Unlocking geminal fluorohaloalkanes in nucleophilic fluoroalkylation chemistry: generation and trapping of lithiumfluorocarbenoids enabled by flow microreactors

Mauro Spennacchio,^{a,†} Marco Colella,^{a,†} Michael Andresini,^a Roberta Savina Dibenedetto,^a Elena Graziano,^a Andrea Aramini,^b Leonardo Degennaro,^{*a} and Renzo Luisi^{*a}

^a FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy – Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4 - 70125 Bari, Italy.
^b Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy.

e-mail: renzo.luisi@uniba.it

Supporting Information

Table of contents:

- 1. Instrumentation and General Methods
- 2. Batch procedures
- 3. General procedures for the continuous-flow nucleophilic fluoroalkylation
- 4. Characterization of compounds 3aa-3ck
- 5. Copy of ¹H, ¹³C and ¹⁹F NMR spectra for compounds **3aa-3ck**
- 6. <u>References</u>

1. Instrumentation and General methods

Infrared spectra were recorded in reciprocal centimeters (cm⁻¹) by using a PerkinElmer 283 spectrometer. Melting points (uncorrected) were measured with Büchi melting point B-545. ¹H, ¹³C and ¹⁹F NMR spectra were recorded with a Varian Mercury 300 spectrometer (300 MHz for ¹H, 75 MHz for ¹³C, 282 MHz for ¹⁹F) and an Agilent 500 spectrometer (500 MHz for ¹H, 126 MHz for ¹³C, 470 MHz for ¹⁹F). The residual solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃), δ 77.00 ppm (¹³C in CDCl₃). Spin-spin coupling constants (*J*) are given in Hz. When possible, unambiguous assignment of all resonances was performed by combined application of 2D NMR techniques, *i.e.* HSQC and COSY experiments. Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet and bs = broad singnal), coupling constant (in Hz), integration and assignment]. NOESY experiments were performed for structure elucidation. High resolution mass spectrometry (HRMS) spectra were assessed by ¹H NMR analysis on the reaction crude. Silica (70–230 mesh and 230–400 mesh) was used for flash chromatography on glass columns. TLC analysis were performed on a 0.25 mm precoated silica gel thick plates (Merck) with a fluorescence indicator F-254; the spots were visualized under UV light (λ = 254 nm) and/or KMnO₄ (aq.) was used as revealing system.

Chemicals were purchased from Sigma-Aldrich, Fluorochem, TCI Europe and Alfa Aesar unless otherwise specified and used without further purification. THF was distilled prior to use. Organolithium reagents were titrated prior to use (using N-benzylbenzamide as titrating agent).¹

Flow equipment: Stainless steel (SUS304) T-shaped micromixers with inner diameters of 250 μ m were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 μ m purchased from GL Sciences were used unless otherwise stated. The micromixers and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUW). A cryogenic bath was used to control the temperature. Solutions of reagents were fluxed using syringe pumps Harvard PHD 2000, equipped with gastight syringes purchased from SGE.

1.1 Picture of the continuous flow microreactor system

Figure S1. Continuous flow system.

Fluoroiodoalkanes were reacted with *n*-BuLi using T-shaped micromixer M_1 and microtube reactor R_1 . The resulting solutions were reacted with electrophile in T-shaped micromixer M_2 and microtube reactor R_2 . The flow microreactor system was dipped in a cooling bath to control the reaction temperature. Precooling units were used.

2. Batch procedures

2.1 Preparation of substrates

Substrates **1a-c** were prepared adopting reported procedures.^{2,3} Spectroscopic data are consistent with those reported in the literature. ^{2,4,5}

Figure S2. Substrates 1a-c.

2.1 Electrophiles collection

The following compounds are available from Sigma-Aldrich, TCI Europe, Fluorochem and Alfa Aesar except for electrophile **2v**, which was prepared adopting a reported procedure.⁶ Spectroscopic data are consistent with those reported in the literature.

Figure S3. Collection of electrophiles used in this work.

2.2 Table S1. Screening of solvents and organolithiums under internal quenching regime

To a stirred solution of (2-fluoro-2-iodoethyl)benzene (1a) (50 mg, 0.2 mmol) and benzophenone (2a) (36 mg, 0.2 mmol, 1 equiv.) at -78°C, in solvent (2 mL), the organolithium solution (**R-Li**) was added dropwise. The resulting mixture was stirred for 15 min at -78°C and then quenched with 150 μ L of methanol. The crude was washed with distilled water (2 x 2 mL) and the aqueous layers were extracted with ethyl acetate (3 x 5 mL). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Yields of **3aa** were evaluated using CH₂Br₂ as an NMR-internal standard.

Entry	Solvent	R-Li	Yield(%) of 3aa 75%	
1	THF-Et ₂ O 1:1 (v/v)	MeLi		
2	Toluene	MeLi	0%	
3	CPME	MeLi	0%	
4	Et ₂ O	MeLi	4%	
5	2-MeTHF	MeLi	81%	
6	THF	MeLi	90%	
7	THF	n-BuLi	54%	
8	THF	n-HexLi	50%	
	Tal	ble S1		

2.3 Reactivity of 1a-Li, (1-fluoro-2-phenylethyl)lithium

To a stirred solution of (2-fluoro-2-iodoethyl)benzene (1a) (50 mg, 0.2 mmol) at -78° C, in THF (2 mL), *n*-BuLi (1.2 eq.) was added dropwise. The resulting mixture was stirred for 10 min at -78° C and then 5 min at room temperature. The volatiles were evaporated, and the crude was analyzed by ¹H, ¹⁹F-NMR and GC-MS.

Reported data for (*E***)-1,4-diphenylbut-2-ene**. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 9.0 Hz, 4H), 7.24 (m, 6H), 5.75-6.68 (m, 2H), 3.42 (d, *J* = 5.0 Hz, 4H).⁷

Reported data for (Z)-1,4-diphenylbut-2-ene. ¹H NMR (500 MHz, CDCl₃) r (400 MHz, CDCl₃) δ (ppm) 7.39-7.20 (m, 10H), 5.87-5.63 (m, 2H), 3.56 (d, J = 5.1 Hz, 4H).⁸

Figure S5. ¹⁹F-NMR spectrum of the crude

4a; (Z)-(2-fluorovinyl)benzene

¹⁹F NMR (470 MHz, CDCl₃) δ -122.9 (ddd, ² $J_{(H-F)}$ = 83.2 Hz, ³ $J_{(H-F)}$ = 45.1, 2.7 Hz, 1F, CHF). Spectroscopic data consistent with literature.⁹

4b; (E)-(2-fluorovinyl)benzene

¹⁹F NMR (470 MHz, CDCl₃) δ -130.7 (ddd, ² $J_{(H-F)}$ = 83.1 Hz, ³ $J_{(H-F)}$ = 19.4, 3.3 Hz, 1F, CHF). Spectroscopic data consistent with literature.¹⁰

5; 2-fluoroethylbenzene

¹⁹F NMR (470 MHz, CDCl₃) δ -216.1 - -215.8 (m, 1F, CH₂F). Spectroscopic data consistent with literature.¹¹

2.4 General procedure for the "batch" monofluoroalkylation

To a stirred solution of **fluoroiodoalkane** (1) (0.3 mmol) and **electrophile** (2) (0.3 mmol, 1 equiv.) at -78°C, in **solvent** (3 mL), the *n*-butyllithium solution (*n*-BuLi) (0.36 mmol, 1.2 equiv) was added dropwise. The resulting mixture was stirred for 15 min at -78°C and then quenched with 150 μ L of methanol. The crude was washed with distilled water (2 x 2 mL) and the aqueous layers were extracted with ethyl acetate (3 x 5 mL). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Yields of products **3** were evaluated using CH₂Br₂ as an NMR-internal standard.

3. General procedures for the continuous-flow nucleophilic fluoroalkylation

3.1 General procedure for lithiation of (2-fluoro-2-iodoethyl)benzene (1a) and trapping with benzophenone

using a flow microreactor system.

A microfluidic system consisting of two T-shaped micromixers (M_1 and M_2), two microtube reactors (R_1 and R_2), and three tube precooling units was used. The microfluidic system was cooled with a cooling bath (T °C). A solution of (2-fluoro-2-iodoethyl)benzene (1a) (0.10 M in THF) (flow rate: 4.0 mL/min) and a solution of *n*-BuLi (0.20 M in hexane, 2 equiv.) (flow rate: 4.0 mL/min) were introduced to M_1 ($\varphi = 500 \ \mu$ m) by syringe pumps. The resulting solution was passed through R_1 and was mixed with a solution of benzophenone (2a) (0.30 M in THF, 3 equiv.) (flow rate: 4.0 mL/min) in M_2 ($\varphi = 500 \ \mu$ m). The resulting solution was passed through R_2 ($\varphi = 1000 \ \mu$ m, L = 200 cm ; t^{R2} = 7.85 s). After reaching the steady state, the outcoming solution was collected for 1 minute in a vessel containing 2 mL of distilled water. The yield of **3aa** was determined by GC analysis using decane as the internal standard. The results obtained by screening the residence time and the temperature are summarized in the following table and 3D-maps.

Table S2. Evaluation of residence time and temperature effects on yield.

Entry	T (°C)	φ1	L_1	t ^{R1} (ms)	Yield (%)
1	0°C	250µm	3.5cm	13ms	0%
2	-30°C	250µm	3.5cm	13ms	36%
3	-30°C	500µm	3.5cm	52ms	30%
4	-30°C	750µm	3.5cm	116ms	26%
5	-30°C	1000µm	3.5cm	206ms	17%
6	-30°C	1000µm	6cm	353ms	13%
7	-50°C	250µm	3.5cm	13ms	79%
8	-50°C	500µm	3.5cm	52ms	63%
9	-50°C	750µm	3.5cm	116ms	58%

10	5000	1000	2.5	200	570/
10	-50°C	1000µm	3.5cm	206ms	57%
11	-50°C	1000µm	6cm	353ms	48%
12	-78°C	250µm	3.5cm	13ms	68%
13	-78°C	500µm	3.5cm	52ms	63%
14	-78°C	750µm	3.5cm	116ms	53%
15	-78°C	1000µm	3.5cm	206ms	80%
16	-78°C	1000µm	6cm	353ms	38%
17	-78°C	1000µm	12.5cm	736ms	24%

Figure S6. 3-D map.

Entry 1 and 2: A microfluidic system consisting of two T-shaped micromixers (M_1 and M_2), two microtube reactors (R_1 and R_2), and three tube precooling units was used. The microfluidic system was The flow system was cooled with a cooling bath (Entry 1: T = -50°C; Entry 2: T = -78°C). A solution of (2-fluoro-2-iodoethyl)benzene (1a) (0.10 M in THF) (flow rate: 4.0 mL/min) and a solution of *n*-BuLi (0.20 M in hexane, 2 equiv.) (flow rate: 4.0 mL/min) were introduced to M_1 (ϕ = 500 µm) by syringe pumps. The resulting solution was passed through R_1 (Entry 1: ϕ = 250 µm, L = 3.5 cm, t^{R1} = 13 ms; Entry 2: ϕ = 1000 µm, L = 3.5 cm, t^{R1} = 206 ms) and was mixed

with a solution of *N*-methyl-*N*-methoxybenzamide (2t) (0.30 M in THF, 3 equiv.) (flow rate: 4.0 mL/min) in M_2 ($\phi = 500 \mu m$). The resulting solution was passed through R_2 ($\phi = 1000 \mu m$, L = 200 cm ; t^{R2} = 7.85 s) at -78°C. After a steady state was reached, the outcoming solution was collected for 1 minute in a vessel containing 2 mL of distilled water. The yield of **3ab** was determined using CH₂Br₂ as an NMR-internal standard.

Entry 3: A microfluidic system consisting of one T-shaped micromixer (M_1), one microtube reactor (R_1), and two tube precooling units was used. The microfluidic system was cooled to -78°C with a cooling bath (T °C). A solution of (2-fluoro-2-iodoethyl)benzene (1a) (0.10 M in THF) and *N*-methyl-*N*-methoxybenzamide (2t) (0.30 M in THF, 3 equiv.) (flow rate: 4.0 mL/min) and a solution of *n*-BuLi (0.20 M in hexane, 2 equiv.) (flow rate: 4.0 mL/min) were introduced to M_1 ($\varphi = 500 \mu$ m) by syringe pumps. The resulting solution was passed through R_1 ($\varphi = 1000 \mu$ m, L = 200 cm , t^{R1} = 5.23 s) (flow rate: 4.0 mL/min). After a steady state was reached, the outcoming solution was collected for 1 minute in a vessel containing 2 mL of distilled water. The yield of **3ab** was determined using CH₂Br₂ as an NMR-internal standard.

Entry	T (°C)	φ1	L_1	t ^{R1} (ms)	Yield (%)
2	-78°C	1000µm	3.5cm	206ms	71%
3	-78°C	1000µm	200cm	5.23s	30%

Table S3. Evaluation of the transition between internal and external regime.

These results suggest that the trapping of the reactive intermediate after 206ms at -78°C occurs under an external quenching regime.

A microfluidic system consisting of two T-shaped micromixers (M_1 and M_2), two microtube reactors (R_1 and R_2), and three tube precooling units was used. The microfluidic system was cooled to -78°C with a cooling bath. A solution of **1-fluoro-1-iodoalkane** (**1a-c**) (0.35 M in THF, 2.3 equiv.) (flow rate: 4.0 mL/min) and a solution of *n*-**BuLi** (0.15 M in hexane, 1 equiv.) (flow rate: 4.0 mL/min) were introduced to M_1 ($\varphi = 500 \mu m$) by syringe pumps. The resulting solution was passed through R_1 ($\varphi = 1000 \mu m$, L = 3.5 cm , t^{R1} = 206 ms) and was mixed with a solution of **electrophile** (**2a-x**) (0.15 M in THF, 1 equiv.) (flow rate: 4.0 mL/min) in M_2 ($\varphi = 500 \mu m$). The resulting solution was passed through R_2 ($\varphi = 1000 \mu m$, L = 200 cm ; t^{R2} = 7.85 s). After reaching the steady state, the outcoming solution was collected for 1 minute in a vessel containing 2 mL of distilled water. The aqueous and the organic phase were separated, and the aqueous layer was extracted with Et₂O (3 × 2 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the crude was purified through flash column chromatography, affording the desired product. Purification allowed the recovery of the residual 1-fluoro-1-iodoalkane (up to 70%), which was re-used. Stereochemistry of the products was not assigned.

4. Characterization of compounds 3aa-3ck

3aa; 2-fluoro-1,1,3-triphenylpropan-1-ol

Prepared according to general procedure GP to afford **3aa** as a white waxy solid (174 mg, 95%) after column chromatography ($R_f = 0.3$, hexane/Et₂O 9:1) ; IR (film)/cm⁻¹ 3436, 3089, 2935, 1954, 1638, 1495, 1449, 1274; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 2H, 2 × Ar–H), 7.46 (d, J = 7.4 Hz, 2H, 2 × Ar–H), 7.34 (t, J = 7.6 Hz, 4H, 4 × Ar–H), 7.30–7.21 (m, 5H, 5 × Ar–H, overlapping with CDCl₃), 7.15 (d, J = 7.4 Hz, 2H, 2 × Ar–H), 5.57 (ddd, ² $J_{(H-F)} = 47.1$ Hz, ³ $J_{(H-H)} = 10.0$, 1.6 Hz, 1H, CHFCH₂), 3.08–2.99 (m, 1H, PhCHHCHF), 2.72 (d, ⁴ $J_{(H-F)} = 1.7$, 1H, O–H), 2.68 (ddd, ³ $J_{(H-F)} = 42.0$ Hz, ² $J_{(H-H)} = 14.9$, ³ $J_{(H-H)} = 1.6$ Hz, 1H, PhCHHCHF); ¹³C NMR (125 MHz, CDCl₃) δ 144.5 (Ar–C_q), 143.1 (d, ³ $J_{(C-F)} = 4.1$ Hz, Ar–C_q), 138.3 (Ar–C_q), 129.3 (2 × Ar–C), 129.4 (2 × Ar–C), 128.6 (2 × Ar–C), 128.5 (2 × Ar–C), 128.4 (2 × Ar–C), 127.6 (Ar–C), 127.5 (Ar–C), 126.9 (d, ⁴ $J_{(C-F)} = 1.7$ Hz, 2 × Ar–C), 126.6 (Ar–C), 97.0 (d, ¹ $J_{(C-F)} = 181.5$ Hz, CHF), 79.4 (d, ² $J_{(C-F)} = 20.7$ Hz, C_q OHCHF), 35.8 (d, ² $J_{(C-F)} = 21.4$ Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ --187.4 (ddd, ² $J_{(H-F)} = 47.1$ Hz, ³ $J_{(H-F)} = 42.0$, 16.6 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₁H₁₈FO [M-H]⁻ 305.1347; Found: 305.1338.

3ab; 1,1-bis(4-chlorophenyl)-2-fluoro-3-phenylpropan-1-ol

Prepared according to general procedure GP to afford **3ab** as a white waxy solid (202 mg, 90%) after column chromatography ($R_f = 0.3$, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3583, 3063, 2932, 1904, 1593, 1492, 1321, 823; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 8.6 Hz, 2H, 2 × Ar–H), 7.37–7.36 (m, 2H, 2 × Ar–H), 7.33–7.28 (m, 6H, 6 × Ar–H), 7.26–7.23 (m, 1H, Ar–H), 7.14 (d, J = 7.6 Hz, 2H, 2 × Ar–H), 5.47 (ddd, ² $_J$ (H–F) = 47.0 Hz, ³ $_J$ (H–H) = 9.9 , 1.7 Hz, 1H, CHFCH₂), 3.04–2.95 (m, 1H, PhCHHCHF), 2.73-2.60 (m, 2H, PhCHHCHF overlapping with O–H); ¹³C NMR (125 MHz, CDCl₃) δ 142.5 (Ar–C_q), 141.2 (d, ³ $_J$ (C–F) = 3.9 Hz, Ar–C_q), 137.6 (Ar–C_q), 133.8 (d, ³ $_J$ (C–F) = 4.0 Hz, Ar–C_q), 129.3 (2 × Ar–C), 128.9 (2 × Ar–C), 128.7 (2 × Ar–C), 128.6 (2 × Ar–C), 128.4 (2 × Ar–C), 127.5 (2 × Ar–C), 126.8 (Ar–C), 96.6 (d, ¹ $_J$ (C-F) = 182.2 Hz, CHF), 78.8 (d, ² $_J$ (C-F) = 21.1 Hz, C_qOHCHF), 35.7 (d, ² $_J$ (C-F) = 21.3 Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -186.8 (ddd, ² $_J$ (H-F) = 47.0 Hz, ³ $_J$ (H-F) = 41.9, 16.6 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₁H₁₆Cl₂FO [M-H]⁻ 373.0568; Found: 373.0546.

3ac; 2-fluoro-1,1-bis(4-fluorophenyl)-3-phenylpropan-1-ol

Prepared according to general procedure GP to afford **3ac** as a white waxy solid (195 mg, 95%) after column chromatography ($R_f = 0.4$, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3585, 3065, 2936, 1897, 1604, 1505, 1233, 835; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.48 (m, 2H, 2 × Ar–H), 7.41–7.38 (m, 2H, 2 × Ar–H), 7.30–7.22 (m, 3H, 3 × Ar–H), 7.13 (d, J = 7.3 Hz, 2H, 2 × Ar–H), 7.05–7.00 (m, 4H, 4 × Ar–H), 5.47 (ddd, ² $J_{(H-F)} = 47.1$ Hz, ³ $J_{(H-H)} = 9.9$, 1.8 Hz, 1H, C*H*FCH₂), 3.02–2.94 (m, 1H, PhC*H*HCHF), 2.72-2.60 (m, 2H, PhC*H*HCHF overlapping with O–H); ¹³C NMR (125 MHz, CDCl₃) δ 162.2 (d, ¹ $J_{(C-F)} = 246.9$ Hz, Ar–C_q), 162.1 (d, ¹ $J_{(C-F)} = 247.0$ Hz, Ar–C_q), 140.0 (d, ³ $J_{(C-F)} = 3.3$ Hz, Ar–C_q), 138.9 (t, ³ $J_{(C-F)} = 3.5$ Hz, Ar–C_q), 137.8 (Ar–C_q), 129.3 (2 × Ar–C), 128.2 (d, ³ $J_{(C-F)} = 8.1$ Hz, ⁴ $J_{(C-F)} = 2.0$ Hz, 2 × Ar–C), 128.6 (2 × Ar–C), 127.9 (d, ³ $J_{(C-F)} = 8.1$ Hz, 2 × Ar–C), 126.8 (Ar–C), 115.6 (d, ² $J_{(C-F)} = 21.4$ Hz, 2 × Ar–C), 115.3 (d, ² $J_{(C-F)} = 21.3$ Hz, 2 × Ar–C), 96.9 (d, ¹ $J_{(C-F)} = 182.1$ Hz, CHF), 78.7 (d, ² $J_{(C-F)} = 21.1$ Hz, C_qOHCHF), 35.7 (d, ² $J_{(C-F)} = 21.4$ Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -114.7–114.8 (m, 1F, Ar–F), 114.8–114.9 (m, 1F, Ar–F), -186.3 (ddd, ² $J_{(H-F)} = 47.1$ Hz, ³ $J_{(H-F)} = 41.9$, 16.6 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₁H₁₆F₃O [M-H]⁻ 341.1159; Found: 341.1177.

3ad; 1-(4-bromophenyl)-2-fluoro-1,3-diphenylpropan-1-ol

Prepared according to general procedure GP to afford **3ad** as a white waxy solid (dr = *50:50*, 212 mg, 92%) after column chromatography (R_f= 0.3, hexane/Et₂O 9:1); *Inseparable mixture of diastereoisomers;* IR (film)/cm⁻¹ 3564, 3062, 2966, 1953, 1603, 1487, 1397, 1071; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.53–7.51 (m, 2H, 2 × Ar–H), 7.47–7.45 (m, 4H, 4 × Ar–H), 7.43–7.41 (m, 4H, 4 × Ar–H), 7.36–7.32 (m, 6H, 6 × Ar–H), 7.30–7.27 (m, 6H, 6 × Ar–H), 7.25–7.21 (m, 2H, 2 × Ar–H), 7.14 (d, *J* = 7.3 Hz, 4H, 4 × Ar–H), 5.58–5.45 (m, 2H, 2 × CHFCH₂), 3.08–2.94 (m, 2H, 2 × PhC*H*HCHF), 2.74–2.59 (m, 4H, 2 × PhC*H*HCHF overlapping with 2 × O–H); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 144.0 (Ar–C_q), 143.5 (Ar–C_q), 142.6 (d, ³*J*_(C–F) = 3.9 Hz, Ar–C_q), 142.2 (d, ³*J*_(C–F) = 4.2 Hz, Ar–C_q), 138.0 (Ar–C_q), 137.9 (Ar–C_q), 131.7 (2 × Ar–C), 131.5 (2 × Ar–C), 129.4 (4 × Ar–C), 128.9 (Ar–C), 128.8 (3 × Ar–C), 128.6 (4 × Ar–C), 127.8 (6 × Ar–C), 126.8 (2 × Ar–C), 126.7 (2 × Ar–C), 125.9 (2 × Ar–C), 121.7 (2 × Ar–C_q), 96.8 (d, ¹*J*_(C-F) = 181.7 Hz, CHF), 96.6 (d, ¹*J*_(C-F) = 182.0 Hz, CHF), 79.2 (d, ²*J*_(C-F) = 21.1 Hz, *C_q*OHCHF), 79.1 (d, ²*J*_(C-F) = 20.9 Hz, *C_q*OHCHF), 35.8 (d, ²*J*_(C-F) = 21.2 Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -187.0 – -187.3 (m, 2F, 2 × CHF); HRMS (ESI) m/z Calcd for C₂₁H₁₇BrFO [M-H]⁻ 383.0452; Found: 383.0448.

3ae; 1-(1-fluoro-2-phenylethyl)-3-methylcyclohex-2-en-1-ol

Prepared according to general procedure GP to afford **3ae** (dr = 80:20) obtained as a white waxy solid (dr = 71:29, 91 mg, 65%) after column chromatography (R_f = 0.5, hexane/Et₂O 7:3); *Inseparable mixture of diastereoisomers*; IR (film)/cm⁻¹ 3583, 3418, 3029, 2931, 1947, 1670, 1454, 1063; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.32–7.30 (m, 2H *major* + 0.8H *minor*, Ar–H), 7.27–7.22 (m, 3H *major* + 1.2H *minor*, Ar–H), 5.50 (s, 0.4H, CH), 5.42 (s, 1H, CH), 5.47–5.43 (m, 1H *major* + 0.4H *minor*, CHFCH₂), 3.05–2.86 (m, 2H *major* + 0.8H *minor*, 2 × PhC*H*HCHF), 2.03–1.93 (m, 3H *major* + 1.2H *minor*, CH₂ overlapping with O–H), 1.82–1.71 (m, 7H *major* + 2.8H *minor*, 2 × CH₂ overlapping with CH₃); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 141.7 (d, ⁴*J*_(C-F) = 1.2 Hz *Csp*²CH3), 141.3 (d, ⁴*J*_(C-F) = 1.6 Hz *Csp*²CH₃), 138.4 (Ar–C_q), 138.3 (Ar–C_q), 129.4 (2 × Ar–C), 129.3 (2 × Ar–C), 128.6 (2 × Ar–C), 128.5 (2 × Ar–C), 126.6 (Ar–C), 126.5 (Ar–C), 122.5 (d, ³*J*_(C-F) = 4.2 Hz *Csp*²COH), 122.1 (d, ³*J*_(C-F) = 6.4 Hz *Csp*²COH), 99.9 (d, ¹*J*_(C-F) = 177.6 Hz, CHF), 98.5 (d, ¹*J*_(C-F) = 178.5 Hz, CHF), 71.9 (d, ²*J*_(C-F) = 21.7 Hz, PhCH₂CHF), 31.3 (d, ³*J* = 3.2 Hz, CH₂), 30.8 (d, ³*J* = 3.2 Hz, CH₂), 30.5 (CH₂), 30.3 (CH₂), 24.1 (2 × CH₃), 18.9 (CH₂), 18.6 (CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -190.4 – -190.6 (m, 1F *major*, CHF), -193.6 (ddd, ²*J*_(H-F) = 47.9 Hz, ³*J*_(H-F) = 40.5, 18.2 Hz, 0.4F *minor*, CHF); HRMS (ESI) m/z Calcd for C₁₅H₁₉FNaO [M+Na]⁺ 257.1312; Found: 257.1319.

3af; 1-(1-fluoro-2-phenylethyl)cyclohexan-1-ol

Prepared according to general procedure GP to afford **3af** as a colorless waxy solid (93 mg, 70%) after column chromatography (R_f = 0.3, hexane/EtOAc 9:1); IR (film)/cm⁻¹ 3565, 3428, 3029, 2933, 1945, 1454, 1269, 975; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.30 (m, 2H, 2 × Ar–H), 7.26–7.22 (m, 3H, 3 × Ar–H), 4.42 (ddd, ²*J*_(H–F)= 47.7 Hz, ³*J*_(H–H) = 8.3 , 4.2 Hz, 1H, C*H*FCH₂), 3.00–2.89 (m, 2H, 2 × PhC*H*HCHF), 1.78–1.46 (m, 9H, 4 × CH₂ overlapping with O–H), 1.34–1.25 (m, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 138.4 (d, ³*J*_(C-F) = 1.1 Hz, Ar–C_q), 129.4 (2 × Ar–C), 128.6 (2 × Ar–C), 126.6 (Ar–C), 99.8 (d, ¹*J*_(C-F) = 175.5 Hz, CHF), 72.6 (d, ²*J*_(C-F) = 19.5 Hz, *C*_qOHCHF), 37.6 (CH₂), 35.5 (d, ²*J*_(C-F) = 21.9 Hz, PhCH₂CHF), 33.4 (d, ³*J*_(C-F) = 4.1 Hz, CH₂), 32.7 (d, ³*J*_(C-F) = 3.5 Hz, CH₂), 25.8 (2 × CH₂), 21.4 (2 × CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -193.6– -193.8 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₄H₁₈FO [M-H]⁻ 221.1347; Found: 221.1351.

3ag; 3-fluoro-2,4-diphenylbutan-2-ol

Prepared according to general procedure GP to afford **3ag** as a colorless waxy solid (dr = 50:50, 110 mg, 75%) after column chromatography (R_f = 0.4, hexane/EtOAc 9:1); *Inseparable mixture of diastereoisomers;* IR (film)/cm⁻¹ 3565, 3433, 3029, 2978, 1953, 1447, 1069, 699; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.54 (d, J = 7.4 Hz, 2H, 2 × Ar–H), 7.50–7.48 (m, 2H, 2 × Ar–H), 7.40 (t, J = 7.8 Hz, 4H, 4 × Ar–H), 7.34–7.31 (m, 2H, 2 × Ar–H), 7.27–7.17 (m, 6H, 6 × Ar–H overlapping with CDCl₃), 7.14 (d, J = 7.4 Hz, 2H, 2 × Ar–H), 7.09 (d, J = 7.3 Hz, 2H, 2 × Ar–H), 4.82–4.70 (m, 2H, 2 × CHFCH₂), 2.87–2.67 (m, 3H, 3 × PhCHHCHF), 2.55 (ddd, ³ $J_{(H-F)} = 42.3$ Hz, ² $J_{(H-H)} = 15.2$ Hz ³ $J_{(H-H)} = 1.5$ Hz, 1H, PhCHHCHF), 2.33 (s, 1H, O–H), 2.20 (s, 1H, O–H), 1.69 (s, 6H, 2 × CH₃); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 143.6 (d, ³ $J_{(C-F)} = 4.5$ Hz, Ar–C_q), 143.4 (d, ³ $J_{(C-F)} = 2.0$ Hz, Ar–C_q), 138.3 (Ar–C_q), 137.9 (Ar–C_q), 129.2 (4 × Ar–C), 128.6 (4 × Ar–C), 128.5 (4 × Ar–C), 127.7 (Ar–C), 127.5 (Ar–C), 126.6 (Ar–C), 126.5 (Ar–C), 125.9 (2 × Ar–C), 125.1 (2 × Ar–C), 99.8 (d, ¹ $J_{(C-F)} = 180.2$ Hz, CHF), 99.7 (d, ¹ $J_{(C-F)} = 180.4$ Hz, CHF), 75.8 (d, ² $J_{(C-F)} = 20.6$ Hz, 2 × CqOHCHF), 36.4 (d, ² $J_{(C-F)} = 21.6$ Hz, PhCH₂CHF), 27.4 (d, ³ $J_{(C-F)} = 4.0$ Hz, CH₃), 24.9 (d, ³ $J_{(C-F)} = 3.4$

Hz, CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -187.8 (ddd, ²*J*_(H-F) = 48.0 Hz, ³*J*_(H-F) = 41.7, 17.5 Hz, 1F, CHF), -191.7 (ddd, ²*J*_(H-F) = 46.2 Hz, ³*J*_(H-F) = 42.3, 17.0 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₆H₁₆FO [M-H]⁻ 243.1191; Found: 243.1186.

3ah-major; 6-chloro-2-fluoro-3-(4-fluorophenyl)-1-phenylhexan-3-ol

Prepared according to general procedure GP to afford **3ah***major* as a white waxy solid (105 mg, 90%) after column chromatography (R_f = 0.4, hexane/Et₂O 8:2); IR (film)/cm⁻¹ 3430, 2919, 2850, 1645, 1510, 1225, 1094, 830; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.39 (m, 2H, 2 × Ar–H), 7.26 (t, *J* = 7.2 Hz, 2H, 2 × Ar–H, overlapping with CDCl₃), 7.22–7.19 (m, 1H, Ar–H), 7.12–7.08 (m, 2H, 2 × Ar–H), 7.06 (d, *J* = 7.2 Hz, 2H, 2 × Ar–H), 4.79 (ddd, ²*J* (_{H-F)} = 47.6 Hz, ³*J* (_{H-H)} = 10.0, 2.0 Hz, 1H, CHFCH₂), 3.48 (t, ³*J*(_{H-H)} = 6.5 Hz, 2H, CH₂Cl), 2.91 (ddd, ³*J* (_{H-F)} = 17.3 Hz, ²*J* (_{H-H)} = 15.2 Hz ³*J* (_{H-H)} = 10.0 Hz, 1H, PhCHHCHF), 2.45 (ddd, ³*J* (_{H-F)} = 41.3 Hz, ²*J* (_{H-H)} = 15.2 Hz ³*J* (_{H-H)} = 10.0 Hz, 1H, PhCHHCHF), 2.45 (ddd, ³*J* (_{H-F)} = 41.3 Hz, ²*J* (_{H-H)} = 15.2 Hz ³*J* (_{H-H)} = 10.0 Hz, 1H, PhCHHCHF), 2.45 (ddd, ³*J* (_{H-F)} = 3.3 Hz, CDCl₃) δ 162.1 (d, ¹*J* (_{C-F)} = 246.5 Hz, Ar–C_q), 137.8 (Ar–C_q), 136.4 (dd, ³*J*(_{C-F)} = 4.8 Hz, ⁴*J*(_{C-F)} = 3.3 Hz, Ar–C_q), 129.2 (2 × Ar–C), 128.5 (2 × Ar–C), 127.3 (d, ³*J*(_{C-F)} = 8.0 Hz, 2 × Ar–C), 126.6 (Ar–C), 115.7 (d, ²*J*(_{C-F)} = 21.3 Hz, 2 × Ar–C), 99.8 (d, ¹*J* (_{C-F)} = 180.3 Hz, CHF), 77.8 (d, ²*J* (_{C-F)} = 19.7 Hz, *C*_qOHCHF), 45.4 (CH₂Cl), 36.7 (d, ³*J* (_{C-F)} = 3.4 Hz, *C*H₂COH), 35.5 (d, ²*J* (_{C-F)} = 21.7 Hz, PhCH₂CHF), 26.6 (*C*H₂CH₂Cl); ¹⁹F NMR (470 MHz, CDCl₃) δ -115.2 – 115.1 (m, 1F, Ar–F), -191.5 (ddd, ²*J* (_{H-F)} = 47.6 Hz, ³*J* (_{H-F)} =

3ah-minor; 6-chloro-2-fluoro-3-(4-fluorophenyl)-1-phenylhexan-3-ol

Prepared according to general procedure GP to afford **3ah***-minor* as a white waxy solid (70 mg, 90%) after column chromatography (R_f = 0.3, hexane/Et₂O 8:2); IR (film)/cm⁻¹ 3434, 2918, 2850, 1645, 1506, 1455, 1226, 1063; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.47 (m, 2H, 2 × Ar–H), 7.29 (t, *J* = 7.3 Hz, 2H, 2 × Ar–H), 7.23 (t, *J* = 7.3 Hz, 1H, Ar–H), 7.15 (d, *J* = 7.4 Hz, 2H, 2 × Ar–H), 7.11–7.08 (m, 2H, 2 × Ar–H), 4.70 (ddd, ²*J* (H–F) = 47.7 Hz, ³*J* (H–H) = 10.0, 2.2 Hz, 1H, CHFCH₂), 3.55–3.52 (m, 2H, CH₂Cl), 2.90 (ddd, ³*J* (H–F) = 41.4 Hz, ²*J* (H–H) = 14.8 Hz ³*J* (H–H) = 2.2 Hz, 1H, PhC/HHCHF), 2.67 (ddd, ³*J* (H–F) = 16.8 Hz, ²*J* (H–H) = 14.8 Hz ³*J* (H–H) = 10.0 Hz, 1H, PhC/HHCHF), 2.67 (ddd, ³*J* (H–F) = 1.1 Hz, 1H, O–H), 2.08–2.02 (m, 1H, C/HCOH), 1.92–1.84 (m, 1H, C/HHCH₂Cl), 1.63–1.54 (m, 1H, C/HHCH₂Cl); ¹³C NMR (125 MHz, CDCl₃) δ 162.3 (d, ¹*J* (C-F) = 246.4 Hz, Ar–C_q), 137.6 (d, ⁴*J* (C-F) = 0.6 Hz, Ar–C_q), 136.9 (d, ³*J* (C-F) = 3.2 Hz, Ar–C_q), 129.3 (2 × Ar–C), 128.6 (2 × Ar–C), 128.1 (dd, ³*J* (C-F) = 8.0 Hz, ⁴*J* (C-F) = 1.8 Hz, 2 × Ar–C), 126.8 (Ar–C), 115.4 (d, ²*J* (C-F) = 21.3 Hz, 2 × Ar–C), 99.3 (d, ¹*J* (C-F) = 181.0 Hz, CHF), 77.5 (d, ²*J* (C-F) = 20.4 Hz, *C_q*OHCHF overlapping with CDCl₃), 45.4 (CH₂Cl), 36.1 (d, ²*J* (C-F) = 21.4 Hz, PhC/H₂CHF), 34.8 (d, ³*J* (C-F) = 2.8 Hz, CH₂COH), 26.5 (CH₂CH₂Cl); ¹⁹F NMR (470 MHz, CDCl₃) δ -115.3 (tt, ³*J* (H–F) = 8.7 Hz, ⁴*J* (H–F) = 5.4, 1F, Ar–F), -186.8(ddd, ²*J* (H–F) = 47.7 Hz, ³*J* (H-F) = 41.4, 16.8 Hz, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₈H₁₉Cl₂F₂ [M+Cl]⁻ 359.0787; Found: 359.0787.

3ai-major; 5-chloro-2-fluoro-3-(4-fluorophenyl)-1-phenylpentan-3-ol

Prepared according to general procedure GP to afford **3ai***-major* as a yellow waxy solid (100 mg, 90%) after column chromatography (R_f = 0.5, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3564, 3065, 2964, 1899, 1513, 1228, 1010, 835; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.39 (m, 2H, 2 × Ar–H), 7.26–7.23 (m, 2H, 2 × Ar–H), 7.21–7.18 (m, 1H, Ar–H), 7.13–7.08 (m, 2H, 2 × Ar–H), 7.04 (d, J = 7.3 Hz, 2H, 2×Ar–H), 4.76 (ddd, $^2J_{(H-F)}$ = 47.5 Hz, $^3J_{(H-H)}$ = 9.9 , 2.1 Hz, 1H, C*H*FCH₂), 3.52 (dt, 2J = 10.5 Hz, 3J = 5.9 Hz, 1H, C*H*HCl), 3.19 (dt, 2J = 10.5 Hz, 3J = 5.2 Hz, 1H, C*H*HCl), 2.89 (ddd, $^3J_{(H-F)}$ = 17.4 Hz, $^2J_{(H-H)}$ = 15.2 Hz $^3J_{(H-H)}$ = 9.9 Hz, 1H, PhC*H*HCHF), 2.66–2.59 (m, 1H, C*H*HCH₂Cl), 2.49–2.37 (m, 3H, PhC*H*HCHF overlapping with O–H and C*H*HCH₂Cl); ¹³C NMR (125 MHz, CDCl₃) δ 163.2 (d, $^1J_{(C-F)}$ = 247.1 Hz, Ar–C_q), 137.5 (d, $^3J_{(C-F)}$ = 0.5 Hz, Ar–C_q), 135.6 (dd, $^3J_{(C-F)}$ = 4.8 Hz, $^4J_{(C-F)}$ = 3.3 Hz, Ar–C_q), 129.2 (2 × Ar–C), 128.6 (2 × Ar–C), 127.2 (d, $^3J_{(C-F)}$ = 8.0 Hz, 2 × Ar–C), 126.7 (Ar–C), 115.9 (d, $^2J_{(C-F)}$ = 21.4 Hz, 2 × Ar–C), 99.4 (d, $^1J_{(C-F)}$ = 181.2 Hz, CHF), 77.6 (d, $^2J_{(C-F)}$ = 19.8 Hz, C_q OHCHF), 42.4 (d, $^3J_{(C-F)}$ = 3.7 Hz, CH₂CH₂Cl), 39.7 (CH₂Cl), 35.2 (d, $^2J_{(C-F)}$ = 21.7 Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -114.5 (tt, $^3J_{(H-F)}$ = 8.6 Hz, $^4J_{(H-F)}$ = 5.4, 1F, Ar–F), -191.3 (ddd, $^2J_{(H-F)}$ = 47.4 Hz, $^3J_{(H-F)}$ = 41.2, 17.4 Hz, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₇H₁₆ClF₂O [M-H]⁻ 309.0863; Found: 309.0861.

3ai-minor; 5-chloro-2-fluoro-3-(4-fluorophenyl)-1-phenylpentan-3-ol

Prepared according to general procedure GP to afford **3ai-minor** as a yellow waxy solid (67 mg, 90%) after column chromatography ($R_f = 0.4$, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3564, 3087, 2966, 1898, 1604, 1228, 1067, 837; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.49 (m, 2H, 2 × Ar–H), 7.30–7.27 (m, 2H, 2 × Ar–H), 7.25–7.21 (m, 1H, Ar–H), 7.15–7.09 (m, 4H, 4 × Ar–H), 4.69 (ddd, ² $J_{(H-F)} = 47.8$ Hz, ³ $J_{(H-H)} = 10.0$, 2.1 Hz, 1H, C*H*FCH₂), 3.57 (ddd, ²J = 11.0 Hz, ³J = 8.5, 6.9 Hz, 1H, C*H*HCl), 3.42 (ddd, ²J = 11.0 Hz, ³J = 8.7, 5.4 Hz, 1H, C*H*HCl), 2.89 (ddd, ³ $J_{(H-F)} = 41.9$ Hz, ² $J_{(H-H)} = 14.9$ Hz ³ $J_{(H-H)} = 2.1$ Hz, 1H, PhC*H*HCHF), 2.71 (s, 1H, O–H), 2.66–2.60 (m, 1H, C*H*HCH₂Cl), 2.58–2.51 (m, 1H, PhC*H*HCHF), 2.46–2.40 (m, 1H, C*H*HCH₂Cl); ¹³C NMR (125 MHz, CDCl₃) δ 162.5 (d, ¹ $J_{(C-F)} = 246.9$ Hz, Ar–C_q), 137.4 (d, ³ $J_{(C-F)} = 0.7$ Hz, Ar–C_q), 135.9 (d, ³ $J_{(C-F)} = 3.1$ Hz, Ar–C_q), 129.3 (2 × Ar–C), 128.7 (2 × Ar–C), 128.1 (2 × d, ³ $J_{(C-F)} = 8.0$ Hz, 2× Ar–C), 126.8 (Ar–C), 115.5 (d, ² $J_{(C-F)} = 21.3$ Hz, 2× Ar–C), 98.9 (d, ¹ $J_{(C-F)} = 181.8$ Hz, CHF), 77.5 (d, ² $J_{(C-F)} = 21.3$ Hz, C $_q$ OHCHF), 40.3 (d, ³ $J_{(C-F)} = 3.2$ Hz, CH₂CH₂Cl), 40.2 (CH₂Cl), 35.9 (d, ² $J_{(C-F)} = 21.1$ Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -114.8 – -114.7 (m, 1F, Ar–F), -186.7 (ddd, ² $J_{(H-F)} = 47.8$ Hz, ³ $J_{(H-F)} = 41.9$, 17.0 Hz, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₇H₁₆ClF₂O [M-H]⁻ 309.0863; Found: 309.0898.

3aj; 2-(1-fluoro-2-phenylethyl)adamantan-2-ol

Prepared according to general procedure GP to afford **3aj** as a white waxy solid (98 mg, 60%) after column chromatography (R_f = 0.6, hexane/EtOAc 9:1); IR (film)/cm⁻¹ 3435, 3065, 2916, 2860, 1638, 1455, 1331, 699; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.31 (m, 2H, 2 × Ar–H), 7.27–7.23 (m, 3H, 2 × Ar–H overlapping with CDCl₃), 5.19 (ddd, ²*J* (_{H–F)} = 47.6 Hz, ³*J* (_{H–H)} = 10.3, 2.1 Hz, 1H, CHFCH₂), 3.07 (td, ²*J* (_{H–H)} = 15.0 Hz ³*J* (_{H–H)} = 10.3 Hz, 1H, PhC*H*HCHF), 2.86 (ddd, ³*J* (_{H–F)} = 42.9 Hz, ²*J* (_{H–H)} = 14.9, 2.1 Hz, 1H, PhC*H*HCHF), 2.30 (d, *J* = 12.4 Hz, 1H, CH), 2.24 (d, *J* = 12.4 Hz, 1H, CH), 2.06 (s, 1H, CH), 1.94 (s, 2H, CH overlapping with O–H) 1.88–1.85 (m, 2H, 2 × CH), 1.79–1.70 (m, 6H, 3 × CH₂), 1.63–1.56 (m, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 138.6 (d, ³*J*_(C–F) = 0.9 Hz, Ar–C_q), 129.5 (2 × Ar–C), 128.6 (2 × Ar–C), 126.6 (Ar–C), 95.5 (d, ¹*J* (C-F) = 171.5 Hz, CHF), 75.8 (d, ²*J* (C-F) = 18.6 Hz, COHCHF), 38.2 (CH₂), 34.6 (d, ²*J* (C-F) = 21.7 Hz, PhCH₂CHF), 34.2 (CH₂), 33.7 (CH₂), 33.6 (d, ³*J* (C-F) = 4.8 Hz, CHCOH), 32.9 (d, ³*J* (C-F) = 1.5 Hz, CHCOH), 32.7 (CH₂), 27.2 (CH), 27.1 (CH); ¹⁹F NMR (470 MHz, CDCl₃) δ -201.2 – -201.0 (m, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₈H₂₃FNaO [M+Na]⁺ 297.1625; Found: 297.1634.

3al; 9-(1-fluoro-2-phenylethyl)-9H-fluoren-9-ol

Prepared according to general procedure GP to afford **3al** as a white waxy solid (116 mg, 64%) after column chromatography ($R_f = 0.3$, hexane/Et₂O 8:2); IR (film)/cm⁻¹ 3524, 3392, 3063, 2924, 2852, 1607, 1451, 1064; ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.67 (m, 2H, 2 × Ar–H), 7.52 (d, J = 7.5 Hz, 1H, Ar–H), 7.46–7.41 (m, 2H, 2 × Ar–H), 7.40–7.31 (m, 3H, 3 × Ar–H), 7.22–7.19 (m, 2H, 2 × Ar–H), 7.17–7.14 (m, 1H, 1 × Ar–H), 6.99 (d, J = 7.2 Hz, 2H, 2 × Ar–H), 5.20 (ddd, ² $J_{(H-F)} = 48.9$ Hz, ³ $J_{(H-H)} = 9.8$, 2.2 Hz, 1H, CHFCH₂), 2.88 (s, 1H, O–H), 2.44 (ddd, ³ $J_{(H-F)} = 17.6$ Hz, ² $J_{(H-H)} = 15.0$ Hz, ³ $J_{(H-H)} = 9.8$ Hz, 1H, PhC*H*HCHF), 2.31 (ddd, ³ $J_{(H-F)} = 40.1$ Hz, ² $J_{(H-H)} = 15.0$, ³ $J_{(H-H)} = 2.2$ Hz, 1H, PhC*H*HCHF); ¹³C NMR (125 MHz, CDCl₃) δ 144.9 (Ar–C_q), 144.8 (d, ³ $J_{(C-F)} = 5.5$ Hz, Ar–C_q), 140.6 (d, ³ $J_{(C-F)} = 2.8$ Hz, 2 × Ar–C_q), 137.5 (Ar–C_q), 130.1 (Ar–C), 129.7 (Ar–C), 129.1 (2 × Ar–C), 128.5 (2 × Ar–C), 128.4 (2 × Ar–C), 126.6 (Ar–C), 125.5 (d, ⁴ $J_{(C-F)} = 3.2$ Hz, Ar–C), 124.2 (Ar–C), 120.5 (Ar–C), 120.4 (Ar–C), 98.9 (d, ¹ $J_{(C-F)} = 182.5$ Hz, CHF), 83.5 (d, ² $J_{(C-F)} = 19.3$ Hz, C_qOHCHF), 36.3 (d, ² $J_{(C-F)} = 21.1$ Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -191.1 (ddd, ² $J_{(H-F)} = 48.9$ Hz, ³ $J_{(H-F)} = 40.1$, 17.6 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₁H₁₇FNaO [M+Na]⁺ 327.1161; Found: 327.1159.

3am-A; 3-fluoro-4-phenyl-2-(thiophen-2-yl)butan-2-ol

Prepared according to general procedure GP to afford **3am-A** as a yellow waxy solid (66 mg, 89%) after column chromatography (R_f = 0.45, hexane/Et₂O 8:2); IR (film)/cm⁻¹ 3583, 3026, 2924, 1496, 1454, 1237, 697; ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.26 (m, 3H, 3 × Ar–H overlapping with CDCl₃), 7.23–7.20 (m, 1H, Ar–H), 7.17 (d, *J* = 6.8 Hz, 2H, 2 × Ar–H), 7.04–7.01 (m, 2H, 2 × Ar–H), 4.71 (ddd, ²J _(H–F) = 47.7 Hz, ³J _(H–H) = 10.1, 2.0 Hz, 1H, C*H*FCH₂), 2.99–2.91 (m, 1H, C*H*HCHF), 2.85–2.74 (m, 1H, C*H*HCHF), 2.42 (d, ⁴J _(H–F) = 1.5 Hz, 1H, O–H), 1.75–1.74 (m, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 147.9 (d, ³J _(C-F) = 4.2 Hz, Ar–C_q), 137.8 (Ar–C_q), 129.1 (2 × Ar–C), 128.4 (2 × Ar–C), 127.1 (Ar–C), 126.5 (Ar–C), 124.7 (Ar–C), 123.4 (Ar–C), 99.3 (d, ¹J _(C-F) = 182.2 Hz, CHF), 75.2 (d, ²J _(C-F) = 21.7 Hz, *C_q*OHCHF), 35.8 (d, ²J _(C-F) = 21.5 Hz, PhCH₂CHF), 27.3 (d, ³J _(C-F) = 3.4 Hz, CH₃); ¹⁹F NMR (470 MHz, CDCl₃) -188.3 (ddd, ²J _(H-F) = 47.7 Hz, ³J _(H-F) = 42.3, 17.4 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₄H₁₄FOS [M-H]⁻ 249.0755; Found: 249.0750.

3am-B; 3-fluoro-4-phenyl-2-(thiophen-2-yl)butan-2-ol

Prepared according to general procedure GP to afford **3am-B** as a yellow waxy solid (66 mg, 89%) after column chromatography ($R_f = 0.4$, hexane/Et₂O 8:2); IR (film)/cm⁻¹ 3419, 3030, 2917, 2849, 1604, 1455, 1265, 851; ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.27 (m, 3H, 3 × Ar–H), 7.24–7.21 (m, 1H, Ar–H), 7.17 (d, J = 7.3 Hz, 2H, 2 × Ar–H), 7.07 (dd, ${}^{3}J = 3.5$ Hz ${}^{4}J = 0.9$ Hz, 1H, Ar–H), 7.03 (dd, ${}^{3}J = 5.0$, 3.5 Hz, 1H, Ar–H), 4.74 (ddd, ${}^{2}J_{(H-F)} = 48.3$ Hz, ${}^{3}J_{(H-H)} = 10.0$, 2.0 Hz, 1H, CHFCH₂), 2.94–2.72 (m, 2H, 2 × CHHCHF), 2.58 (d, ${}^{4}J_{(H-F)} = 1.5$ Hz, 1H, O–H), 1.75 (d, ${}^{4}J_{(H-F)} = 1.6$ Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 147.7 (d, ${}^{3}J_{(C-F)} = 2.4$ Hz, Ar–C_q), 137.7 (Ar–C_q), 129.3 (2 × Ar–C), 128.6 (2 × Ar–C), 127.1 (Ar–C), 126.7 (Ar–C), 125.3 (Ar–C), 124.4 (d, ${}^{4}J_{(C-F)} = 1.4$ Hz, Ar–C), 99.7 (d, ${}^{1}J_{(C-F)} = 181.4$ Hz, CHF), 75.1 (d, ${}^{2}J_{(C-F)} = 22.1$ Hz, C_qOHCHF), 36.5 (d, ${}^{2}J_{(C-F)} = 21.2$ Hz, PhCH₂CHF), 25.2 (d, ${}^{3}J_{(C-F)} = 3.0$ Hz, CH₃); ¹⁹F NMR (470 MHz, CDCl₃) -187.2 (ddd, ${}^{2}J_{(H-F)} = 48.3$ Hz, ${}^{3}J_{(H-F)} = 41.3$, 17.8 Hz, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₄H₁₅FNaOS [M+Na]⁺273.0725; Found: 273.0723.

3an-A; 2-fluoro-1-phenylnonan-3-ol

Prepared according to general procedure GP to afford **3an-A** as (47 mg, 66%) after column chromatography ($R_f = 0.3$, hexane/EtOAc 95:5); IR (film)/cm⁻¹ 3400, 3064, 2928, 2857, 1605, 1455, 1060, 699; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.30 (m, 2H, 2 × Ar–H), 7.26–7.23 (m, 3H, 2 × Ar–H overlapping with CDCl₃), 4.55 (dddd, ²*J*_(H-F) = 47.8 Hz, ³*J*_(H-H) = 7.9 , 5.3 , 3.8 Hz, 1H, C*H*FCH₂), 3.61–3.52 (m, 1H, CHOH), 3.09–2.95 (m, 2H, 2 × PhC*H*HCHF), 1.77 (d, ³*J*_(H-H) = 6.5 Hz, 1H, O–H) 1.58–1.46 (m, 4H, 2 × CH₂), 1.37–1.26 (m, 6H, 3 × CH₂) 0.88 (t, ³*J*_(H-H) = 6.9 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 137.1 (d, ³*J*_(C-F) = 5.2 Hz, Ar–C_q), 129.5 (2 × Ar–C), 128.7 (2 × Ar–C), 126.8 (Ar–C), 96.4 (d, ¹*J*_(C-F) = 173.9 Hz, CHF), 72.2 (d, ²*J*_(C-F) = 19.5 Hz, COHCHF), 37.8 (d, ²*J*_(C-F) = 21.9 Hz, PhCH₂CHF), 33.3 (d, ³*J*_(C-F) = 4.0 Hz, *C*H₂CHOH), 31.9 (CH₂), 29.4 (CH₂), 25.6 (CH₂), 22.7 (CH₂), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -195.0 – -194.7 (m, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₅H₂₃FNaO [M+Na]⁺ 261.1631; Found: 261.1623.

3an-B; 2-fluoro-1-phenylnonan-3-ol

Prepared according to general procedure GP to afford **3an-B** as (47 mg, 66%) after column chromatography (R_{f} = 0.2, hexane/Et₂O 95:5); IR (film)/cm⁻¹ 3584, 3402, 3065, 2926, 2857, 1497, 1455, 1061, 699; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.30 (m, 2H, 2 × Ar–H), 7.26–7.23 (m, 3H, 2 × Ar–H overlapping with CDCl₃), 4.66–4.53 (m, 1H, CHFCH₂), 3.80–3.76 (m, 1H, CHOH), 3.07–2.88 (m, 2H, 2 × PhC*H*HCHF), 1.78 (d, ³*J* (H–H) = 5.1 Hz, 1H, O–H) 1.62–1.47 (m, 4H, 2 × CH₂), 1.34–1.30 (m, 6H, 3 × CH₂) 0.88 (t, ³*J* (H–H) = 6.9 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 137.5 (d, ³*J*_(C-F) = 2.2 Hz, Ar–C_q), 129.4 (2 × Ar–C), 128.6 (2 × Ar–C), 126.7 (Ar–C), 96.8 (d, ¹*J* (C-F) = 173.1 Hz, CHF), 72.8 (d, ²*J* (C-F) = 22.1 Hz, COHCHF), 36.4 (d, ²*J* (C-F) = 21.3 Hz, PhCH₂CHF), 32.1 (d, ³*J* (C-F) = 5.2 Hz, CH₂CHOH), 31.9 (CH₂), 29.4 (CH₂), 25.7 (CH₂), 22.7 (CH₂), 14.2 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -188.5 – -188.2 (m, 1F, CHF) ; HRMS (ESI) m/z Calcd for C₁₅H₂₃FNaO [M+Na]⁺ 261.1631; Found: 261.1613.

3ap; 1-(4-chlorophenyl)-2-fluoro-3-phenylpropan-1-ol

Prepared according to general procedure GP to afford **3ap** (dr = 50.50, 119 mg, 75%) obtained as a white waxy solid after column chromatography (R_f = 0.3, hexane/Et₂O 9:1); *Inseparable mixture of diastereoisomers* dr = 77.23; IR (film)/cm⁻¹ 3396, 3031, 2922, 2850, 1600, 1493, 1455, 1090, 699; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.37–7.22 (m overlapping CDCl₃, 7H major + 2.1H *minor*, Ar–H), 7.18–7.16 (m, 2H *major* + 0.6H *minor*, Ar–H), 4.89–4.64 (m , 2H *major* + 0.6H *minor*, C*H*FCH₂ overlapping with C*H*OH), 2.99 (ddd, ³*J* (H–F) = 19.2 Hz, ²*J* (H–H) = 14.7 Hz ³*J* (H–H) = 8.7 Hz, 0.3H *minor*, PhCHHCHF), 2.90–2.77 (m, 2H *major* + 0.3H *minor*, PhCHHCHF), 2.53 (s, 1H *major*, O–H), 2.29 (s, 0.3H *minor*, O–H); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 137.9 (d, ³*J*_(C–F) = 4.9 Hz, 2 × Ar–C_q), 136.6 (d, ³*J*_(C–F) = 3.3 Hz, 2 × Ar–C_q), 134.5 (Ar–C_q), 134.2 (Ar–C_q), 129.5 (2 × Ar–C), 129.4 (2 × Ar–C), 129.0 (2 × Ar–C), 128.9 (2 × Ar–C), 128.7 (2 × Ar–C), 128.6 (4 × Ar–C), 128.2 (2 × Ar–C), 127.0 (Ar–C), 126.8 (Ar–C), 97.0 (d, ¹*J* _(C-F) = 177.8 Hz, CHF), 96.5 (d, ¹*J* _(C-F) = 21.1 Hz, PhCH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -188.0 – -187.8 (m, 0.3F *minor*, CHF), -189.7 – -189.5 (m, 1F *major*, CHF); HRMS (ESI) m/z Calcd for C₁₅H₁₂CIO [(M-HF)-H]⁻ 243.0582; Found: 243.0369.

3aq; tert-butyl (2-fluoro-1,3-diphenylpropyl)carbamate

Prepared according to general procedure GP to afford **3aq** (dr = 60:40) otained as a yellow oil (dr = 75:25 128 mg, 65%) after column chromatography ($R_f = 0.2$, hexane/EtOAc/Net₃ 9:1:0.1); *Inseparable mixture of diastereoisomers*; IR (film)/cm⁻¹ 3433, 3031, 2918, 2850, 1704, 1495, 1366, 1166, 876; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.40–7.22 (m overlapping with CDCl₃, 8H *major* + 3H *minor*, Ar–H), 7.14 (d, J = 7.3 Hz, 2H, 2 × Ar–H), 5.34 (broad s, 1H *major* + 0.3H *minor*, 2 × N–H), 5.09–4.59 (m, 2H *major* + 0.6H *minor*, 2 × CHFCH₂ overlapping with 2 × CHNH), 3.13–2.94 (m, 0.6H *minor*, 2 × PhCHHCHF), 2.76–2.67 (m, 2H *major*, 2 × PhCHHCHF), 1.46 (s, 1.8H *minor*, 3 × CH₃), 1.41 (s, 9H *major*, 3 × CH₃); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 155.6 (CO₂N), 155.1 (CO₂N), 136.7 (d, ³J_(C-F) = 2.4 Hz, 2 × Ar–C_q), 136.7 (d, ³J_(C-F) = 3.6 Hz, 2 × Ar–C_q), 129.5 (2 × Ar–C), 129.3 (2 × Ar–C), 128.8 (2 × Ar–C), 128.7 (2 × Ar–C), 128.5 (2 × Ar–C), 128.6 (4 × Ar–C), 128.2 (Ar–C), 127.8 (Ar–C), 127.0 (2 × Ar–C), 126.9 (2 × Ar–C), 96.7 (d, ¹J_(C-F) = 173.2 Hz, CHF), 96.0 (d, ¹J_(C-F) = 181.5 Hz, CHF), 80.1 (2 × OC(CH₃)₃), 57.7 (d, ²J_(C-F) = 19.1 Hz, 2 × CNHCHF), 38.9 (d, ²J_(C-F) = 22.1 Hz, PhCH₂CHF), 38.7 (d, ²J_(C-F) = 20.5 Hz, PhCH₂CHF), 29.8 (3 × CH₃), 28.5 (3 × CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -192.2 – -192.0 (m, 0.3F *minor*, CHF), -193.6 – -193.3 (m, 1F *major*, CHF); HRMS (ESI) m/z Calcd for C₂₀H₂₄FNNaO₂ [M+Na]⁺ 352.1683; Found: 352.1689.

3ar; (1-fluoro-2-phenylethyl)dimethyl(phenyl)silane

Prepared according to general procedure GP, with slight modifications. The solution resulting from the microfluidic system was quenched with 150 µL of MeOH, filtered on Na₂SO₄ and concentrated under reduced pressure to afford **3ar** as a colorless oil (47 mg, 30%) after column chromatography (R_f = 0.1, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3068, 3028, 2958, 2925, 1953, 1604, 1251, 834; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, *J* = 7.5, 1.6 Hz, 2H, 2 × Ar–H), 7.42–7.39 (m, 3H, 3 × Ar–H), 7.28–7.25 (m, 2H, 2 × Ar–H overlapping with CDCl₃), 7.21–7.17 (m, 3H, 3 × Ar–H), 4.85 (ddd, ²*J*_(H–F) = 46.1 Hz, ³*J*_(H–H) = 10.8, 3.6 Hz, 1H, C*H*FCH₂), 3.03 (ddd, ³*J*_(H–F) = 17.9 Hz, ²*J*_(H–H) = 15.0 Hz ³*J*_(H–H) = 10.8 Hz, 1H, PhC*H*HCHF), 2.85 (ddd, ³*J*_(H–F) = 41.8 Hz, ²*J*_(H–H) = 15.0 Hz ³*J*_(H–H) = 3.6 Hz, 1H, PhC*H*HCHF), 0.38 (s, 3H, SiCH₃), 0.36 (s, 3H, SiCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 139.2 (d, ³*J*_(C-F) = 3.8 Hz, Ar–C_q), 135.5 (d, ³*J*_(C-F) = 3.0 Hz, Ar–C_q), 134.3 (2 × Ar–C), 129.8 (Ar–C), 129.1 (2 × Ar–C), 128.5 (2 × Ar–C), 128.1 (2 × Ar–C), 126.5 (Ar–C), 92.7 (d, ¹*J*_(C-F) = 167.2 Hz, CHF), 38.4 (d, ²*J*_(C-F) = 19.7 Hz, PhCH₂CHF), -5.3 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -186.7 (ddd, ²*J*_(H-F) = 46.1 Hz, ³*J*_(H-F) = 41.8, 17.9 Hz, 1F, CHF); The product **3ar** decomposed during high-resolution mass (HRMS) analysis.

3as; tributyl(1-fluoro-2-phenylethyl)stannane

Prepared according to general procedure GP to afford **3as** as a colorless oil (156 mg, 63%) after column chromatography (R_f = 0.3, hexane); IR (film)/cm⁻¹ 3584, 3064, 2956, 2924, 2852, 1495, 1455, 1075, 960; ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.28 (m, 2H, 2 × Ar–H), 7.24–7.21 (m, 3H, 3 × Ar–H), 4.91 (ddd, ²*J*_(H–F)= 46.1 Hz, ³*J*_(H–H)= 8.9, 5.8 Hz, 1H, C*H*FCH₂), 3.36–3.27 (m, 1H, PhC*H*HCHF), 3.13 (ddd, ³*J*_(H–F)= 32.8 Hz, ²*J*_(H–H)= 14.3 Hz ³*J*_(H–H)= 5.8 Hz, 1H, PhC*H*HCHF), 1.48–1.41 (m, 6H, 3 × CH₂), 1.32–1.24 (m, 6H, 3 × CH₂), 0.90–0.83 (m, 15H, 3 × CH₃ overlapping with 3 × CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 139.3 (d, ³*J*_(C–F)= 6.7 Hz, Ar–C_q), 129.2 (2 × Ar–C), 128.6 (2 × Ar–C), 126.6 (Ar–C), 95.7 (d, ¹*J*_(C-F)= 189.4 Hz, CHF), 42.4 (d, ²*J*_(C-F)= 18.5 Hz, PhCH₂CHF), 29.1 (3 × CH₂), 27.5 (3 × CH₂), 29.1 (3 × CH₂), 13.8 (3 × CH₃), 9.1 (d, ³*J*_(C–F)= 3.1 Hz, 3 × CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -208.9(ddd, ²*J*_(H-F)= 46.1 Hz, ³*J*_(H-F)= 32.8, 21.6 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₀H₃₄FSn [M-H]⁻ 413.1672; Found: 413.1667.

3at; 2-fluoro-1,3-diphenylpropan-1-one

Prepared according to general procedure GP to afford **3at** as a white solid (97 mg, 71%) after column chromatography (R_f = 0.4, hexane/Et₂O 9:1); ¹H NMR (500 MHz, CDCl₃) δ 7.95–7.93 (m, 2H, 2 × Ar–H), 7.62–7.59 (m, 1H, Ar–H), 7.50–7.46 (m, 2H, 2 × Ar–H), 7.34–7.25 (m, 5H, 5 × Ar–H), 5.74 (ddd, ²*J*_(H–F)= 49.0 Hz, ³*J*_(H–H)= 8.3 , 4.0 Hz, 1H, C*H*FCH₂), 3.38-3.20 (m, 2H, 2 × PhC*H*HCHF); in according to spectral data reported in the literature. ⁹

3au; 2-fluoro-5-methyl-1-phenylhexan-3-one

Prepared according to general procedure GP to afford **3au** as a white waxy solid (61 mg, 49%) after column chromatography ($R_f = 0.3$, hexane/EtOAc 8:2); IR (film)/cm⁻¹ 3032, 2958, 2929, 2872, 1722, 1497, 1455, 1368,

1047; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.2 Hz, 2H, 2 × Ar–H), 7.27–7.26 (m, 1H, Ar–H overlapping with CDCl₃), 7.23 (d, *J* = 7.2 Hz, 2H, 2 × Ar–H), 4.91 (ddd, ²*J*_(H–F) = 49.8 Hz, ³*J*_(H–H) = 7.7, 3.7 Hz, 1H, CHFCH₂), 3.18 (ddd, ³*J*_(H–F) = 29.3 Hz, ²*J*_(H–H) = 14.8 Hz ³*J*_(H–H) = 3.7 Hz, 1H, PhC*H*HCHF), 3.03 (ddd, ³*J*_(H–F) = 25.9 Hz, ²*J*_(H–H) = 14.8 Hz ³*J*_(H–H) = 7.7 Hz, 1H, PhC*H*HCHF), 2.46 (ddd, ²*J*_(H–H) = 17.5 Hz, ⁴*J*_(H–F) = 6.5 Hz ³*J*_(H–H) = 3.7 Hz, 1H, C*H*HCO), 2.24 (ddd, ²*J*_(H–H) = 17.5 Hz, ⁴*J*_(H–F) = 7.0 Hz ³*J*_(H–H) = 2.9 Hz, 1H, C*H*HCO), 2.16–2.08 (m, 1H, C*H*₂CH(CH₃)₂), 0.90 (d, ³*J* = 6.7 Hz, 3H, CH₃), 0.85 (d, ³*J* = 6.6 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 209.5 (d, ²*J*_(C–F) = 24.4 Hz, CO), 135.6 (Ar–C_q), 129.7 (2 × Ar–C), 128.7 (2 × Ar–C), 127.2 (Ar–C), 96.1 (d, ¹*J*_(C-F) = 187.6 Hz, CHF), 47.5 (s, CH₂CO), 38.3 (d, ²*J*_(C-F) = 20.5 Hz, PhCH₂CHF), 23.5 (d, ⁴*J*_(C-F) = 1.9 Hz, CH₂CH(CH₃)₂), 22.7 (CH₃), 22.6 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -190.3 – -190.1 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₃H₁₇FNaO [M+Na]⁺ 231.1156; Found: 231.1161.

3ba; 2-fluoro-1,1,4-triphenylbutan-1-ol

Prepared according to general procedure GP to afford **3ba** as a white waxy solid (182 mg, 95%) after column chromatography (R_f = 0.3, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3400, 2917, 1599, 1493, 1447, 1168, 976, 748; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.1 Hz, 2H, 2 × Ar–H), 7.32 (t, J = 8.0 Hz, 4H, 4 × Ar–H), 7.28–7.23 (m, 5H, 5 × Ar–H, overlapping with CDCl₃), 7.22–7.17 (m, 2H, 2 × Ar–H), 7.10 (d, J = 7.2 Hz, 2H, 2 × Ar–H), 5.36 (ddd, ²J (H–F) = 47.2 Hz, ³J (H–H) = 10.1 , 2.0 Hz, 1H, CHFCH₂), 2.88–2.82 (m, 1H, PhCHHCH₂), 2.65–2.59 (m, 2H, PhCHHCH₂ overlapping with O–H), 2.17–2.05 (m, 1H, CHHCHF), 1.73–1.57 (m, 1H, CHHCHF); ¹³C NMR (125 MHz, CDCl₃) δ 144.8 (Ar–C_q), 143.1 (d, ³J_(C–F) = 4.2 Hz, Ar–C_q), 141.3 (Ar–C_q), 128.6 (2 × Ar–C), 128.5 (4 × Ar–C), 128.4 (2 × Ar–C), 127.5 (Ar–C), 127.4 (Ar–C), 126.9 (d, ⁴J_(C–F) = 1.7 Hz, 2 × Ar–C), 126.1 (Ar–C), 126.0 (2 × Ar–C), 95.3 (d, ¹J_(C–F) = 178.6 Hz, CHF), 79.2 (d, ²J_(C–F) = 20.7 Hz, C_q OHCHF), 31.8 (d, ³J_(C–F) = 3.5 Hz, PhCH₂CH₂), 30.6 (d, ²J_(C–F) = 21.3 Hz, CH₂CH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -190.3 (ddd, ²J_(H-F) = 47.4 Hz, ³J_(H-F) = 40.1, 13.4 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₂H₂₁FNaO [M-H]⁻ 343.1469; Found: 343.1449.

3bm; 3-fluoro-5-phenyl-2-(thiophen-2-yl)pentan-2-ol

Prepared according to general procedure GP to afford **3bm** (dr = 60:40) obtained as a waky solid (dr = 70:30, 123 mg, 78%) after column chromatography (R_f= 0.3, hexane/Et₂O 85:15); *Inseparable mixture of diastereoisomers;* IR (film)/cm⁻¹ 3435, 3027, 2918, 2849, 1496, 1455, 1237, 698; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.37–7.12 (m overlapping with CDCl₃, 6H *major* + 2.4H *minor*, Ar–H), 6.98–6.88 (m, 2H *major* + 0.8H *minor*, Ar–H), 4.61-4.43 (m, 1H *major* + 0.4H *minor*, CHFCH₂), 2.89–2.81 (m, 1H *major* + 0.4H *minor*, PhC*H*HCH₂), 2.66–2.58 (m, 1H *major* + 0.4H *minor*, PhC*H*HCH₂), 2.54 (d, ⁴J_(H-F) = 1.9 Hz, 1H *major*, O–H), 2.36 (d, ⁴J_(H-F) = 1.2 Hz, 0.4H *minor*, O–H), 2.01-1.97 (m, 1H *major* + 0.4H *minor*), 1.67 (d, ⁴J_(H-F) = 2.0 Hz, 1.2H *minor*, CH₃), 1.66 (d, ⁴J_(H-F) = 1.4 Hz, 3H *major*, CH₃); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 148.0 (d, ³J_(C-F) = 3.8 Hz, Ar–C_q), 147.9 (d, ³J_(C-F) = 2.9 Hz, Ar–C_q), 141.3 (Ar–C_q), 141.2 (Ar–C_q), 128.6 (8 × Ar–C), 127.1 (Ar–C), 127.0 (Ar–C), 126.2 (Ar–C), 126.1 (Ar–C), 125.2 (Ar–C), 124.7 (Ar–C), 124.2 (d, ⁴J_(C-F) = 1.2 Hz, Ar–C), 123.5 (d, ⁴J_(C-F) = 0.7 Hz, Ar–C), 98.4 (d, ¹J_(C-F) = 178.5 Hz, CHF), 98.1 (d, ¹J_(C-F) = 2.8 Hz, PhCH₂CH₂), 31.8 (d, ³J_(C-F) = 3.2 Hz, PhCH₂CH₂), 31.9 (d, ²J_(C-F) = 21.1 Hz, CH₂CH₂CHF), 31.1 (d, ²J_(C-F) = 21.3 Hz, CH₂CH₂CHF), 27.3 (d, ³J_(C-F) = 3.6 Hz, CH₃), 24.9 (d, ³J_(C-F) = 3.0 Hz, CH₃); ¹⁹F NMR (470 MHz, S18

CDCl₃) δ -190.0 (ddd, ²*J*_(H-F) = 48.5 Hz, ³*J*_(H-F) = 39.0, 16.0 Hz, 1F *major*, CHF), -191.0 (ddd, ²*J*_(H-F) = 47.9 Hz, ³*J*_(H-F) = 40.9, 13.8 Hz, 0.4F *minor*, CHF); HRMS (ESI) m/z Calcd for C₁₅H₁₆FOS [M-H]⁻ 263.0911; Found: 263.0917; Calcd for C₁₅H₁₅OS [(M-HF)-H]⁻ 243.0849; Found: 243.0842.

3bn; 3-fluoro-1-phenyldecan-4-ol

Prepared according to general procedure GP to afford **3bn** as a white waxy solid (dr = 60:40, 75 mg, 50%) after column chromatography ($R_f = 0.5$, hexane/EtOAc 9:1); Inseparable mixture of diastereoisomers; IR (film)/cm⁻¹ 3400, 3028, 2925, 2856, 1496, 1455, 1029, 699; ¹H NMR (500 MHz, CDCl₃, mixture of diastereoisomers) δ 7.30 (t, *J* = 7.4 Hz, 2H major + 1.2H minor, Ar–H), 7.22–7.19 (m, 3H major + 1.8H minor, Ar–H), 4.39 (dddd, ²J_(H–F) = 48.0 Hz, ${}^{3}J_{(H-H)}$ = 10.1, 3.8, 2.6 Hz, 1H major, CH₂CHFCHOH, overlapping with minor's CH₂CHFCHOH), 4.33 (dddd, ${}^{2}J_{(H-F)} = 48.6$ Hz, ${}^{3}J_{(H-H)} = 9.3$, 4.6, 3.4 Hz, 0,6H minor, CH₂CHFCHOH, overlapping with major's CH₂CHFCHOH), 3.77-3.73 (m, 1H major, CHOH), 3.60-3.56 (m, 0.6H minor, CHOH), 2.93-2.82 (m, 1H major + 0.6H minor, PhCHHCH₂), 2.75–2.66 (m, 1H major + 0.6H minor, PhCHHCH₂), 2.11–2.02 (m, 1H major + 0.6H minor, CH₂CHHCHF), 1.92–1.79 (m, 1H major + 0.6H minor, CH₂CHHCHF), 1.72 (broad s, 1H major, O–H), 1.56 (broad s, 0.6H minor, O–H), 1.48–1.26 (m, 10H major + 6H minor, CH₂), 0.88 (t, *J* = 6.9 Hz, 3H major + 1.8H minor, CH₃); ¹³C NMR (125 MHz, CDCl₃, mixture of diastereoisomers) δ 141.5 (Ar–C_a), 141.4 (Ar–C_a), 128.6 (8 × Ar–C), 126.2 (2 × Ar–C), 95.8 (d, ${}^{1}J_{(C-F)} = 170.2$ Hz, CHF), 95.7(d, ${}^{1}J_{(C-F)} = 170.1$ Hz, CHF), 73.2 (d, ${}^{2}J_{(C-F)} = 170.1$ Hz, 19.5 Hz, COHCHF), 73.1 (d, ${}^{2}J_{(C-F)} = 21.6$ Hz, COHCHF), 33.1 (d, ${}^{2}J_{(C-F)} = 21.2$ Hz, CH₂CH₂CHF), 33.0 (d, ${}^{3}J_{(C-F)} = 21.2$ Hz $_{(C-F)}$ = 9.5 Hz, CH₂CHOH), 31.9 (d ³J $_{(C-F)}$ = 6.3 Hz, CH₂CHOH, overlapping with CH₂), 31.5 (d, ³J $_{(C-F)}$ = 3.4 Hz, PhCH₂CH₂), 31.4 (d, ${}^{3}J_{(C-F)} = 4.4$ Hz, PhCH₂CH₂), 31.3 (d, ${}^{2}J_{(C-F)} = 21.1$ Hz, CH₂CH₂CHF), 29.9 (CH₂), 29.4 (2 × CH₂), 25.8 (CH₂), 25.5 (CH₂), 22.7 (2 × CH₂), 14.2 (2 × CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -192.1 (ddt, ²J (H-F) = 48.0 Hz, ³J_(H-F) = 39.3, 14.8 Hz, 1F major, CHF), -196.7 – -196.5 (m, 0.6F minor, CHF); HRMS (ESI) m/z Calcd for C₁₆H₂₄FO [M-H]⁻ 251.1817; Found: 251.1815.

3bo; 1-(benzo[d][1,3]dioxol-5-yl)-2-fluoro-4-phenylbutan-1-ol

Prepared according to general procedure GP to afford **3bo** as a white waxy solid (dr = *50:50*, 103 mg, 60%) after column chromatography (R_f= 0.2, hexane/Et₂O 8:2); *Inseparable mixture of diastereoisomers;* IR (film)/cm⁻¹ 3408, 3027, 2917, 1504, 1488, 1247, 1038, 930; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 7.28–7.24 (m, 4H, 4 × Ar–H), 7.19–7.10 (m, 6H, 6 × Ar–H), 6.88–6.82 (m, 2H, 2 × Ar–H), 6.78–6.77 (m, 4H, 4 × Ar–H), 5.96 (s, 2H, CH₂O₂), 5.95 (s, 2H, CH₂O₂), 4.79–4.43 (m, 4H, 2 × CH₂C*H*FCHOH overlapping with 2 × CHFC*H*OH), 2.87–2.80 (m, 2H, 2 × PhC*H*HCH₂), 2.66–2.59 (m, 2H, 2 × PhC*H*HCH₂), 2.54 (t, *J* = 2.7 Hz, 1H, O–H), 2.17 (d, ⁴*J*_(H–F) = 3.6 Hz, 1H, O–H), 2.04–1.60 (m, 4H, 4 × CH₂C*H*HCHF); ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 148.1 (Ar–C_q), 148.0 (Ar–C_q), 147.9 (Ar–C_q), 147.5 (Ar–C_q), 133.2 (d, ³*J*_(C–F) = 4.9 Hz, Ar–C_q), 132.9 (d, ³*J*_(C–F) = 6.5 Hz, Ar–C_q), 128.6 (3 × Ar–C), 128.5 (Ar–C), 126.2 (2 × Ar–C), 120.9 (Ar–C), 120.3 (Ar–C), 119.5 (Ar–C), 108.5 (Ar–C), 108.3 (Ar–C), 108.2 (Ar–C), 107.5 (Ar–C), 107.3 (2 × Ar–C), 106.5 (Ar–C), 101.3 (2 × CH₂O₂) 96.6 (d, ¹*J*_(C–F) = 174.1 Hz, CHF), 95.6 (d, ¹*J*_(C-F) = 20.6 Hz, CH₂CH₂CHF), 31.5 (d, ³*J*_(C-F) = 9.5 Hz, PhCH₂CH₂CH₂), 31.4 (d ²*J*_(C-F) = 21.1 Hz, CH₂CH₂CHF), 31.3 (d, ³*J*_(C-F) = 3.7 Hz, PhCH₂CH₂), 25.8 (CH₂), 25.5 (CH₂),

22.7 (2 × CH₂), 14.2 (2 × CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -191.2 (ddt, ²*J* (H-F) = 47.9 Hz, ³*J* (H-F) = 37.8, 14.4 Hz, 1F, CHF), -190.0 – -189.8 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₇H₁₇FNaO₃ [M+Na]⁺ 311.1054; Found: 311.1057.

3bt; 2-fluoro-1,4-diphenylbutan-1-one

Prepared according to general procedure GP to afford **3bt** as a white waxy solid (87 mg, 60%) after column chromatography ($R_f = 0.4$, hexane/Et₂O 98:2); IR (film)/cm⁻¹ 3029, 2959, 2930, 2863, 1640, 1580, 1496, 1449, 1249; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H, 2 × Ar–H), 7.60–7.57 (m, 1H, Ar–H), 7.45 (t, J = 7.8 Hz, 2H, 2 × Ar–H), 7.32 (t, J = 7.5 Hz, 2H, 2 × Ar–H), 7.25–7.22 (m, 3H, 3 × Ar–H), 5.61–5.49 (m, 1H, CHF), 2.94–2.82 (m, 2H, PhCH₂CH₂), 2.32–2.22 (m, 2H, CH₂CHF); ¹³C NMR (125 MHz, CDCl₃) δ 196.7 (d, ² $J_{(C-F)} = 19.2$ Hz, CO), 140.4 (Ar–C_q), 133.9 (Ar–C), 129.0 (d, ³ $J_{(C-F)} = 3.6$ Hz, Ar–C_q), 128.9 (2 × Ar–C), 128.8 (6 × Ar–C), 126.5 (Ar–C), 92.7 (d, ¹ $J_{(C-F)} = 183.4$ Hz, CHF), 34.5 (d, ² $J_{(C-F)} = 21.4$ Hz, CH₂CHF), 31.0 (d, ³ $J_{(C-F)} = 3.2$ Hz, PhCH₂CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -191.5 – -191.3 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₆H₁₅FNaO [M+Na]⁺ 265.0999; Found: 265.0995.

3bv-A; benzyl (1-fluoro-3-phenylpropyl)(phenyl)-l⁴-sulfanylidene carbamate

Prepared according to general procedure GP to afford **3bv-A** as yellow oil (35 mg, 30%) after column chromatography ($R_f = 0.3$, hexane/Et₂O 6:4); IR (film)/cm⁻¹ 3063, 3030, 2918, 2850, 1738, 1644, 1454, 1254; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H, 2 × Ar–H), 7.63–7.60 (m, 1 H, Ar–H), 7.55 (t, J = 7.5 Hz, 2H, 2 × Ar–H), 7.38 (d, J = 7.1 Hz, 2H, 2 × Ar–H), 7.33–7.27 (m, 5H, 5 × Ar–H), 7.22 (t, J = 7.5 Hz, 1H, Ar–H), 7.15 (d, J = 7.1 Hz, 2H, 2 × Ar–H), 5.28 (ddd, ² $J_{(H-F)} = 49.2$ Hz, ³ $J_{(H-H)} = 8.7$, 2.7 Hz, 1H, SC*H*FCH₂), 5.14 (d, ² $J_{(H-H)} = 12.4$ Hz, 1H, PhC*H*HO), 5.11 (d, ² $J_{(H-H)} = 12.4$ Hz, 1H, PhC*H*HO), 2.98–2.92 (m, 1H, PhC*H*HCH₂), 2.82–2.78 (m, 1H, PhC*H*HCH₂), 2.56–2.30 (m, 2H, 2 × C*H*HCHF); ¹³C NMR (125 MHz, CDCl₃) δ 164.9 (d, ⁴ $J_{(C-F)} = 1.7$ Hz, CO₂N), 139.2 (2 × Ar–C_q), 137.3 (Ar–C_q), 133.5 (Ar–C), 129.9 (2 × Ar–C), 128.8 (2 × Ar–C), 128.6 (2 × Ar–C), 128.4 (2 × Ar–C), 128.3 (2 × Ar–C), 128.0 (2 × Ar–C), 127.9 (Ar–C), 126.7 (Ar–C), 105.3 (d, ¹ $J_{(C-F)} = 226.2$ Hz, SCHF), 68.1 (OCH₂Ph), 32.3 (d, ² $J_{(C-F)} = 18.7$ Hz, CH₂CH₂CHF), 30.5 (d, ³ $J_{(C-F)} = 2.5$ Hz, PhCH₂CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -177.0 – -176.8 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₃H₂₂FNaO₂S [M+Na]⁺ 418.1247; Found: 418.1262.

3bv-B; benzyl (1-fluoro-3-phenylpropyl)(phenyl)-l⁴-sulfanylidene carbamate

Prepared according to general procedure GP to afford **3bv-B** as a yellow oil (35 mg, 30%) after column chromatography ($R_f = 0.2$, hexane/Et₂O 6:4); IR (film)/cm⁻¹ 3063, 2921, 2851, 1634, 1446, 1376, 1244, 1086; ¹H S20

NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H, 2 × Ar–H), 7.61–7.58 (m, 1 H, Ar–H), 7.54 (t, *J* = 7.5 Hz, 2H, 2 × Ar–H), 7.40 (d, *J* = 7.2 Hz, 2H, 2 × Ar–H), 7.34–7.26 (m, 5H, 5 × Ar–H overlapping with CDCl₃), 7.21 (t, *J* = 7.2 Hz, 1H, Ar–H), 7.10 (d, *J* = 7.2 Hz, 2H, 2 × Ar–H), 5.38 (ddd, ²*J*_(H–F) = 46.8 Hz, ³*J*_(H–H) = 9.6, 3.0 Hz, 1H, SC*H*FCH₂), 5.16 (d, ²*J*_(H–H) = 12.5 Hz, 1H, PhC*H*HO), 5.13 (d, ²*J*_(H–H) = 12.5 Hz, 1H, PhC*H*HO), 2.86–2.81 (m, 1H, PhC*H*HCH₂), 2.77–2.71 (m, 1H, PhC*H*HCH₂), 2.39–2.25 (m, 1H, C*H*HCHF), 1.99–1.89 (m, 1H, C*H*HCHF); ¹³C NMR (125 MHz, CDCl₃) δ 165.1 (CO₂N), 139.1 (2 × Ar–C_q), 137.4 (Ar–C_q), 133.0 (Ar–C), 129.9 (2 × Ar–C), 128.9 (2 × Ar–C), 128.6 (2 × Ar–C), 128.4 (4 × Ar–C), 128.0 (2 × Ar–C), 127.9 (Ar–C), 126.8 (Ar–C), 105.2 (d, ¹*J* (C-F) = 230.6 Hz, SCHF), 68.2 (OCH₂Ph), 30.6 (d, ³*J* (C-F) = 3.0 Hz, PhCH₂CH₂), 30.5 (d, ²*J* (C-F) = 19.2 Hz, CH₂CH₂CHF); ¹⁹F NMR (470 MHz, CDCl₃) δ -179.0 – -178.8 (m, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₃H₂₂FNaO₂S [M+Na]⁺ 418.1247; Found: 418.1249.

3ca; 2-fluoro-1,1-diphenyldecan-1-ol

Prepared according to general procedure GP to afford **3ca** as a white waxy solid (191 mg, 97%) after column chromatography ($R_f = 0.6$, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3559, 3010, 2919, 2851, 1660, 1493, 1448, 1171; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H, 2 × Ar–H), 7.39–7.28 (m, 6H, 6 × Ar–H), 7.24–7.20 (m, 2H, 2 × Ar–H), 5.36 (ddd, ² $_{J}$ (H–F) = 47.0 Hz, ³ $_{J}$ (H–H) = 10.0, 1.7 Hz, 1H, CHFCH₂), 2.60 (d, ⁴ $_{J}$ (H–F) = 2.1, 1H, O–H), 1.82–1.78 (m, 1H, CHHCHF), 1.52–1.46 (m, 1H, CHHCH₂CHF), 1.37–1.21 (m, 12H, 5 × CH₂ overlapping with CHHCHF and CHHCH₂CHF), 0.86 (t, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 144.8 (Ar–C_q), 143.1 (d, ³ $_{J}$ (C–F) = 4.1 Hz, Ar–C_q), 128.2 (4 × Ar–C), 127.2 (Ar–C), 127.1 (Ar–C), 126.7 (d, ⁴ $_{J}$ (C–F) = 1.6 Hz, 2 × Ar–C), 125.8 (2 × Ar–C), 96.3 (d, ¹ $_{J}$ (C–F) = 177.9 Hz, CHF), 79.1 (d, ² $_{J}$ (C–F) = 21.0 Hz, C_q OHCHF), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 28.8 (d, ² $_{J}$ (C–F) = 21.3 Hz, CH₂CHF), 25.7 (d, ³ $_{J}$ (C–F) = 4.1, CH₂CHF), 22.6 (CH₂), 14.1 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -189.4 (ddd, ² $_{J}$ (H–F) = 47.0 Hz, ³ $_{J}$ (H–F) = 42.7, 14.2 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₂₂H₂₈FO [M–H]⁻ 327.2130; Found: 327.2127.

3ce; 1-(1-fluorononyl)-3-methylcyclohex-2-en-1-ol

Prepared according to general procedure GP to afford **3ce** as a white waxy solid (dr = 70:30, 104mg, 68%) after column chromatography (R_f = 0.3, hexane/Et₂O 8:2); *Inseparable mixture of diastereoisomers;* IR (film)/cm⁻¹ 3400, 2924, 2855, 1671, 1454, 1377, 1169, 1070, 967; ¹H NMR (500 MHz, CDCl₃, *mixture of diastereoisomers*) δ 5.41 (s, 0.4H *minor*, Csp²HCOH), 5.34 (s, 1H *major*, Csp²HCOH), 4.35–4.21 (m, 1H *major* + 0.4H *minor*, CHFCH₂), 1.99–1.80 (m, 3H *major* + 1.2H *minor*, CH₂ overlapping OH), 1.80–1.28 (m, 19H *major* + 7.6H *minor*), 0.88 (t, *J* = 6.9 Hz, 3H *major* + 1.2H *minor*, CH₃; ¹³C NMR (125 MHz, CDCl₃, *mixture of diastereoisomers*) δ 141.1 (d, ⁴*J*_(C-F) = 1.0 Hz, *Csp*²CH₃), 140.8 (d, ⁴*J*_(C-F) = 1.6 Hz, *Csp*²CH₃), 122.6 (d, ³*J*_(C-F) = 4.5 Hz, *Csp*²COH), 122.4 (d, ³*J*_(C-F) = 6.7 Hz, *Csp*²COH), 99.9 (d, ¹*J*_(C-F) = 174.0 Hz, CHF), 98.6 (d, ¹*J*_(C-F) = 174.8 Hz, CHF), 71.9 (d, ²*J*_(C-F) = 20.2 Hz, *Cq*OHCHF), 71.6 (d, ²*J*_(C-F) = 19.6 Hz, *Cq*OHCHF), 32.0 (2 × CH₂), 31.4 (d, ³*J*_(C-F) = 3.3 Hz, CH₂COH), 30.5 (2 × CH₂), 30.3 (2 × CH₂), 29.7 (2 × CH₂), 29.6 (2 × CH₂), 29.3 (d, ²*J*_(C-F) = 21.6 Hz, 2 × CH₂CHF), 26.1 (d, ³*J*_(C-F) = 2.4 Hz, CH₂CHF), 26.0 (d, ³*J*_(C-F) = 2.8 Hz, CH₂CHF), 24.1 (2 × CH₃Csp²) 22.8 (2 × CH₂), 18.9 (2 × CH₂), 18.6 (2 × CH₂), 14.3 (2 × CH₃); ¹⁹F NMR (470 MHz, CDCl₃, *mixture*

of diastereoisomers) δ -194.4 – -193.1 (m, 1F *major*, CHF), -196.2 (ddd, ${}^{2}J_{(H-F)} = 47.9$ Hz, ${}^{3}J_{(H-F)} = 42.4$, 15.2 Hz, 0.4F *minor*, CHF); HRMS (ESI) m/z Calcd for C₁₆H₂₉FNaO [M+Na]⁺ 279.2095; Found: 279.2106.

3cf; 1-(1-fluorononyl)cyclohexan-1-ol

Prepared according to general procedure GP to afford **3cf** as a white waxy solid (107 mg, 73%) after column chromatography (R_f = 0.4, hexane/EtOAc 95:5); IR (film)/cm⁻¹ 3436, 2987, 2956, 1450, 1378, 1258, 974, 905; ¹H NMR (500 MHz, CDCl₃) δ 4.26–4.14 (m, 1H, C*H*FCH₂), 1.71–1.62 (m, 5H, C*H*HCHF overlapping with C*H*HCH₂CHF, C*H*HCOH and CH₂), 1.58–1.48 (m, 1H, C*H*HCHF overlapping with O–H, C*H*HCOH, C*H*HCH₂CHF and 2 × CH₂), 1.41–1.19 (m, 12H, 2 × C*H*HCOH overlapping with 5 × CH₂), 0.88 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 99.8 (d, ¹*J* (C-F) = 171.7 Hz, CHF), 72.6 (d, ²*J* (C-F) = 19.5 Hz, C_qOHCHF), 33.5 (d, ³*J*(C-F) = 4.2 Hz, CH₂COH), 32.3 (d, ³*J*(C-F) = 3.7 Hz, CH₂COH), 32.0 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 28.8 (d, ²*J* (C-F) = 21.7 Hz, CH₂CHF), 26.0 (d, ³*J*(C-F) = 2.9 Hz, CH₂CH₂CHF), 25.9 (CH₂), 22.8 (CH₂), 21.4 (2 × CH₂), 14.3 (CH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ -189.4 (ddd, ²*J* (H-F) = 47.0 Hz, ³*J* (H-F) = 42.7, 14.2 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₅H₂₉FNaO [M+Na]⁺ 267.2095; Found: 267.2079.

3ck; 1,1-dicyclopropyl-2-fluorodecan-1-ol

Prepared according to general procedure GP to afford **3ck** as (100 mg, 65%) after column chromatography (R_{f} = 0.5, hexane/Et₂O 9:1); IR (film)/cm⁻¹ 3494, 2925, 2855, 1465, 1378, 1023, 914, 827; ¹H NMR (500 MHz, CDCl₃) δ 4.36 (ddd, ²*J*_(H-F) = 49.0 Hz, ³*J*_(H-H) = 10.4, 2.2 Hz, 1H, C*H*FCH₂), 1.83–1.75 (m, 2H, CH₂), 1.71–1.56 (m, 2H, C*H*HCHF overlapping with, C*H*HCH₂CHF), 1.55 (s, 1H, O–H), 1.43–1.25 (m, 10H, C*H*HCHF overlapping with C*H*HCH₂CHF and 4 × CH₂), 0.92–0.86 (m, 4H, CH₃ overlapping with C*H*COH), 0.79–0.73 (m, 1H, C*H*COH), 0.49–0.29 (m, 8H, 4 × CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 100.7 (d, ¹*J*_(C-F) = 174.6 Hz, CHF), 71.9 (d, ²*J*_(C-F) = 18.6 Hz, C_q OHCHF), 32.0 (CH₂), 30.0 (d, ²*J*_(C-F) = 21.4 Hz, CH₂CHF), 29.7 (2 × CH₂), 29.4 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 26.2 (d, ³*J*_(C-F) = 2.6 Hz, CH₂CHF), 22.8 (CH₂), 15.1 (d, ³*J*_(C-H) = 4.7 Hz, CHCOH), 14.6 (d, ³*J*_(C-H) = 3.6 Hz, CHCOH), 14.3 (CH₃), 0.8 (CH₂), 0.4 (d, ⁴*J*_(C-F) = 0.8 Hz, CH₂), -0.7 (CH₂), -0.9 (CH₂); ¹⁹F NMR (470 MHz, CDCl₃) δ -193.0 (ddd, ²*J*_(H-F) = 49.0 Hz, ³*J*_(H-F) = 42.5, 15.7 Hz, 1F, CHF); HRMS (ESI) m/z Calcd for C₁₆H₂₉FNaO [M+Na]⁺ 279.2095; Found: 279.2118.

5. <u>Copy of ¹H</u>, ¹³C and ¹⁹F NMR spectra for compounds 3aa-3ck

-187.3 -187.4 -187.4 -187.4 -187.5 -187.5 -187.5

S2

C

S3

S5

190.4 190.4 190.4 190.5

4.1 4

S11

7.7 7

-191.0 -191.0 -191.0 -191.1 -191.1 -191.1 -191.1 -191.2

7

-187.1 -187.1 -187.1 -187.2 -187.2 -187.2 -187.2

S24

7.33 7.34 7.35 7.34 7.35 7.35 7.34 7.35 7.35 7.34 7.35 7.35 7.35 7.36 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 <t

7.31 7.29 7.28 7.28 7.21 7.21	5.33 5.33 5.23 5.23 5.23 5.23	3.33 3.33 3.33 3.33 3.33 3.33 3.27 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	$\begin{array}{c} 1.45\\ 1.45\\ 1.44\\ 1.29\\ 1.29\\ 0.88\\ 0.88\\ 0.85\\$

3as ¹H NMR (500 MHz, CDCl₃)

∕_96.4 ∕_94.9

139.3
139.3
139.3
129.2
128.6
126.6

3as ¹³C NMR (125 MHz, CDCl₃)

42.542.3

29.1
 27.5
 27.5

--208.8 --208.9 --208.9 --208.9 --208.9 --209.0

-190.1 -190.2 -190.2 -190.2 -190.2 -190.2 -190.2 -190.2

3bm Inseparable mixture of diastereoisomers ¹³C NMR

(125 MHz, CDCl₃)

diastereoisomers R DCl₃)

- 189.9 - 189.9 - 189.9 - 190.0 - 190.0 - 190.0 - 190.0 - 191.

-148 -152 -156 -160 -164 -168 -172 -176 -180 -184 -188 -192 -196 -200 f1 (ppm)

-189.2 -189.3 -189.3 -189.4 -189.4 -189.4 -189.4 -189.4

-196.2 -196.2 -196.2 -196.3 -196.3 -196.3 -196.4 -196.4

$\begin{array}{c} 4.4\\ 4.430\\ 4.43$

6. <u>References</u>

- 1 A. F. Burchat, J. M. Chong and N. Nielsen, J. Organomet. Chem., 1997, 542, 281.
- 2 X. Jiang, S. Sakthivel, K. Kulbitski, G. Nisnevich and M. Gandelman, 2014, 8.
- 3 W. Li, A. Varenikov and M. Gandelman, *European J. Org. Chem.*, 2020, 2020, 3138.
- 4 X. Jiang and M. Gandelman, J. Am. Chem. Soc., 2015, 137, 2542.
- 5 W. R. Dolbier and M. Okamoto, J. Fluor. Chem., 2015, 179, 33.
- M. Andresini, M. Spennacchio, M. Colella, G. Losito, A. Aramini, L. Degennaro and R. Luisi, *Org. Lett.*, 2021, 23, 6850.
- 7 H. Bao, L. Bayeh and U. K. Tambar, Angew. Chem. Int. Ed., 2014, 53, 1664.
- J. Morvan, T. McBride, I. Curbet, S. Colombel-Rouen, T. Roisnel, C. Crévisy, D. L. Browne and M. Mauduit, *Angew. Chem. Int. Ed.*, 2021, **60**, 19685.
- 9 G. Landelle, M.-O. Turcotte-Savard, L. Angers and J.-F. Paquin, Org. Lett., 2011, 13, 1568.
- 10 T. B. Patrick, L. Zhang and Q. Li, J. Fluor. Chem., 2000, 102, 11.
- 11 S. Ponra, J. Yang, S. Kerdphon and P. G. Andersson, *Angew. Chemie Int. Ed.*, 2019, 58, 9282.