:*Z*; a colourless sticky oil; $[\alpha]_D^{20} = -$

13.7 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.20 – 7.14 (m, 3H), 7.07 – 7.02 (m, 2H), 6.83 – 6.78 (m, 2H), 5.88 (m, 1H), 5.48 (m, 1H), 3.78 (s, 3H), 3.15 (d, *J* = 9.9 Hz, 1H), 2.53 (m, 2H), 2.05 – 1.94 (m, 2H), 1.55 – 1.44 (m, 2H), 1.38 (m, 2H), 0.93 (s, 3H), 0.90 – 0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.56, 143.20, 135.52, 132.30, 130.05, 129.40, 129.16, 127.68, 125.83, 113.72, 58.37, 55.26, 43.26, 36.56, 34.88, 29.48, 25.14, 24.87, 22.64, 13.77; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₃₂NaO requires m/z 359.2345, found m/z 359.2338; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 0.5 mL/min, T = 25 °C, 220 nm): t_R = 16.25 min (major), t_R = 14.06 min (minor). (±)-**3i**: According to *General Procedure A*.

(*S*,*E*)-1-(3,3-dimethyl-4-phenylundec-5-en-1-yl)-4-methoxybenzene (3j): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 62% (20.7 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -$ 13.1 (c 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.20 – 7.15 (m, 3H), 7.07 – 7.02 (m, 2H), 6.83 – 6.77 (m, 2H), 5.87 (m, 1H), 5.48 (m, 1H), 3.77 (s, 3H), 3.15 (d, *J* = 9.9 Hz, 1H), 2.53 (m, 2H), 2.05 – 1.98 (m, 2H), 1.55 – 1.43 (m, 2H), 1.39 – 1.32 (m, 2H), 1.26 (m, 4H), 0.93 (s, 3H), 0.88 (s, 3H), 0.86 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.57, 143.20, 135.53, 132.54, 129.83, 129.41, 129.16, 127.68, 125.83, 113.72, 58.35, 55.26, 43.29, 36.56, 32.74, 31.44, 29.48, 29.19, 25.16, 24.82, 22.52, 14.07; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₃₆NaO requires m/z 387.2658, found m/z 387.2652; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 13.22 min (major), t_R = 17.18 min (minor). (±)-**3j**: According to *General Procedure A*.

(*R*)-1-(4-(cyclopent-1-en-1-yl)-3,3-dimethyl-4-phenylbutyl)-4-methoxybenzene (3k): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 54% (18.0 mg); > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -11.0 (c 0.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 5H), 7.03 (m, 2H), 6.84 – 6.75 (m, 2H), 5.77 – 5.57 (m, 1H), 3.77 (s, 3H), 3.39 (s, 1H), 2.59 – 2.47 (m, 2H), 2.36 – 2.26 (m, 4H), 1.82 – 1.73 (m, 2H), 1.72 – 1.61 (m, 2H), 1.52 (m, 2H), 1.04 (s, 3H), 0.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.56, 144.55, 141.84, 135.54, 130.19, 129.17, 127.57, 126.37, 125.97, 113.74, 57.60, 55.26, 44.06, 37.43, 32.75, 29.76, 26.35, 25.57, 23.23; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₃₀NaO requires m/z 357.2189, found m/z 357.2183; Enantiomeric ratio: 84:16, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.9/0.1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 14.61 min (major), t_R = 12.73 min (minor). (±)-**3k**: According to *General Procedure A*.

(*R*)-1-(4-(cyclohex-1-en-1-yl)-3,3-dimethyl-4-phenylbutyl)-4-methoxybenzene (3l): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100;1 to 50:1; Reaction time = 12 h; yield: 45% (15.7 mg); > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20}$ = -9.5 (c 0.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (m, 3H), 7.24 – 7.18 (m, 2H), 7.05 – 6.99 (m, 2H), 6.83 – 6.78 (m, 2H), 5.91 – 5.79 (m, 1H), 3.78 (s, 3H), 3.06 (s, 1H), 2.52 (m, 2H), 2.12 – 2.04 (m, 2H), 2.01 – 1.94 (m, 2H), 1.74 – 1.66 (m, 2H), 1.56 – 1.47 (m, 4H), 1.05 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.53, 142.32, 138.44, 135.64, 130.32, 129.16, 127.49, 125.86, 123.90, 113.72, 62.75, 55.26, 44.45, 37.29, 30.53, 29.80, 27.07, 26.10, 25.60, 23.43,

22.30; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₂₅H₃₂NaO requires m/z 371.2345, found m/z 371.2337; Enantiomeric ratio: 82:18, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 0.5 mL/min, T = 25 °C, 220 nm): t_R = 29.20 min (major), t_R = 27.47 min (minor). (\pm)-**3**I: According to *General Procedure A*.

3m

(*S*)-1-(4,4-dimethyl-6-phenylhex-1-en-3-yl)-4-methoxybenzene (3m): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 32% (9.4 mg); > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D{}^{20}$ = -23.4 (c 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 3H), 7.20 – 7.05 (m, 4H), 6.89 – 6.70 (m, 2H), 6.26 (d, *J* = 16.7 Hz, 1H), 5.15 – 5.00 (m, 2H), 3.79 (s, 3H), 3.16 (d, *J* = 9.8 Hz, 1H), 2.59 (t, *J* = 8.8 Hz, 2H), 1.60 – 1.46 (m, 2H), 0.95 (s, 3H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.77, 143.39, 138.76, 134.53, 130.20, 128.36, 128.30, 125.54, 116.12, 113.25, 58.93, 55.20, 42.98, 36.43, 30.45, 24.98, 24.70; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₆NaO requires m/z 317.1876, found m/z 317.1872; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 17.14 min (major), t_R = 22.61 min (minor). (±)-**3m**: According to *General Procedure A*.

(S)-1-methoxy-4-(3,4,4-trimethyl-6-phenylhex-1-en-3-yl)benzene (3n): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 30% (9.3 mg); > 95:5 *rr*; a colourless sticky oil; $[\alpha]_D^{20} = -16.2$ (c 0.25,

CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.21 (m, 4H), 7.20 – 7.09 (m, 3H), 6.83 – 6.75 (m, 2H), 6.72 (m, 1H), 5.14 (m, 1H), 5.02 (m, 1H), 3.79 (s, 3H), 2.51 – 2.42 (m, 2H), 1.60 – 1.49 (m, 2H), 1.45 (s, 3H), 0.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.30, 144.47, 143.59, 137.93, 130.02, 128.39, 128.28, 125.51, 113.66, 112.26, 55.14, 49.27, 39.57, 38.99, 31.36, 29.71, 22.31, 22.24, 20.42; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈NaO requires m/z 331.2032, found m/z 331.2028; Enantiomeric ratio: 89:11, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 22.00 min (major), t_R = 28.61 min (minor). (\pm)-**3n**: According to *General Procedure A*.

30

(*S*,*E*)-1-fluoro-4-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)benzene (30): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 56% (18.3 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -18.1$ (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.08 (m, 4H), 6.97 – 6.90 (m, 2H), 6.84 – 6.79 (m, 2H), 5.86 (m, 1H), 5.48 (m, 1H), 3.78 (s, 3H), 3.10 (d, *J* = 9.9 Hz, 1H), 2.58 – 2.50 (m, 2H), 1.68 (m, 3H), 1.52 – 1.40 (m, 2H), 0.92 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.09 (d, *J* = 243.0 Hz), 159.88, 139.04 (d, *J* = 2.6 Hz), 135.13, 131.26, 130.15, 129.58 (d, *J* = 7.7 Hz), 126.59, 114.97 (d, *J* = 21.0 Hz), 113.19, 57.65, 55.19, 43.19, 36.57, 29.67, 25.01, 24.76, 18.15; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.29. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₇FNaO requires m/z 349.1938, found m/z 349.1935 Enantiomeric ratio: 95:5, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 0.8 mL/min, T = 25 °C, 220 nm): t_R = 8.69 min (major), t_R = 10.28 min (minor). (±)-**30**: According to *General Procedure A*.

(*S*,*E*)-1-chloro-4-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)benzene (3p): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 60% (20.6 mg); a colourless sticky oil; > 95:5 *rr*; > 95:5 *E*:*Z*; $[\alpha]_D^{20} = -8.8$ (c 0.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.18 (m, 2H), 7.11 – 7.02 (m, 4H), 6.84 – 6.79 (m, 2H), 5.85 (m, 1H), 5.47 (m, 1H), 3.78 (s, 3H), 3.09 (d, *J* = 9.9 Hz, 1H), 2.62 – 2.43 (m, 2H), 1.68 (m, 3H), 1.52 – 1.40 (m, 2H), 0.91 (s, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.80, 141.94, 135.07, 131.21, 130.14, 129.68, 128.36, 126.64, 113.20, 113.12, 57.68, 55.20, 43.00, 36.58, 29.89, 24.98, 24.75, 18.14; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₇CINaO requires m/z 365.1643, found m/z 365.1637; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 10.44 min (major), t_R = 13.01 min (minor). (±)-3**p**: According to *General Procedure A*.

(*S,E*)-1-(5,5-dimethyl-7-(4-(trifluoromethyl)phenyl)hept-2-en-4-yl)-4-methoxybenzene (3q): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 68% (25.6 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -9.4$ (c 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (m, 2H), 7.23 (m, 2H), 7.12 – 7.07 (m, 2H), 6.82 (m, 2H), 5.92 – 5.81 (m, 1H), 5.49 (m, 1H), 3.78 (s, 3H), 3.10 (d, *J* = 9.9 Hz, 1H), 2.63 (t, *J* = 8.8 Hz, 2H), 1.69 (m, 3H), 1.49 (m, 2H), 0.93 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.83, 147.67, 135.00, 131.15, 130.13, 128.63, 126.72, 125.21 (q, *J* = 4.0 Hz), 124.41 (q, *J* = 270.0 Hz), 113.23, 57.67, 55.20, 42.83, 36.62, 30.45, 24.97, 24.74, 18.13; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.25. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₇F₃NaO requires m/z 399.1906, found m/z 399.1898; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): $t_R = 9.23 \text{ min (major)}, t_R = 12.92 \text{ min (minor)}. (\pm)-3q$: According to *General Procedure A*.

(*S,E*)-1-(4-(4-methoxyphenyl)-3,3-dimethylhept-5-en-1-yl)-3-(trifluoromethyl)benzene (3r): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 66% (24.8 mg); a colourless sticky oil; > 95:5 rr; > 95:5 E:Z; $[\alpha]_D^{20} = -10.3$ (c 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 4H), 7.14 – 7.06 (m, 2H), 6.87 – 6.78 (m, 2H), 5.87 (m, 1H), 5.50 (m, 1H), 3.78 (s, 3H), 3.12 (d, J = 9.9 Hz, 1H), 2.70 – 2.55 (m, 2H), 1.69 (m, 3H), 1.55 – 1.42 (m, 2H), 0.93 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.85, 144.36, 135.01, 131.74, 131.16, 130.39, 130.14, 128.66, 126.73, 125.05 (q, J = 4.2 Hz), 124.30 (q, J = 270.0 Hz) 122.42 (q, J = 4.2 Hz), 113.23, 57.52, 55.19, 42.98, 36.60, 30.37, 29.71, 25.03, 24.76, 18.10; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.54. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₇F₃NaO requires m/z 399.1906, found m/z 399.1898; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 11.52 min (major), t_R = 22.36 min (minor). (±)-3**r**: According to *General Procedure A*.

(*S*,*E*)-1-(3,3-dimethyl-4-phenylhept-5-en-1-yl)-4-methoxybenzene (3s): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 54% (16.7 mg); a colourless sticky oil; > 95:5 rr; > 95:5 E:Z; [α]_D²⁰ = - 12.6 (c 0.41, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.21 – 7.14 (m, 3H), 7.07

-7.01 (m, 2H), 6.84 -6.78 (m, 2H), 5.89 (m, 1H), 5.55 -5.43 (m, 1H), 3.78 (s, 3H), 3.15 (d, J = 9.9 Hz, 1H), 2.57 -2.48 (m, 2H), 1.68 (m, 3H), 1.52 -1.41 (m, 2H), 0.93 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.57, 143.11, 135.53, 131.12, 129.39, 129.17, 127.73, 126.83, 125.88, 113.74, 58.55, 55.26, 43.29, 36.56, 29.49, 25.11, 24.78, 18.15; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₈NaO requires m/z 331.2032, found m/z 331.2028; Enantiomeric ratio: 95:5, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 12.54 min (major), t_R = 11.19 min (minor). (\pm)-**3s**: According to *General Procedure A*.

(*S*,*E*)-1-(3,3-dimethyl-4-phenyloct-5-en-1-yl)-3-methoxybenzene (3t): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 56% (18.1 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} =$ -13.3 (c 0.29, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 – 7.15 (m, 4H), 6.79 – 6.65 (m, 3H), 5.87 (m, 1H), 5.54 (m, 1H), 3.78 (s, 3H), 3.16 (d, *J* = 9.9 Hz, 1H), 2.57 (m, 2H), 2.10 – 1.99 (m, 2H), 1.57 – 1.43 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.94 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.60, 145.17, 143.14, 134.06, 129.41, 129.22, 128.79, 127.72, 125.88, 120.80, 114.13, 110.82, 58.25, 55.12, 42.93, 36.60, 30.53, 25.77, 25.17, 24.87, 13.90; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₃₀NaO requires m/z 345.2189, found m/z 345.2180; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.3/0.7, flow rate 0.8 mL/min, T = 25 °C, 220 nm): t_R = 11.28 min (major), t_R = 10.65 min (minor). (±)-**3t**: According to *General Procedure A*.

(S,E)-5-(3,3-dimethyl-4-phenylhept-5-en-1-yl)benzo[d][1,3]dioxole (3u): According to General

Procedure B Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 48% (15.5 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[a]_D^{20}$ = -17.5 (c 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 7.21 – 7.15 (m, 3H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.64 – 6.53 (m, 2H), 5.96 – 5.80 (m, 1H), 5.90 (s, 2H), 5.49 (m, 1H), 3.13 (d, *J* = 9.9 Hz, 1H), 2.54 – 2.45 (m, 2H), 1.69 (m, 3H), 1.50 – 1.41 (m, 2H), 0.92 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.45, 145.36, 143.05, 137.34, 131.08, 129.37, 127.75, 126.88, 125.92, 120.89, 108.85, 108.10, 100.69, 58.55, 43.35, 36.54, 30.21, 25.09, 24.78, 18.15; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₆NaO₂ requires m/z 345.1825, found m/z 345.1817; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OJ-H, hexane/ethanol = 99/1, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 12.47 min (major), t_R = 9.92 min (minor). (±)-**3u**: According to *General Procedure A*.

3ν (*S,E*)-1-(2,2-dimethyl-1-phenylhex-4-en-3-yl)-4-methoxybenzene (3v): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 64% (18.8 mg); a colourless sticky oil; > 95:5 *rr*; > 95:5 *E:Z*; $[\alpha]_D^{20} = -$ 17.6 (c 0.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.20 – 7.15 (m, 1H), 7.13 – 7.06 (m, 4H), 6.85 – 6.81 (m, 2H), 5.99 – 5.90 (m, 1H), 5.55 – 5.45 (m, 1H), 3.79 (s, 3H), 3.07 (d, *J* = 9.8 Hz, 1H), 2.60 – 2.43 (m, 2H), 1.72 (m, 3H), 0.81 (s, 3H), 0.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.82, 139.42, 135.21, 131.34, 130.90, 130.31, 127.52, 127.15, 125.65, 113.22, 59.45, 55.20, 46.57, 37.74, 24.51, 23.96, 18.22; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₆NaO requires m/z 317.1876, found m/z 317.1877; Enantiomeric ratio: 96:4, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 16.94 min (major), t_R = 26.57 min (minor). (+)-**3v**: According to **General Procedure A**.

(*S*,*E*)-1-(2,2-dimethylhex-4-en-3-yl)-4-methoxybenzene (3w): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 50% (10.9 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20}$ = -18.2 (c 0.37, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.04 (m, 2H), 6.84 – 6.78 (m, 2H), 5.94 – 5.75 (m, 1H), 5.49 – 5.37 (m, 1H), 3.78 (s, 3H), 2.92 (d, *J* = 9.8 Hz, 1H), 1.67 (m, 3H), 0.85 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.70, 135.68, 131.64, 129.95, 126.36, 113.09, 59.35, 55.19, 34.02, 29.70, 28.01, 27.74, 18.07 ; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₂₂NaO requires m/z 241.1563, found m/z 241.1564; Enantiomeric ratio: 95:5, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 7.58 min (major), t_R = 11.16 min (minor). (±)-**3w**: According to *General Procedure A*.

(*S,E*)-1-(5,5-dimethylnon-2-en-4-yl)-4-methoxybenzene (3x): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 64% (16.6 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -24.7$ (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.01 (m, 2H), 6.86 – 6.74 (m, 2H), 5.88 – 5.78 (m, 1H), 5.47 – 5.36 (m, 1H), 3.78 (s, 3H), 3.02 (d, *J* = 9.8 Hz, 1H), 1.66 (m, 3H), 1.25 – 1.10 (m, 6H), 0.91 – 0.85 (m, 3H), 0.83 (s, 3H), 0.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.64, 135.55, 131.55, 130.16, 126.22, 113.06, 57.75, 55.17, 40.34, 36.36, 26.07, 24.90, 24.75, 23.63, 18.11, 14.23; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₈NaO requires m/z 283.2032, found m/z 283.2027; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, pentane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 7.20 min (major), t_R = 11.88 min (minor). (<u>+</u>)-**3x**: According to *General Procedure A*.

3у

(*S*,*E*)-1-methoxy-4-(5,5,9-trimethyldec-2-en-4-yl)benzene (**3**y): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 59% (17.0 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D{}^{20}$ = -24.8 (c 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 6.98 (m, 2H), 6.89 – 6.73 (m, 2H), 5.83 (m, 1H), 5.42 (m, 1H), 3.78 (s, 3H), 3.02 (d, *J* = 9.9 Hz, 1H), 1.66 (m, 3H), 1.55 – 1.46 (m, 1H), 1.25 – 1.18 (m, 2H), 1.16 – 1.05 (m, 4H), 0.86 (m, 6H), 0.83 (s, 3H), 0.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.64, 135.54, 131.55, 130.15, 126.23, 113.06, 57.82, 55.17, 40.86, 39.99, 36.46, 27.98, 24.90, 24.76, 22.72, 22.66, 21.48, 18.13; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₃₂NaO requires m/z 311.2345, found m/z 311.2338; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/ isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 5.76 min (major), t_R = 9.66 min (minor). (±)-**3y**: According to *General Procedure A*.

3z

(*S*,*E*)-1-(5,5-diethyl-7-phenylhept-2-en-4-yl)-4-methoxybenzene (3z): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0 to 100:1; Reaction time = 12 h; yield: 65% (21.9 mg); > 95:5 *rr*; > 95:5 *E*:*Z*; a colourless sticky oil; $[\alpha]_D^{20} = -23.6$ (c 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.15 (m, 5H), 6.85 – 6.79 (m, 2H), 6.00 – 5.89 (m, 1H), 5.43 (m, 1H), 3.78 (s, 3H), 3.28 (d, *J* = 9.8 Hz, 1H), 2.55 – 2.43 (m, 2H), 1.67 (m, 3H), 1.58 – 1.48 (m, 2H), 1.37 (m, 4H), 0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.78, 143.78, 135.30, 132.32, 130.34, 128.33, 128.28, 125.90, 125.55, 113.25, 55.24, 55.20, 41.23, 37.55, 30.52, 27.70, 27.49, 18.18, 8.72, 8.67; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₂₄H₃₂NaO requires m/z 359.2345, found m/z 359.2339; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 99.5/0.5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 9.04 min (major), t_R = 10.41 min (minor). (\pm)-**3z**: According to *General Procedure A*.

3aa

(*S*,*E*)-1-methoxy-4-(1-(1-methylcyclohexyl)but-2-en-1-yl)benzene (3aa): According to *General Procedure B* Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 25% (6.5 mg); > 95:5 *rr*; > 95:5 *E*:*Z*; a colourless sticky oil; $[\alpha]_D^{20} = -5.5$ (c 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.04 (m, 2H), 6.84 – 6.77 (m, 2H), 5.89 – 5.78 (m, 1H), 5.48 – 5.37 (m, 1H), 3.78 (s, 3H), 3.03 (d, *J* = 9.9 Hz, 1H), 1.67 (m, 3H), 1.59 – 1.51 (m, 4H), 1.41 – 1.30 (m, 4H), 1.12 – 0.97 (m, 2H), 0.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.66, 135.13, 131.13, 130.24, 126.38, 113.03, 58.71, 55.18, 36.19, 36.16, 29.70, 26.35, 21.99, 21.93, 20.67, 18.13; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₆NaO requires m/z 281.1876, found m/z 281.1874; Enantiomeric ratio: 98:2, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 7.39 min (major), t_R = 10.98 min (minor). (±)-3aa: According to *General Procedure A*.

3ab

(R,E)-1-(1-cyclohexylbut-2-en-1-yl)-4-methoxybenzene (3ab): According to General Procedure
B' (at °C) Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 40% (9.8 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D^{20} = -7.7$ (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 7.01 (m, 2H), 6.85 – 6.80 (m, 2H), 5.60 – 5.52 (m, 1H), 5.39 (m, 1H), 3.78 (s, 3H), 2.82 (m, 1H), 1.89 – 1.83 (m, 1H), 1.75 – 1.69 (m, 1H), 1.65 – 1.59 (m, 5H), 1.47 – 1.38 (m, 2H), 1.22 – 1.18 (m, 1H), 1.14 – 1.08 (m, 2H), 0.92 – 0.83 (m, 1H), 0.81 – 0.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.63, 137.05, 134.16, 128.67, 125.02, 113.67, 55.41, 55.20, 42.64, 31.39, 26.60, 26.44, 17.97; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₄NaO requires m/z 267.1719, found m/z 267.1718; Enantiomeric ratio: 97:3, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 7.38 min (major), t_R = 8.59 min (minor). (±)-**3ab**: According to *General Procedure A*.

3ac

(*R*,*E*)-1-methoxy-4-(2-methylhex-4-en-3-yl)benzene (3ac): According to *General Procedure B*' (at °C) Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 42% (8.6 mg); > 95:5 *rr*; > 95:5 *E:Z*; a colourless sticky oil; $[\alpha]_D{}^{20}$ = -9.0 (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.05 – 6.92 (m, 2H), 6.81 – 6.68 (m, 2H), 5.58 – 5.46 (m, 1H), 5.38 – 5.31 (m, 1H), 3.71 (s, 3H), 2.73 – 2.69 (m, 1H), 1.79 – 1.72 (m, 1H), 1.58 (m, 3H), 0.85 (d, *J* = 6.7 Hz, 3H), 0.66 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.65, 137.30, 134.13, 128.65, 125.15, 113.66, 56.37, 55.21, 33.10, 21.07, 20.77, 17.98; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₂₀NaO requires m/z 227.1406, found m/z 227.1407; Enantiomeric ratio: 94:6, determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol = 100/0, flow rate 0.8 mL/min, T = 25 °C, 220 nm): t_R = 9.56 min (major), t_R = 13.11 min (minor). (±)-**3ac**: According to *General Procedure A*.

10. Attempt of other alkyl bromides

3ad 57%, 1:1 dr

Ρh

Some alkyl bromides other than tertiary alkyl bromides were explored. As shown in Figure S7, Under the standard conditions, we were unable to obtain the reductive cross-coupling products with primary alkyl bromides. Unsymmetric tertiary alkyl bromide 2q was also suitable for this reaction, although no diastereoselectivity (1: 1 dr) was observed.

((3*S*,*E*)-2-(4-methoxyphenethyl)-2-methylhex-4-ene-1,3-diyl)dibenzene (3ad): According to *General Procedure B*' Flash column chromatography eluent, petroleum ether/ethyl acetate = 100:0; Reaction time = 12 h; yield: 57% (21.9 mg); inseparable diastereoisomers 1:1 dr; > 95:5 rr; > 95:5 *E*:*Z*; a colourless sticky oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.17 (m, 16H), 7.13 – 7.07 (m, 4H), 7.05 – 7.01 (m, 2H), 6.97 – 6.93 (m, 2H), 6.82 – 6.75 (m, 4H), 6.12 – 5.97 (m, 2H), 5.67 – 5.54 (m, 2H), 3.77 (s, 3H), 3.76 (s, 3H), 3.43 (dd, *J* = 9.9, 7.6 Hz, 2H), 2.77 – 2.68 (m, 4H), 2.66 – 2.56 (m, 2H), 2.51 – 2.40 (m, 2H), 1.84 – 1.67 (m, 6H), 1.60 – 1.53 (m, 2H), 1.45 – 1.31 (m, 2H),

0.88 (s, 3H), 0.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.65, 142.83, 138.95, 135.22, 131.00, 130.88, 130.82, 130.76, 129.81, 129.76, 129.12, 127.86, 127.68, 127.47, 127.32, 126.09, 125.84, 125.79, 113.79, 113.71, 56.63, 56.34, 55.27, 55.25, 43.05, 40.23, 40.15, 39.21, 38.66, 28.92, 22.35, 18.30.

11. References

- [1] (a) A. Serra-Muns, A. Guerinot, S. Reymond and J. Cossy, *Chem. Commun.*, 2010, 46, 4178-4180. (b) Marion, Nicolas, R. Gealageas, and S. P. Nolan, *Org. Lett*, 2007, 9, 2653-2656.
- [2] (a) H. M. Huang, P. Bellotti, P. M. Pfluger, J. L. Schwarz, B. Heidrich and F. Glorius, J. Am.
- Chem. Soc., 2020, 142, 10173-10183. (b) A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc., 2012, 134,
- 10693-10697. (c) L. Wang and C. Wang, Org. Lett., 2020, 22, 8829-8835.
- [3] F. Chen, Y. Zhang, L. Yu and S. Zhu, Angew. Chem. Int. Ed., 2017, 56, 2022-2025.
- [4] H.-H. Zhang, J.-J. Zhao and S. Yu, J. Am. Chem. Soc., 2018, 140, 16914-16919.

12. NMR spectra for all compounds

13. HPLC spectra

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.314	BV	0.8817	3759. 93237	63.05514	48.1096
2	22.006	VB	0.8625	4055. 42114	70.67263	51.8904

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	20.214	BV	0.6258	850. 14056	19.22800	4.4110
2	21.873	VB	0.8602	1.84231e4	325. 54718	95. 5890

1 34.241 VV 0.9618 1.07870e4 132.07971 49.8999

2 46.051 BB 1.5589 1.08303e4 81.52178 50.1001

2 45.041 BB 1.9308 2.68641e4 164.19289 97.1913

reak	NECTTINE	rype	MIGCH	Area	nergite	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							Ĺ
1	15.061	FM	0.6471	3.02655e4	779.50464	96.5549	
2	19.126	BB	0.7990	1079.88989	20.51896	3.4451	

2 16.250 BB 0.7211 3.36352e4 718.59766 96.7398

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.544	BB	0.4452	3598.37817	120.55315	50.3979
2	22.227	BB	0.6794	3541.55298	74.39710	49.6021

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.139	BB	0.4737	9252.26563	284.26569	93.7203
2	22.607	MF	0.6199	619.94385	16.66792	6.2797

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.939	BB	0.6500	3239.38599	72.53445	50.1514
2	28.242	BB	1.1781	3219.82861	36.25635	49.8486

1	21.995	BB	0.8084	1.34040e4	228.81059	89.1556
2	28.609	BB	1.0853	1630.39087	20.38013	10.8444

1	7.334	FM	0.1836	$1429.\ 02173$	129.71706	2.9535

 $2 \quad 11.\,031 \ \text{MF} \qquad 0.\,6766 \ 4.\,69543 \text{e}4 \quad 1156.\,53870 \quad 97.\,0465$

S96

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.557	BB	0. 1999	2179.84082	163. 10854	49.5762
2	12.927	MF	0.3035	2217.11182	121.74976	50.4238

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.556	MF	0.2344	$5170.\ 48730$	367.69540	94. 2132
2	13.110	BV	0.2468	317. 58459	19.02051	5.7868

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	·					
1	9.707	MF	0.2280	624.27020	45.63062	5.9373
2	13.119	MF	0.3692	9890.17188	446.45493	94.0627