Electrochemical Synthesis of 2-Alkyl-4-phenylalkan-2-ols *via* Cathodic Reductive Coupling of Alkynes with Unactivated Aliphatic Ketones.

Anil Balajirao Dapkekar, Gedu Satyanarayana*

Department of Chemistry, Indian Institute of Technology Hyderabad

Kandi – 502 285, Sangareddy

Telangana, INDIA

Phone: (040) 2301 6251; Fax: (040) 2301 6003/32

E-mail: gvsatya@chy.iith.ac.in

Supporting Information

General experimental	S2
General procedures of electrochemical reaction	S3
Photographic guide for electrochemical reaction	S3
Cyclic voltammograms	S4
Control experiments	S5
Characterization of products	S 8
¹ H and ¹³ C{ ¹ H}-NMR spectra all compounds	S26
Crystal structure data	S80
References	S81

Experimental:

General methods:

IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. ¹H NMR spectra were recorded on Bruker Advance 400 (400 MHz) and 600 (600 MHz) spectrometers at 295 K in CDCl₃; chemical shifts (δ ppm) and coupling constants (Hz) are reported in standard fashion concerning either internal standard tetramethylsilane (TMS) ($\delta H = 0.00 \text{ ppm}$) or CDCl₃ ($\delta H =$ 7.26 ppm). ¹³C{¹H} NMR spectra were recorded on Bruker Advance 400 (100 MHz) and 600 (151 MHz) spectrometers at RT in CDCl₃. Chemical shifts (δ ppm) are reported relative to CDCl₃ [δ = 77.16 ppm (central line of the triplet)]. In the ¹³C{¹H} NMR, the nature of carbons (C, CH, CH₂, and CH₃) was determined by recording the DEPT-135 spectra and is given in parentheses and noted as s = singlet (for C), d = doublet (for CH), t = triplet (for CH₂) and q =quartet (for CH_3). In the ¹H-NMR, the following abbreviations were used throughout: s =singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sept = septet, dd = doublet of doublet, m = multiplet and br. s = broad singlet. The assignment of signals was confirmed by ¹H, $^{13}C{^{1}H}$ CPD, and DEPT spectra. High-resolution mass spectra (HRMS) were recorded on an Agilent 6538 UHD Q-TOF electron spray ionization (ESI) mode and atmospheric pressure chemical ionization (APCI) modes. Melting points are recorded using Tempo and Mettler FP1 melting point apparatus in capillary tubes and are uncorrected. A single crystal of 3eg was selected and mounted on an Oxford SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 298 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using direct methods and refined with the olex2. refinement package using Gauss-Newton minimization. Electrolysis reactions were conducted using ElectraSyn 2.0 Package supply purchased from IKA Instruments. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Solvents were distilled before use; petroleum ether the boiling range of 60-80 °C was used. Cyclic voltammetry (CV) analysis was performed on ElectraSyn 2.0 Package, using a glassy carbon electrode as working electrode, a platinum electrode as counter electrode and Ag/AgCl electrode as a reference electrode. Cyclic voltammogram was recorded at 200 mV/s scan rate. aliphatic ketones, DMF, DCM, TBAI were purchased from Sigma-Alkynes, Aldrich/Avra/BLD/TCI/local sources and used as received. Acme's silica gel (60–120 mesh) was used for column chromatography (approximately 20 g per one gram of crude material).

General Procedure for the Preparation of *tert*-Alcohols (GP): It was carried out with terminal acetylene 1 (0.98 mmol, 1 equiv), alkyl ketone 2 (3.91 mmol, 4 equiv), TBAI (0.01 M) in 8 mL DMF was added to an ElectraSyn vial (10 mL) with a magnetic stirring bar. The ElectraSyn vial cap equipped with anode (Zinc) and cathode (Graphite) were inserted into the mixture. The reaction mixture was electrolyzed at ambient temperature under a constant current of 15 mA for 9 h to 12 h. After electrolysis, the ElectraSyn vial cap was removed, electrodes were rinsed with DCM (1 mL) and the mixture was poured into aqueous NH₄Cl solution (40 mL) and extracted with DCM (3×10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. Evaporation of the solvent(s) under reduced pressure and purification of the residue by silica gel column chromatography using petroleum ether/ethyl acetate as the eluent furnished the desired product *tert*-alcohol **3** (up to 92% yields).

Photographic guide for electrochemical reaction:

Left: Select New "Experiment" Middle: Select "Constant Current" Right: Select "15 mA"

Left: Reference electrode chose "No" Middle: Select "Time" Right: Select "9 hours"

Left: Select "0.98 mmol" Middle: Alternate the polarity Chose "No" Right: Select "Start the experiment"

Cyclic Voltammograms:

The cyclic voltammetry (CV) studies were carried out to further investigate the reaction mechanism, and below Figure 1S shows the cyclic voltammetry (CV) curves with 0.01 M LiClO₄ solution in DMF as a background. The voltammogram was obtained at a scan rate of 200 mV/s with Pt electrode as a counter electrode, Ag/AgCl as a reference electrode, and glassy carbon electrode as a working electrode. Within the scanning window (-2.2 to 0.5 V), the CV of acetone **2a** displayed reduction peak at -0.93 V *vs* Ag/AgCl (curve 1). When testing phenylacetylene **1a**, a reduction peak was seemed at -1.19 V *vs* Ag/AgCl in curve 2, signifying that the reduction of phenylacetylene required a strong reduction signals at -1.19 V and -0.97 V *vs* Ag/AgCl, responding to two reduction processes in electrolysis (curve 3). After adding ZnCl₂, the reduction peaks were appeared in the range of -0.88 V to 0.02 V (curve 4). On the basis of above results, we hypothesised that acetone may produce ketyl radicals *in-situ* by cathodic reduction and further activate alkynes in the presence of zinc salts.

Figure S1. Cyclic voltammograms of reactants and their mixtures in 0.01 M LiClO₄ solution in DMF at room temperature: a) Acetone 2a (0.04 M); b) Phenylacetylene 1a (0.01 M); c) Phenylacetylene 1a (0.01 M) + acetone 2a (0.04 M); d) Phenylacetylene 1a (0.01 M) + acetone 2a (0.04 M) + $ZnCl_2$ (0.01M). The voltammogram was obtained at a scan rate of 200 mV/s with Pt electrode as a counter electrode, Ag/AgCl as a reference electrode, and glassy carbon electrode as a working electrode.

Reaction conditions: a) The reaction was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), acetone **2a** (227.5 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M), in DMF (8 mL) for 1.5 h and 4 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the mixture of product **6** & **3aa** in 20% and 65% respectively, as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection]. b) The reaction was carried out with (*E*)-2-methyl-4-phenylbut-3-en-2-ol **6** (159 mg, 0.98 mmol), TBAI (29 mg, 0.01 M) in DMF (8

mL) for 14 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3aa** (120 mg, 75%), as an orange liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection]. c) The reaction was carried out with 2methyl-4-phenylbutan-2-ol 3aa (40 mg, 0.4 mmol) TBAI (29 mg, 0.01 M) in DMF (8 mL) for 8 h. d) The reaction was carried out with phenylacetylene 1a (100 mg, 0.98 mmol), acetone 2a (227.47 mg, 3.91 mmol), TBAI (29 mg, 0.01 M), and TEMPO (2 equiv., 306 mg) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product 2-methyl-4-phenylbut-3-yn-2-ol 7 (23 mg, 15%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection]. e) The reaction was carried out with phenylacetylene 1a (100 mg, 0.98 mmol), acetone 2a (227.5 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M), in DMF/D₂O (7.5/0.5 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished product 8 (82.3 mg, 50%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection]. The deuteration percentage is confirmed by ¹H NMR. f) The reaction was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), acetone 2a (227.5 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M), and BHT (2 equiv., 432 mg) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3aa** (32 mg, 20%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection]. g) The reaction was carried out with phenylacetylene 1a (100 mg, 0.98 mmol), acetone 2a (227.5 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M), and DPE (2 equiv., 353 mg) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product 9:3aa (67:33) in 50% yield as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

The substituted diphenylacetylenes **4b-4e** are prepared from previous literature reports as shown in the Table-1S.^{1,2}

Table-1S. Previously reported diphenylacetylenes 4.

The following Products **3aa**, **3ca**, **3da**, **3ga**, **3ac**, **3af**, **3ag**, and **3dg** are known in the literature as shown in Table-2S.^{3–7}

 Table-2S. The reported compounds of *tert*-alcohols 3.

Characterization of compounds:

4-(4-Butylphenyl)-2-methylbutan-2-ol (3ba):

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.0 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ba** (177.0 mg, 82%), as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

The gram scale synthesis of 3ba: It was carried out with 4-butyl phenylacetylene (3.16 mmol, 0.5 g), acetone (12.64 mmol, 4 equiv., 0.74 g), TBAI (0.01 M) in 10 mL DMF for 36 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ba** (0.56 g, 80%), as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3372$, 2927, 2862, 1459, 1372, 1204, 1144, 919, 822 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.13$ (s, 4H), 2.71 – 2.66 (m, 2H), 2.63 – 2.58 (t, 2H, J = 8 Hz), 1.82 – 1.78 (m, 2H), 1.64 (m, 3H), 1.42 (m, 2H), 1.30 (s, 6H), 0.95 (t, J = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 139.7, 128.5 (2 × Ar–CH), 128.2 (2 × Ar–CH), 71.0, 45.9, 35.3, 33.8, 30.4, 29.4 (2 × CH₃), 22.5, 14.1 ppm. HRMS: *m/z* calcd for C₁₅H₂₄KO⁺ [M+K]⁺: 259.1459, found: 259.1458.

4-(4-Ethylphenyl)-2-methylbutan-2-ol (3ea)

GP was carried out with 1-ethyl-4-ethynylbenzene **1e** (127.6 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ea** (173.4 mg, 92%) as an orange liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3374$, 2964, 1513, 1457, 1371, 1204, 1143, 917, 823 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.14$ (s, 4H), 2.72 – 2.66 (m, 2H), 2.63 (t, J = 7.6 Hz, 2H), 1.84 – 1.75 (m, 2H), 1.53 (s, 1H), 1.30 (s, 6H), 1.24 (t, J = 7.6 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 141.7$, 139.8, 128.3 (2 × Ar–CH), 128.0 (2 × Ar–CH), 71.1, 45.9, 30.4, 29.4 (2 × CH₃), 28.5, 15.8 ppm. HRMS (ESI): m/z calcd for C₁₃H₂₄NO⁺ [M+NH₄]⁺: 210.1852, found: 210.1857.

2-Methyl-4-(4-propylphenyl)butan-2-ol (3ha)

GP was carried out with 1-ethynyl-4-propylbenzene **1h** (141.3 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ha** (161.7 mg, 80%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3373$, 2960, 2929, 1513, 1459, 1373, 1205, 1145, 919, 809 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.18 - 7.05$ (m, 4H), 2.73 – 2.63 (m, 2H), 2.58 – 2.53 (m, 2H), 1.83 – 1.75 (m, 2H), 1.68 – 1.58 (m, 2H), 1.29 (s, 6H), 1.26 (s, 1H), 0.94 (t, J = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.2$, 139.8, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 71.1, 45.9, 37.8, 30.4, 29.4 (2 × CH₃), 24.7, 14.1 ppm. HRMS: *m/z* calcd for C₁₄H₂₂KO⁺ [M+K]⁺: 245.1302, found: 245.1300.

2-Methyl-4-(4-pentylphenyl)butan-2-ol (3ia)

GP was carried out with 1-ethynyl-4-pentylbenzene **1i** (168.8 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ia** (172.3 mg, 75%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3372, 2926, 2860, 1513, 1458, 1372, 1205, 1141, 918, 824, 758 cm⁻¹. ¹$ **H NMR** $(400 MHz, CDCl₃) <math>\delta = 7.18 - 7.06$ (m, 4H), 2.74 – 2.64 (m, 2H), 2.58 (t, J = 8Hz, 2H), 1.84 – 1.76 (m, 2H), 1.67 – 1.55 (m, 3H), 1.39 – 1.32 (m, 4H), 1.30 (s, 6H), 0.91 (t, J = 6.9 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4, 139.7, 128.5$ (2 × Ar–CH), 128.3 (2 × Ar–CH), 71.1, 45.9, 35.6, 31.7, 31.4, 30.4, 29.4 (2 × CH₃), 22.7, 14.1 ppm. HRMS: m/z calcd for C₁₆H₃₀NO⁺ [M+NH₄]⁺: 252.2322, found: 252.2325.

2-Cyclopropyl-4-phenylbutan-2-ol (3ab)

GP was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), 1-cyclopropylethan-1-one **2b** (329.4 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ab** (149.0 mg, 80%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3444$, 2932, 1453, 1374, 1029, 917, 866, 748, 700 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.32 - 7.24$ (m, 2H), 7.23 - 7.14 (m, 3H), 2.76 (td, J = 7.4, 3.5 Hz, 2H), 1.90 - 1.76 (m, 2H), 1.21 (s, 1H), 1.16 (s, 3H), 0.95 (tt, J = 8.3, 5.7 Hz, 1H), 0.46 - 0.26 (m, 4H) ppm. ¹³C{**H**} **NMR** (151 MHz, CDCl₃) $\delta = 142.8$, 128.5 (2 × Ar–CH), 128.4 (2 × Ar–CH), 125.7, 71.1, 45.1, 30.5, 25.9, 21.2, 0.7, 0.6 ppm. **HRMS (ESI):** *m/z* calcd for C₁₃H₂₂NO⁺ [M+NH₄]⁺: 208.1696, found: 208.1701.

4-(4-Butylphenyl)-2-cyclopropylbutan-2-ol (3bb)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), 1cyclopropylethan-1-one **2b** (329.4 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bb** (193.2 mg, 80%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3449$, 2928, 2861, 1456, 1373, 1104, 1026, 923, 822 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.18 - 7.06$ (m, 4H), 2.74 (td, J = 7.3, 2.8 Hz, 2H), 2.58 (t, J = 8 Hz, 2H), 1.90 – 1.78 (m, 2H), 1.67 – 1.53 (m, 3H), 1.40 – 1.31 (m, 2H), 1.18 (s, 3H), 1.07 (s, 1H), 1.02 – 0.95 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H), 0.47 – 0.25 (m, 4H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 139.9, 128.5 (2 × Ar–CH), 128.3 (2 × Ar–CH), 71.2, 45.2, 35.3, 33.9, 30.1, 26.0, 22.5, 21.2, 14.1, 0.8, 0.6 ppm. HRMS (ESI): m/z calcd for C₁₇H₃₀NO⁺ [M+NH₄]⁺: 264.2322, found: 264.2329.

2-Cyclopropyl-4-(4-methoxyphenyl)butan-2-ol (3cb)

GP1 was carried out with 1-ethynyl-4-methoxybenzene 1c (129.5 mg, 0.98 mmol), 1cyclopropylethan-1-one **2b** (329.4 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3cb** (161.9 mg, 75%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3426$, 2944, 1511, 1457, 1245, 1176, 1035, 924, 824 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.13$ (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 2.78 – 2.63 (m, 2H), 1.86 – 1.76 (m, 2H), 1.26 (s, 1H), 1.17 (s, 3H), 1.04 – 0.89 (m, 1H), 0.48 – 0.26 (m, 4H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 157.8$, 134.9, 129.3 (2 × Ar–CH), 113.9 (2 × Ar–CH), 71.2, 55.4, 45.4, 29.6, 26.0, 21.2, 0.8, 0.6 ppm. HRMS (ESI): m/z calcd for C₁₄H₂₄NO₂⁺ [M+NH₄]⁺: 238.1802, found: 238.1805.

2-Cyclopropyl-4-(4-fluorophenyl)butan-2-ol (3db)

GP was carried out with 1-ethynyl-4-fluorobenzene **1d** (117.7 mg, 0.98 mmol), 1cyclopropylethan-1-one **2b** (329.4 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3db** (153.1 mg, 75%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{max} = 3442$, 2930, 1508, 1374, 1220, 1157, 1097, 1025, 921, 827 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.21 - 7.12$ (m, 2H), 7.01 – 6.89 (m, 2H), 2.81 – 2.68 (m, 2H), 1.86 – 1.76 (m, 2H), 1.25 (s, 1H), 1.17 (s, 3H), 0.96 (ddt, J = 14.1, 8.3, 5.6 Hz, 1H), 0.47 – 0.27 (m, 4H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 161.3$ (d, J = 243.1 Hz), 138.4 (d, J = 2.9 Hz), 129.7 (d, J = 7.9 Hz, 2 × Ar–CH), 115.2 (d, J = 20.8 Hz, 2 × Ar–CH), 71.1, 45.2, 29.7, 26.0, 21.2, 0.8, 0.6 ppm. ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -118.01$ (s). HRMS (ESI): m/z calcd for C₁₃H₂₅FN₂O²⁺ [M+2(NH₄)]⁺²: 122.0970, found: 122.0964.

2-Cyclopropyl-4-(4-ethylphenyl)butan-2-ol (3eb)

GP was carried out with 1-ethyl-4-ethynylbenzene **1e** (127.6 mg, 0.98 mmol), 1cyclopropylethan-1-one **2b** (329.4 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3db** (186.1 mg, 87%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3445$, 2960, 1513, 1453, 1373, 1103, 1032, 922, 823 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.24 - 7.09$ (m, 4H), 2.77 (td, J = 7.3, 3.0 Hz, 2H), 2.65 (q, J = 7.6 Hz, 2H), 1.93 – 1.79 (m, 2H), 1.42 (s, 1H), 1.26 (t, J = 7.6 Hz, 3H), 1.20 (s, 3H), 0.99 (tt, J = 8.3, 5.9 Hz, 1H), 0.51 – 0.28 (m, 4H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 141.7$, 139.9, 128.4 (2 × Ar–CH), 127.9 (2 × Ar–CH), 71.2, 45.2, 30.1, 28.5, 25.9, 21.2, 15.8, 0.7, 0.6 ppm. HRMS (ESI): m/z calcd for C₁₅H₂₂NaO⁺ [M+Na]⁺: 241.1563, found: 241.1568.

1-(4-Butylphenyl)-3-ethylpentan-3-ol (3bc)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), pentan-3-one **2c** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bc** (206.9 mg, 85%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3408$, 2931, 1513, 1456, 1379, 1126, 926, 822 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16 - 7.07$ (m, 4H), 2.65 - 2.54 (m, 4H), 1.77 - 1.68 (m, 2H), 1.63 - 1.51 (m, 6H), 1.36 (dq, J = 14.6, 7.3 Hz, 3H), 0.92 (q, J = 7.4 Hz, 9H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 139.9, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 74.7, 40.6, 35.4, 33.9, 31.1 (2 × CH₂), 29.6, 22.5, 14.1, 7.9 (2 × CH₃) ppm. HRMS: m/z calcd for $C_{17}H_{28}KO^+$ [M+K]⁺: 287.1772, found: 287.1773.

3-Ethyl-1-(4-ethylphenyl)pentan-3-ol (3ec)

GP was carried out with 1-ethyl-4-ethynylbenzene **1e** (127.6 mg, 0.98 mmol), pentan-3-one **2c** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ec** (155.5 mg, 72%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3424$, 2959, 1512, 1455, 1379, 1129, 1042, 963, 820 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.13$ (s, 4H), 2.65 – 2.57 (m, 4H), 1.77 – 1.68 (m, 2H), 1.54 (q, J = 7.5 Hz, 4H), 1.29 (s, 1H), 1.23 (t, J = 7.6 Hz, 3H), 0.90 (t, J = 7.5 Hz, 6H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 141.8$, 140.0, 128.4 (2 × Ar–CH), 128.0 (2 × Ar–CH), 74.8, 40.6, 31.1 (2 × CH₂), 29.6, 28.6, 15.8, 7.9 (2 × CH₃) ppm. **HRMS:** *m/z* calcd for C₁₅H₂₄KO⁺ [M+K]⁺: 259.1459, found: 259.1460.

1-(4-Butylphenyl)-3,4-dimethylpentan-3-ol (3bd)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), 3-methylbutan-2-one **2d** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bd** (158.2 mg, 65%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3449$, 2941, 1513, 1458, 1376, 1184, 1090, 921, 823, 752 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.18 - 7.06$ (m, 4H), 2.72 – 2.62 (m, 2H), 2.58 (t, J = 8 Hz, 2H), 1.82 – 1.69 (m, 3H), 1.63 – 1.54 (m, 2H), 1.41 – 1.31 (m, 2H), 1.26 (s, 1H), 1.17 (s, 3H), 1.00 – 0.88 (m, 9H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 140.0, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 74.9, 41.9, 37.1, 35.4, 33.9, 29.6, 23.2, 22.5, 17.7, 17.1, 14.1 ppm. HRMS (ESI): m/z calcd for C₁₇H₂₈NaO⁺ [M+Na]⁺: 271.2032, found: 271.2043.

1-(4-Fluorophenyl)-3,4-dimethylpentan-3-ol (3dd)

GP was carried out with 1-ethynyl-4-fluorobenzene **1d** (117.7 mg, 0.98 mmol), 3-methylbutan-2-one **2d** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3dd** (113.3 mg, 55%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3428$, 2964, 1602, 1509, 1459, 1376, 1221, 1157, 1084, 829, 766 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.18 - 7.12$ (m, 2H), 6.96 (ddd, J = 10.9, 5.8, 2.6 Hz, 2H), 2.74 – 2.60 (m, 2H), 1.78 – 1.70 (m, 3H), 1.71 (s, 1H), 1.25 (s, 1H), 1.16 (s, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 161.3$ (d, J = 243.2 Hz), 138.5 (d, J = 3.2 Hz), 129.8 (d, J = 7.7 Hz, 2 × Ar–CH), 115.2 (d, J = 20.8 Hz, 2 × Ar–CH), 74.8, 41.9, 37.1, 29.2, 23.1, 17.7, 17.1 ppm. ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -117.99$ (s). HRMS: m/z calcd for C₁₃H₁₉FNaO⁺ [M+Na]⁺: 233.1312, found: 233.1333.

3-Methyl-1-phenylhexan-3-ol (3ae)

GP was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), pentan-2-one **2e** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ae** (150.6 mg, 80%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3392$, 2953, 1704, 1454, 1374, 1272, 1139, 929, 743, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.34 - 7.27$ (m, 2H), 7.25 - 7.16 (m, 3H), 2.75 - 2.65 (m, 2H), 1.84 - 1.73 (m, 2H), 1.56 - 1.49 (m, 2H), 1.41 (ddt, J = 9.1, 7.1, 4.6 Hz, 2H), 1.25 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 142.7$, 128.5 (2 × Ar–CH), 128.4 (2 × Ar–CH), 125.8, 72.8, 44.4, 43.8, 30.4, 26.9, 17.3, 14.8 ppm. HRMS: m/z calcd for C₁₃H₂₀KO⁺ [M+K]⁺: 231.1146, found: 231.1134.

1-(4-Butylphenyl)-3-methylhexan-3-ol (3be)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.0 mg, 0.98 mmol), pentan-2-one **2e** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3be** (199.6 mg, 82%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3385$, 2931, 1513, 1457, 1374, 1140, 932, 821, 638 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.17 - 7.08$ (m, 4H), 2.69 – 2.63 (m, 2H), 2.62 – 2.56 (m, 2H), 1.81 – 1.73 (m, 2H), 1.65 – 1.55 (m, 2H), 1.55 – 1.48 (m, 2H), 1.44 – 1.30 (m, 5H), 1.24 (s, 3H), 0.95 (q, J = 15.3, 7.4 Hz, 6H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 139.8, 128.5, 128.3, 72.9, 44.5, 43.9, 35.3, 33.8, 30.0, 27.0, 22.5, 17.3, 14.8, 14.1 ppm. HRMS: m/z calcd for C₁₇H₂₈KO⁺ [M+K]⁺: 287.1772, found: 287.1774.

3-Ethyl-1-(3-methoxyphenyl)pentan-3-ol (3kc)

GP was carried out with 1-ethynyl-3-methoxybenzene **1k** (129.5 mg, 0.98 mmol), pentan-3one **2c** (336.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3kc** (163.4 mg, 75%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3438$, 2941, 1595, 1454, 1258, 1154, 1042, 927, 778, 694 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.21$ (t, J = 7.8 Hz, 1H), 6.85 – 6.78 (m, 1H), 6.78 – 6.70 (m, 2H), 3.80 (s, 3H), 2.66 – 2.58 (m, 2H), 1.77 – 1.70 (m, 2H), 1.55 (q, J = 7.5 Hz, 4H), 1.26 (s, 1H), 0.91 (t, J = 7.5 Hz, 6H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 159.8$, 144.6, 129.5, 120.9, 114.3, 111.1, 74.7, 55.3, 40.4, 31.1 (2 × CH₂), 30.1, 7.9 (2 × CH₃) ppm. **HRMS:** m/z calcd for C₁₄H₂₂KO₂⁺ [M+K]⁺: 261.1251, found: 261.1238.

2-Methyl-4-(m-tolyl)butan-2-ol (3ja)

GP was carried out with 1-ethynyl-3-methylbenzene **1j** (113.8 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ja** (131.0 mg, 75%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3372$, 2965, 1606, 1463, 1372, 1206, 1139, 918, 772, 697 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.20$ (t, J = 7.5 Hz, 1H), 7.10 – 6.97 (m, 3H), 2.76 – 2.63 (m, 2H), 2.35 (s, 3H), 1.88 – 1.74 (m, 2H), 1.58 (s, 1H), 1.31 (s, 6H) ppm. ¹³C{**H**} **NMR** (100 MHz, CDCl₃) $\delta = 142.6$, 138.0, 129.3, 128.4, 126.6, 125.4, 71.0, 45.9, 30.8, 29.4 (2 × CH₃), 21.5 ppm. **HRMS (ESI):** m/z calcd for C₁₂H₂₂NO⁺ [M+NH₄]⁺ : 196.1696, found: 196.1701.

4-(3-Methoxyphenyl)-2-methylbutan-2-ol (3ka)

GP was carried out with 1-ethynyl-3-methoxybenzene **1k** (129.5 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ka** (133.3 mg, 70%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3396$, 2962, 1594, 1466, 1371, 1256, 1151, 1044, 917, 775, 693 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.20$ (t, J = 7.8 Hz, 1H), 6.83 – 6.78 (m, 1H), 6.78 – 6.70 (m, 2H), 3.80 (s, 3H), 2.74 – 2.64 (m, 2H), 1.82 – 1.76 (m, 2H), 1.43 (s, 1H), 1.29 (s, 6H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 159.7$, 144.3, 129.4, 120.8, 114.1, 111.1, 70.9, 55.2, 45.6, 30.9, 29.4 (2 × CH₃) ppm. **HRMS:** *m*/*z* calcd for C₁₂H₂₂NO₂⁺ [M+NH₄]⁺ : 212.1645, found: 212.1618.

2-Cyclopropyl-4-(m-tolyl)butan-2-ol (3jb)

GP was carried out with 1-ethynyl-3-methylbenzene **1j** (113.8 mg, 0.98 mmol), 1cyclopropylethan-1-one **2b** (329.4 mg, 3.44 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 9 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3jb** (160.2 mg, 80%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3444$, 2929, 1604, 1456, 1374, 1102, 1031, 918, 780, 698 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.21$ (t, J = 7.5 Hz, 1H), 7.07 – 7.02 (m, 3H), 2.76 (td, J = 7.3, 3.2 Hz, 2H), 2.36 (s, 3H), 1.95 – 1.76 (m, 2H), 1.29 (s, 1H), 1.20 (s, 3H), 0.99 (tt, J = 8.2, 5.9 Hz, 1H), 0.56 – 0.25 (m, 4H) ppm. ¹³C{H} **NMR** (151 MHz, CDCl₃) $\delta = 142.8$, 137.9, 129.3, 128.4, 126.5, 125.4, 71.1, 45.2, 30.4, 25.9, 21.5, 21.2, 0.7, 0.6 ppm. **HRMS** (**ESI**): m/z calcd for C₁₄H₂₀NaO⁺ [M+Na]⁺: 227.1406, found: 227.1414.

1-(4-Butylphenethyl)cyclopentan-1-ol (3bf)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), cyclopentanone **2f** (328.9 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bf** (169.0 mg, 70%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{max} = 3385$, 2937, 1711, 1512, 1451, 1206, 1093, 1023, 954, 823, 655 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16 - 7.07$ (m, 4H), 2.78 – 2.69 (m, 2H), 2.58 (t, J = 8 Hz, 2H), 1.93 – 1.87 (m, 2H), 1.87 – 1.80 (m, 2H), 1.70 – 1.55 (m, 8H), 1.42 – 1.30 (m, 3H), 0.93 (t, J = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 139.9, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 82.7, 43.7, 39.9 (2 × CH₂), 35.3, 33.9, 30.9, 23.9 (2 × CH₂), 22.5, 14.1 ppm. HRMS: *m/z* calcd for C₁₇H₂₆KO⁺ [M+K]⁺: 285.1615, found: 285.1618.

1-(4-Methylphenethyl)cyclopentan-1-ol (3ff)

GP was carried out with 1-ethynyl-4-methylbenzene **1f** (113.8 mg, 0.98 mmol), cyclopentanone **2f** (328.9 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ff** (156.2 mg, 78%) as a white solid, mp = 51-53 °C [TLC control (petroleum ether/ethyl acetate 95:05), *Rf* = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3381$, 2945, 1514, 1448, 1209, 1090, 1026, 953, 808, 758, 651 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.17 - 7.06$ (m, 4H), 2.78 – 2.70 (m, 2H), 2.33 (s, 3H), 1.93 – 1.87 (m, 2H), 1.87 – 1.78 (m, 2H), 1.74 – 1.60 (m, 6H), 1.39 (s, 1H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 139.6$, 135.2, 129.1 (2 × Ar–CH), 128.2 (2 × Ar–CH), 82.5, 77.1, 76.9, 43.7, 39.8 (2 × CH₂), 30.8, 23.8 (2 × CH₂), 21.0 ppm. HRMS: *m/z* calcd for C₁₄H₂₀KO⁺ [M+K]⁺: 243.1146, found: 243.1143.

1-(4-Butylphenethyl)cyclohexan-1-ol (3bg)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), cyclohexanone **2g** (383.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bg** (204.2 mg, 80%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) v_{max} = 3409, 2929, 1513, 1258, 1011, 786, 688 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.17 – 7.04 (m, 4H), 2.73 – 2.62 (m, 2H), 2.58 (t, *J* = 8 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.66 (s, 1H), 1.64 – 1.56 (m, 5H), 1.50 (dt, *J* = 17.4, 7.2 Hz, 4H), 1.45 – 1.26 (m, 5H), 0.92 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) δ = 140.4, 140.0, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 71.6, 44.5, 37.6 (2 × CH₂), 35.3, 33.9, 29.1, 25.9, 22.5 (2 × CH₂), 22.4, 14.1 ppm. HRMS (ESI): *m*/*z* calcd for C₁₈H₂₈NaO⁺ [M+Na]⁺ : 283.2032, found: 283.2037.

1-(4-Ethylphenethyl)cyclohexan-1-ol (3eg)

GP was carried out with 1-ethyl-4-ethynylbenzene **1e** (127.6 mg, 0.98 mmol), cyclohexanone **2g** (383.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3eg** (159.4 mg, 70%) as a white solid, mp = 50–52 °C [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3363$, 2925, 1512, 1449, 1304, 1172, 1031, 811, 656 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.23 - 7.08$ (m, 4H), 2.75 - 2.68 (m, 2H), 2.64 (t, J = 7.6 Hz, 2H), 1.81 - 1.75 (m, 2H), 1.69 - 1.58 (m, J = 13.5, 5.2 Hz, 5H), 1.57 - 1.43 (m, J = 18.4, 8.5 Hz, 5H), 1.37 (s, 1H), 1.26 (t, J = 7.6 Hz, 3H) ppm. ¹³C{**H**} **NMR** (151 MHz, CDCl₃) $\delta = 141.6$, 140.1, 128.4 (2 × Ar–CH), 127.9 (2 × Ar–CH), 71.6, 44.4, 37.5 (2 × CH₂), 29.0, 28.5, 25.9, 22.3 (2 × CH₂), 15.7 ppm. **HRMS (ESI):** *m/z* calcd for C₁₆H₂₄KO⁺ [M+K]⁺ : 271.1459, found: 271.1460.

1-(3-Methylphenethyl)cyclohexan-1-ol (3jg)

GP was carried out with 1-ethynyl-3-methylbenzene **1j** (113.8 mg, 0.98 mmol), cyclohexanone **2g** (383.8 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3jg** (149.8 mg, 70%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3395$, 2926, 1605, 1449, 1257, 1169, 966, 783, 698 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.18$ (t, J = 7.5 Hz, 1H), 7.07 – 6.96 (m, 3H), 2.70 – 2.63 (m, 2H), 2.33 (s, 3H), 1.80 – 1.70 (m, 2H), 1.66 – 1.57 (m, 5H), 1.55 – 1.44 (m, 5H), 1.29 (s, 1H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 142.9$, 138.1, 129.3, 128.4, 126.6, 125.5, 71.6, 44.5, 37.6 (2 × CH₂), 29.4, 25.9, 22.4 (2 × CH₂), 21.5 ppm. **HRMS:** *m/z* calcd for C₁₅H₂₂KO⁺ [M+K]⁺: 257.1302, found: 257.1300.

1-Phenethylcycloheptan-1-ol (3ah)

GP was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), cycloheptanone **2h** (439.3 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ah** (153.9 mg, 72%) as a light-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) v_{max} = 3396, 2923, 1454, 1198, 1045, 906, 845, 747, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.31 – 7.25 (m, 2H), 7.24 – 7.15 (m, 3H), 2.79 – 2.63 (m, 2H), 1.81 – 1.75 (m, 2H), 1.74 – 1.70 (m, 4H), 1.68 (s, 1H), 1.66 – 1.58 (m, 4H), 1.57 – 1.50 (m, 2H), 1.47 – 1.38 (m, 2H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) δ = 142.9, 128.6 (2 × Ar–CH), 128.5 (2 × Ar–CH), 125.8, 75.7, 45.6, 41.4 (2 × CH₂), 30.0, 29.9 (2 × CH₂), 22.6 (2 × CH₂) ppm. HRMS: *m/z* calcd for C₁₅H₂₂KO⁺ [M+K]⁺: 257.1302, found: 257.1301.

1-(4-Butylphenethyl)cycloheptan-1-ol (3bh)

GP was carried out with 1-butyl-4-ethynylbenzene **1b** (155.1 mg, 0.98 mmol), cycloheptanone **2h** (439.3 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bh** (201.7 mg, 75%) as a yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{max} = 3398$, 2923, 1512, 1455, 1199, 1119, 1050, 836, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16 - 7.07$ (m, 4H), 2.72 – 2.63 (m, 2H), 2.58 (t, J = 8 Hz, 2H), 1.80 – 1.75 (m, 2H), 1.74 – 1.69 (m, 4H), 1.66 – 1.47 (m, 8H), 1.45 – 1.30 (m, 4H), 1.26 (s, 1H), 0.93 (t, J = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 140.4$, 140.0, 128.6 (2 × Ar–CH), 128.3 (2 × Ar–CH), 75.7, 45.6, 41.4 (2 × CH₂), 35.4, 33.9, 29.9, (2 × CH₂) 29.5, 22.6 (2 × CH₂), 22.5, 14.1 ppm. HRMS: *m*/*z* calcd for C₁₉H₃₀KO⁺ [M+K]⁺ : 313.1928, found: 313.1930.

1-(4-Fluorophenethyl)cycloheptan-1-ol (3dh)

GP was carried out with 1-ethynyl-4-fluorobenzene **1d** (117.7 mg, 0.98 mmol), cycloheptanone **2h** (439.3 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 10 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3dh** (162.1 mg, 70%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) v_{max} = 3416, 2924, 1509, 1455, 1222, 958, 903, 832, 760 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.18 – 7.12 (m, 2H), 6.99 – 6.93 (m, 2H), 2.72 – 2.64 (m, 2H), 1.78 – 1.72 (m, 2H), 1.72 – 1.67 (m, 5H), 1.65 – 1.54 (m, 5H), 1.45 – 1.38 (m, 2H), 1.25 (s, 1H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) δ = 161.2 (d, *J* = 264.5 Hz), 138.5 (d, *J* = 3.2 Hz), 129.8 (d, *J* = 7.7 Hz, 2 × Ar–CH), 115.2 (d, *J* = 20.9 Hz, 2 × Ar–CH), 75.6, 45.7, 41.4 (2 × CH₂), 29.9 (2 × CH₂), 29.2, 22.6 (2 × CH₂) ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ = -118.04 (s). HRMS (ESI): *m/z* calcd for C₁₅H₂₉FN₂O²⁺ [M+2(NH₄)]⁺² : 136.1126, found: 136.1115.

1-Phenethylcyclooctan-1-ol (3ai)

GP was carried out with phenylacetylene **1a** (100 mg, 0.98 mmol), cyclooctanone **2i** (494.2 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3ai** (136.5 mg, 60%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) v_{max} = 3405, 2920, 1698, 1601, 1454, 1019, 896, 750, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.32 – 7.26 (m, 2H), 7.23 – 7.15 (m, 3H), 2.75 – 2.66 (m, 2H), 1.87 – 1.79 (m, 2H), 1.79 – 1.73 (m, 2H), 1.72 – 1.56 (m, 10H), 1.55 (s, 1H), 1.45 – 1.39 (m, 2H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) δ = 143.1, 128.5 (4 × Ar–CH), 125.8, 75.0, 43.7, 36.5 (2 × CH₂), 29.9, 28.4 (2 × CH₂), 25.2, 22.5 (2 × CH₂) ppm. HRMS (ESI): *m/z* calcd for C₁₆H₂₄NaO⁺ [M+Na]⁺: 255.1719, found: 255.1727.

1-(4-Butylphenethyl)cyclooctan-1-ol (3bi)

GP was carried out with 1-butyl-4-ethynylbenzene (155.1 mg, 0.98 mmol), cyclooctanone **2i** (494.2 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bi** (197.9 mg, 70%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3390, 2919, 1513, 1456, 1017, 953, 894, 818, 757 cm⁻¹.$ $¹H NMR (400 MHz, CDCl₃) <math>\delta = 7.15 - 7.07$ (m, 4H), 2.71 – 2.63 (m, 2H), 2.57 (t, J = 8 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.77 – 1.72 (m, 2H), 1.71 – 1.52 (m, 12H), 1.47 – 1.39 (m, 2H), 1.38 – 1.31 (m, 2H), 1.17 (s, 1H), 0.92 (t, J = 7.3 Hz, 3H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) δ = 140.4, 140.1, 128.6 (2 × Ar–CH), 128.4 (2 × Ar–CH), 75.0, 43.8 (2 × CH₂), 36.5 (2 × CH₂), 35.4, 33.9, 29.4, 28.4 (2 × CH₂), 25.2, 22.5 (2 × CH₂), 14.1 ppm. HRMS (ESI): *m/z* calcd for C₂₀H₃₂KO⁺ [M+K]⁺: 327.2085, found: 327.2088.

1-(3-Methylphenethyl)cyclooctan-1-ol (3ji)

GP was carried out with 1-ethynyl-3-methylbenzene (113.8 mg, 0.98 mmol), cyclooctanone **2i** (494.2 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **3bi** (144.9 mg, 60%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3399$, 2918, 1606, 1457, 1076, 1015, 955, 893, 782, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.18$ (t, J = 7.5 Hz, 1H), 7.07 – 6.96 (m, 3H), 2.71 – 2.61 (m, 2H), 2.33 (s, 3H), 1.86 – 1.79 (m, 2H), 1.78 – 1.71 (m, 3H), 1.70 – 1.54 (m, 10H), 1.45 – 1.40 (m, 2H) ppm. ¹³C{H} NMR (151 MHz, CDCl₃) $\delta = 142.9$, 138.1, 129.3, 128.4, 126.6, 125.5, 75.0, 43.8, 36.4 (2 × CH₂), 29.8, 28.4 (2 × CH₂), 25.2, 22.5 (2 × CH₂), 21.5 ppm. HRMS (ESI): m/z calcd for C₁₇H₂₆KO⁺ [M+K]⁺: 285.1615, found: 285.1617.

3,4-bis(4-methoxyphenyl)-2-methylbutan-2-ol (5ba)

GP was carried out with 1,2-bis(4-methoxyphenyl)ethyne (233 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **5ba** (88 mg, 30%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3445$, 2940, 1510, 1243, 1034, 827 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃) $\delta = 7.13 - 7.08$ (m, 2H), 6.92 - 6.86 (m, 2H), 6.81 - 6.75 (m, 2H), 6.70 - 6.63 (m, 2H), 3.76 (s, 3H), 3.70 (s, 3H), 3.20 (dd, J = 13.6, 3.0 Hz, 1H), 2.92 (dd, J = 13.5, 11.7 Hz, 1H), 2.82 (dd, J = 11.6, 3.0 Hz, 1H), 1.44 (s, 1H), 1.25 (s, 6H) ppm. ¹³C{**H**} NMR (101 MHz, CDCl₃) $\delta = 158.3$, 157.5, 133.4, 132.7, 130.7 (2 × Ar–CH), 129.8 (2 × Ar–CH), 113.5 (2 × Ar–CH), 113.5 (2 × Ar–CH), 73.1, 58.7, 55.2, 55.2, 35.4, 28.2, 27.9 ppm. **HRMS** (**ESI**): m/z calcd for C₁₉H₂₄KO₃⁺ [M+K]⁺: 339.1357, found: 339.1366.

3,4-bis(3-methoxyphenyl)-2-methylbutan-2-ol (5ca)

GP was carried out with 1,2-bis(3-methoxyphenyl)ethyne (233 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **5ba** (59 mg, 20%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3435$, 2962, 1595, 1259, 1157, 1046, 697 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16$ (t, J = 7.9 Hz, 1H), 7.04 (t, J = 7.9 Hz, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.77 – 6.69 (m, 2H), 6.65 – 6.57 (m, 2H), 6.56 – 6.49 (m, 1H), 3.76 (s, 3H), 3.66 (s, 3H), 3.24 (dd, J = 13.6, 3.1 Hz, 1H), 3.05 – 2.93 (m, 1H), 2.91 – 2.83 (m, 1H), 1.46 (s, 1H), 1.26 (d, J = 8.5 Hz, 6H) ppm. ¹³C{H} NMR (101 MHz, CDCl₃) $\delta = 159.4$ (2 × Ar–CH), 142.8, 142.5, 129.0 (2 × Ar–CH), 122.3, 121.4, 115.9, 114.6, 111.7, 111.2, 73.0, 59.1, 55.3, 55.1, 36.3, 28.4, 28.2 ppm. HRMS (ESI): m/z calcd for C₁₉H₂₄NaO₃⁺ [M+Na]⁺: 323.1618, found: 323.1627.

3-(3-methoxyphenyl)-2-methyl-4-phenylbutan-2-ol (5da) & 4-(3-methoxyphenyl)-2-methyl-3-phenylbutan-2-ol (5da')

GP was carried out with 1-methoxy-3-(phenylethynyl)benzene (204 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **5ba** (58 mg, 22%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3424$, 2966, 1596, 1453, 1259, 1156, 1046, 751, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, mixture of **5da & 5da'**) $\delta = 7.26 - 7.08$ (m, 8H), 7.06 - 6.97 (m, 3H), 6.81 - 6.67 (m, 2H), 6.59 (dd, J = 8.1, 2.2 Hz, 2H), 6.49 (t, J = 4 Hz, 1H), 3.74 (s, 2H), 3.62 (s, 3H), 3.26 (dd, J = 13.5, 2.6 Hz, 2H), 3.01 (dd, J = 14.3, 10.6 Hz, 2H), 2.93 - 2.85

(m, 2H), 1.38 (s, 1H), 1.27 (s, 2H), 1.26 (s, 3H), 1.25 (s, 2H), 1.24 (s, 3H) ppm. ¹³C{H} NMR (101 MHz, CDCl₃) δ = 159.3 (2 × Ar–CH), 142.9, 142.5, 141.2, 140.9, 129.8, 128.9, 129.0, 128.9, 128.1 (2 × Ar–CH), 126.7, 125.7, 122.3, 121.4, 115.9, 114.6, 111.6, 111.2, 73.1, 73.0, 59.3, 59.2, 55.2, 55.1, 36.3, 36.2, 28.5, 28.4, 28.1, 27.9 ppm. HRMS (ESI): *m/z* calcd for C₁₈H₂₂NaO₂⁺ [M+Na]⁺: 293.1512, found: 293.1525.

2-methyl-3,4-di-p-tolylbutan-2-ol (5ea)

GP was carried out with 1,2-di-*p*-tolylethyne (202 mg, 0.98 mmol), acetone **2a** (227.1 mg, 3.91 mmol), and TBAI (29 mg, 0.01 M) in DMF (8 mL) for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 95:05) furnished the product **5ba** (79 mg, 30%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), Rf = 0.20, UV detection].

IR: (MIR-ATR, 4000–600 cm⁻¹) $v_{\text{max}} = 3423$, 2967, 2929, 1512, 1453, 1372, 1123, 809 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.08$ (dd, J = 19.9, 8.0 Hz, 4H), 6.93 (q, J = 8.1 Hz, 4H), 3.24 (dd, J = 13.6, 3.0 Hz, 1H), 3.06 – 2.94 (m, 1H), 2.93 – 2.85 (m, 1H), 2.30 (s, 3H), 2.23 (s, 3H), 1.49 (s, 1H), 1.27 (d, J = 4.8 Hz, 6H) ppm. ¹³C{H} NMR (101 MHz, CDCl₃) $\delta = 138.2$, 137.6, 136.1, 134.9, 129.7, 128.8, 128.8, 128.8, 73.1, 58.9, 35.7, 28.2, 27.9, 21.1, 21.0 ppm. HRMS (ESI): m/z calcd for C₁₉H₂₄NaO⁺ [M+Na]⁺: 291.1719, found: 291.1732.

NMR Spectra:

¹H-NMR (400 MHz) spectrum of **3aa** in CDCl₃

¹³C{¹H}-NMR (100 MHz) spectrum of **3aa** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ba** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ba** in CDCl₃

¹³C{¹H}-NMR (100 MHz) spectrum of **3da** in CDCl₃

¹⁹F-NMR (565 MHz) spectrum of **3da** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ea** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ea** in CDCl₃

31

¹³C{¹H}-NMR (151 MHz) spectrum of **3fa** in CDCl₃

¹H-NMR (600 MHz) spectrum of **3ga** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ga** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ha** in CDCl₃

 $^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (151 MHz) spectrum of **3ha** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ia** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ia** in CDCl₃

35

¹H-NMR (400 MHz) spectrum of **3ab** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ab** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3bb** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3cb** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3cb** in CDCl₃

¹H-NMR (600 MHz) spectrum of **3db** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3db** in CDCl₃

39

$^{19}\text{F-NMR}$ (565 MHz) spectrum of **3db** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3eb** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ac** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3ac** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3bc** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ec** in CDCl₃

44

¹H-NMR (400 MHz) spectrum of **3ad** in CDCl₃

 $^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (151 MHz) spectrum of 3ad in CDCl3

¹³C{¹H}-NMR (151 MHz) spectrum of **3bd** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3dd** in CDCl₃

¹³C{¹H}-NMR (151 MHz) spectrum of **3dd** in CDCl₃

¹⁹F-NMR (565 MHz) spectrum of **3dd** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3be** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3kc** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ja** in CDCl₃

¹H-NMR (400 MHz) spectrum of 3ka in CDCl₃

¹H-NMR (400 MHz) spectrum of 3jb in CDCl₃

¹H-NMR (400 MHz) spectrum of **3bf** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ff** in CDCl₃

¹H-NMR (600 MHz) spectrum of 3ag in CDCl₃

¹H-NMR (400 MHz) spectrum of **3bg** in $CDCl_3$

¹H-NMR (600 MHz) spectrum of **3dg** in CDCl₃

$^{19}\text{F-NMR}$ (565 MHz) spectrum of 3dg in CDCl3

¹H-NMR (400 MHz) spectrum of **3eg** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3jg** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3ah** in CDCl₃

OH M ł 2.261 2.18-8.5 7.5 1.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.0 .. 0.5 ¹³C{¹H}-NMR (151 MHz) spectrum of **3ah** in CDCl₃ GS-AB-2-85 GS-AB-2-85-13C - 128.55 - 128.51 - 125.83 - 142.97 — 22.60 $< \frac{30.01}{29.93}$

 $\begin{array}{c} 1.80\\ 1.78\\ 1.78\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.72\\$

2.73 2.72 2.71 2.70 2.69

¹H-NMR (400 MHz) spectrum of **3bh** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3dh** in CDCl₃

¹⁹F-NMR (565 MHz) spectrum of **3dh** in CDCl₃

¹H-NMR (400 MHz) spectrum of **3bi** in CDCl₃

¹H-NMR (400 MHz) spectrum of 3ji in CDCl₃

¹H-NMR (400 MHz) spectrum of **5aa** in CDCl₃

¹H-NMR (400 MHz) spectrum of **5ba** in CDCl₃

¹H-NMR (400 MHz) spectrum of **5ca** in CDCl₃

¹H-NMR (400 MHz) spectrum of **5da** in CDCl₃

¹H-NMR (400 MHz) spectrum of **5ea** in CDCl₃

¹H-NMR (400 MHz) spectrum of mixture of **6** & **3aa** after 4 h in CDCl₃

¹H-NMR (400 MHz) spectrum of **6** in CDCl₃

7.46 7.45 7.44 7.33 7.33 7.33 7.26 Chloroform-d GS-AB-2-252 GS-AB-2-252-1H 1.67 OH ↓Me Me N 2.02H 3.00H 6.55H 0.83-8.5 7.5 3.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.0 2.5 2.0 1.5 1.0 ¹³C{¹H}-NMR (151 MHz) spectrum of 7 in CDCl₃ GS-AB-2-252 GS-AB-2-252-13C

— 130.84 — 127.44 — 121.88

— 64.74

 $< \frac{30.83}{30.81}$

— 92.96

¹H-NMR (400 MHz) spectrum of **8** in CDCl₃

¹H-NMR (400 MHz) spectrum of Pinacol product **10** in DMSO-*d*₆

Crystal structure data:

X-Ray crystal structure of compound **3ff**: Crystal of compound **3ff** were obtained by dissolving the product in CH₂Cl₂/CH₃CN mixture and allowing the solvent to slowly evaporate at room temperature. A suitable crystal was selected and mounted onto the cryoloop on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,⁸ the structure was solved with the SHELXT⁹ structure solution program using Intrinsic Phasing and refined with the SHELXL¹⁰ refinement package using Least Squares minimisation.^{11,12}

Figure S2: ORTEP diagram of compound **3ff** with ellipsoid shown at the 50% contour percent probability level (CCDC-2237742).

Table 3S: Crystal data and structure refinement for 3ff.	
Identification code	3ff
Empirical formula	$C_{14}H_{20}O$
Formula weight	204.30
Temperature/K	298
Crystal system	tetragonal
Space group	I4 ₁ /a
a/Å	19.065(2)
b/Å	19.065(2)
c/Å	13.900(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	5052.3(15)
Z	16
$\rho_{calc}g/cm^3$	1.074
µ/mm ⁻¹	0.065
F(000)	1792.0
Crystal size/mm ³	$0.362 \times 0.205 \times 0.153$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.626 to 54.204
Index ranges	$-23 \le h \le 23, -23 \le k \le 24, -17 \le l \le 17$
Reflections collected	21267
Independent reflections	2790 [$R_{int} = 0.0790, R_{sigma} = 0.0489$]
Data/restraints/parameters	2790/0/142
Goodness-of-fit on F ²	1.038
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0574, wR_2 = 0.1467$
Final R indexes [all data]	$R_1 = 0.1108, wR_2 = 0.1756$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.19

 Table 3S: Crystal data and structure refinement for 3ff (CCDC-2237742).

References:

- 1 P. Niharika and G. Satyanarayana, *ChemistrySelect*, 2018, **3**, 289–293.
- 2K. Ramesh and G. Satyanarayana, Eur. J. Org. Chem., 2018, 2018, 4135-4146.
- 3H. Wu, W. Chen, W. Deng, L. Yang, X. Li, Y. Hu, Y. Li, L. Chen and Y. Huang, *Org. Lett.*, 2022, **24**, 1412–1417.
- 4A. P. Pulis, D. J. Blair, E. Torres and V. K. Aggarwal, J. Am. Chem. Soc., 2013, 135, 16054–16057.
- 5N. Takeda, M. Furuishi, Y. Nishijima, E. Futaki, M. Ueda, T. Shinada and O. Miyata, *Org. Biomol. Chem.*, 2018, **16**, 8940–8943.
- 6T. Takahashi, D. R. Swanson and E. Negishi, Chem. Lett., 1987, 16, 623-626.
- 7H. Seo and T. F. Jamison, Org. Lett., 2019, 21, 10159–10163.
- 8R. J. Gildea, L. J. Bourhis, O. V. Dolomanov, R. W. Grosse-Kunstleve, H. Puschmann, P. D. Adams and J. a. K. Howard, *J. Appl. Crystallogr.*, 2011, 44, 1259–1263.

- 9L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. a. K. Howard and H. Puschmann, Acta Crystallogr. Sect. Found. Adv., 2015, 71, 59–75.
- 10 G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv., 2015, 71, 3–8.
- 11 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- 12 Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.