Supporting Information

Regio- and Stereoselective Syntheses of Chiral α-Quaternary (Z)-Trisubstituted Allylic Amino Acids via Synergistic Pd/Cu Catalysis

Miaolin Ke a, Yuyan Yu a, Longwu Sun a, Xinzhi Li a, Qianqian Cao a, Xiao Xiao a *, Fener Chen a, b, c *

a Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China. pharmxiao@zjut.edu.cn
b Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China. Email: rfchen@fudan.edu.cn
c Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China

Table of contents

1. General information ... S2
2. Procedure for the synthesis chiral α-quaternary (Z)-trisubstituted allylic amino acids S2
3. Results and discussion .. S3
 3.1 Optimization of reaction conditions .. S3
 3.2 Stereococontrol experiments ... S4
 3.3 Reaction mechanism ... S4
 3.4. Characterization of trisubstituted allylic amino acids .. S5
 3.5 Gram-scale reaction for compound 3ba .. S44
 3.6 The method for the synthesis of 6aa .. S44
 3.7 The method for the synthesis of 6ab and 6ac .. S46
 3.8 HPLC spectrum of compounds (R)-3ga, (S)-3ga, (S)-1g’, and (R)-1g’ S48
4. References .. S51
5. Copies of 1H and 13C spectrum of trisubstituted allylic amino acids S52
1. General information

All reactions were accomplished in Schlenk tube and round flask. Column chromatograph was performed over silica gel (200-300 mesh). 1H NMR spectra were recorded on a Bruker AM400 spectrometer, chemical shifts (in ppm) were referred to CDCl$_3$ ($\delta = 7.26$ ppm). 13C NMR spectrum were obtained by using the same NMR spectrometer and were calibrated with CDCl$_3$ ($\delta = 77.0$ ppm). The following abbreviations have been used to illuminate the diversities: $\delta =$ chemical shifts, $J =$ coupling constant, s = singlet, d= doublet, t = triplet, q = quartet, m = multiplet. HRMS were recorded on a Bruker microTOF spectrometer (ESI). Ee values were determined by Agilent high-performance liquid chromatograph (HPLC). All anhydrous solvents were dried by the standard treated method. Vinylethylene carbonates1 and aldimine ester2 were synthesized according to known references. All materials were obtained by commercial suppliers, unless otherwise notice, and most stating materials were purchased from Adamas, Bide and Energy Chemical. PE = petroleum ether, DCM = dichloromethane, MeOH = methanol, EA = ethyl acetate.

2. Procedure for the synthesis chiral α-quaternary (Z)-trisubstituted allylic amino acids

The preparation of Cu catalyst: Cu(CH$_3$CN)$_4$PF$_6$ (5 mol%), L1 (6 mol%) were stirred in DCE (0.5 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method A: To a Schlenk tube with prepared Cu catalyst were added Cs$_2$CO$_3$ (32.6 mg, 0.1 mmol), aldimine Schiff base (0.1 mmol, 1.0 equiv), vinylethylene carbonates (24.7 mmol, 1.3 equiv), Pd catalyst (4 mol%) and DCE (0.5 mL) under nitrogen atmosphere. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added dry MeOH (1 mL) and NaBH$_3$CN (31.4mg, 5.0 equiv) at 0 °C and the mixture was stirred for 2 h. Then the crude products were purified by SiO$_2$ column chromatography (PE/EA = 3:1) to give the desired products. The ee value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.
3. Results and discussion

3.1 Optimization of reaction conditions

Table S1. Screening of reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Cu]</th>
<th>L</th>
<th>base</th>
<th>solvent</th>
<th>yield (%)<sup>b</sup></th>
<th>ee (%)<sup>c</sup></th>
<th>Z/E<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(CH$_3$CN)$_2$BF$_4$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>66</td>
<td>92</td>
<td>>20:1</td>
</tr>
<tr>
<td>2</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>62</td>
<td>94</td>
<td>>20:1</td>
</tr>
<tr>
<td>3</td>
<td>CuI</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>trace</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>CuCl</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>trace</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L2</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>31</td>
<td>35</td>
<td>>20:1</td>
</tr>
<tr>
<td>6</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L3</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>48</td>
<td>73</td>
<td>>20:1</td>
</tr>
<tr>
<td>7</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L4</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>51</td>
<td>85</td>
<td>>20:1</td>
</tr>
<tr>
<td>8</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L5</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>52</td>
<td>83</td>
<td>>20:1</td>
</tr>
<tr>
<td>9</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L6</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>50</td>
<td>29</td>
<td>>20:1</td>
</tr>
<tr>
<td>10</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Na$_2$CO$_3$</td>
<td>DCE</td>
<td>50</td>
<td>91</td>
<td>>20:1</td>
</tr>
<tr>
<td>11</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>DIPEA</td>
<td>DCE</td>
<td>46</td>
<td>93</td>
<td>>20:1</td>
</tr>
<tr>
<td>12</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>toluene</td>
<td>27</td>
<td>82</td>
<td>>20:1</td>
</tr>
<tr>
<td>13</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCM</td>
<td>55</td>
<td>88</td>
<td>>20:1</td>
</tr>
<tr>
<td>14</td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>THF</td>
<td>41</td>
<td>89</td>
<td>>20:1</td>
</tr>
<tr>
<td>15<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>16</td>
<td>90</td>
<td>>20:1</td>
</tr>
<tr>
<td>16<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>70</td>
<td>91</td>
<td>>20:1</td>
</tr>
<tr>
<td>18<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>75</td>
<td>91</td>
<td>>20:1</td>
</tr>
<tr>
<td>19<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>86</td>
<td>92</td>
<td>>20:1</td>
</tr>
<tr>
<td>20<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>62</td>
<td>87</td>
<td>>20:1</td>
</tr>
<tr>
<td>21<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>65</td>
<td>91</td>
<td>>20:1</td>
</tr>
<tr>
<td>22<sup>e</sup></td>
<td>Cu(CH$_3$CN)$_2$PF$_6$</td>
<td>L1</td>
<td>Cs$_2$CO$_3$</td>
<td>DCE</td>
<td>85</td>
<td>91</td>
<td>>20:1</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol), Pd(PPh$_3$)$_4$ (5 mol%), Cu (10 mol%), L (12 mol%), base (1.5 equiv.), solvent (1 mL), NaBH$_4$ (5 equiv.), MeOH (1 mL), N$_2$, 9 h, r.t.
^b Determined by 1H NMR using CHBr$_2$ as internal standard.
^c Determined by HPLC using chiral column.
^d LiAlH$_4$ (4 equiv.).
^e NaBH(OAc)$_2$ (4 equiv.).
^f NaBH$_4$CN (4 equiv.).
^g 40 °C.
^h 40 °C.
ⁱ 1b (0.1 mmol).
^j 1c (0.1 mmol).
^k 1d (0.1 mmol).
^l 1b (0.1 mmol), 2a (0.13 mmol), Pd(PPh$_3$)$_4$ (4 mol%), Cu(CH$_3$CN)$_2$PF$_6$ (5 mol%), L1 (6 mol%), Cs$_2$CO$_3$ (1 equiv.), DCE (1 mL), NaBH$_4$CN (5 equiv.), MeOH (1.0 mL), N$_2$, 6 h, 40 °C.

53
3.2 Stereocontrol experiments

Scheme S1. Stereocontrol experiments

3.3 Reaction mechanism

Scheme S2. A plausible mechanism
3.4. Characterization of trisubstituted allylic amino acids

3ba (30.7mg, 86% yield, PE/EA=3:1, 92% ee, Z/E >20:1) was synthesized in method A afforded 86% isolated yield as a colorless oil.

[α]D =+4 (c=0.60, CHCl₃). **1H NMR (400 MHz, CDCl₃)** δ 7.35 (d, J = 7.3 Hz, 2H), 7.22 (ddd, J = 10.0, 8.0, 4.9 Hz, 5H), 7.02 – 6.84 (m, 2H), 5.72 (dd, J = 9.4, 7.4 Hz, 1H), 4.34 (dd, J = 52.1, 12.3 Hz, 2H), 3.70 (s, 3H), 3.55 (dd, J = 36.3, 11.7 Hz, 2H), 2.59 (ddd, J = 21.2, 13.9, 8.4 Hz, 2H), 2.33 (bs, 2H), 1.39 (s, 3H). **13C NMR (100 MHz, CDCl₃)** δ 176.5, 162.1 (d, J = 245.0 Hz), 144.6, 141.6, 134.9 (d, J = 3.1 Hz), 130.0 (d, J = 8.1 Hz), 128.4, 127.3, 126.2, 124.8, 115.4 (d, J = 21.4 Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.7. HRMS (ESI) m/z: [M + H]+ Calcd for C₂₁H₂₄FNO₃ 358.1813; found: 358.1839. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 8.65 min (major), 9.87 min (minor).
3bb (32.1 mg, 87% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 87% isolated yield as a colorless oil. [α]D = +16 (c=0.64, CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.27 – 7.17 (m, 4H), 7.05 (d, J = 7.9 Hz, 2H), 6.97 – 6.86 (m, 2H), 5.68 (dd, J = 9.4, 7.4 Hz, 1H), 4.32 (dd, J = 57.3, 12.3 Hz, 2H), 3.70 (s, 3H), 3.55 (dd, J = 41.4, 11.7 Hz, 2H), 2.81 (bs, 1H), 2.58 (ddd, J = 21.1, 13.9, 8.5 Hz, 3H), 2.26 (s, 3H), 1.39 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 176.4, 162.1 (d, J = 245.4 Hz), 144.5, 138.7, 137.1, 134.7 (d, J = 2.7 Hz), 130.1 (d, J = 8.0 Hz), 129.1, 126.0, 123.9, 115.4 (d, J = 21.2 Hz), 61.9, 59.8, 52.4, 48.2, 39.4, 21.6, 21.0. HRMS (ESI) m/z: [M + H]+ Calcd for C22H26FNO3: 372.1969; found: 372.1989. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; tR = 7.99 min (major), 9.19 min (minor).
3bc (25.3 mg, 61% yield, PE/EA=3:1, 84% ee, Z/E >20:1) was synthesized in method A afforded 61% isolated yield as a colorless oil. $[\alpha]_D^{25} = +12$ (c=0.51, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.32 – 7.25 (m, 4H), 7.23 – 7.17 (m, 2H), 6.97 – 6.85 (m, 2H), 5.78 – 5.60 (m, 1H), 4.33 (dd, $J = 56.9, 12.3$ Hz, 2H), 3.70 (s, 3H), 3.54 (dd, $J = 40.3, 11.6$ Hz, 2H), 2.81 (bs, 1H), 2.58 (ddd, $J = 21.0, 13.8, 8.7$ Hz, 2H), 1.39 (s, 3H), 1.24 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, $J = 245.3$ Hz), 150.3, 144.4, 138.6, 134.8 (d, $J = 3.1$ Hz), 130.1 (d, $J = 8.1$ Hz), 125.8, 125.3, 124.0, 115.4 (d, $J = 21.4$ Hz), 61.9, 59.8, 52.4, 48.2, 39.5, 34.4, 31.3, 21.6. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{32}$FNO$_3$ 414.2439; found: 414.2465. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; $t_R = 10.49$ min (major), 11.23 min (minor).
3bd (25.0 mg, 65% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method A afforded 65% isolated yield as a colorless oil. $[\alpha]_{25}^{D}=21+$ (c=0.50, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.18 (m, 2H), 6.96 – 6.86 (m, 2H), 6.83 – 6.71 (m, 2H), 5.63 (dd, $J = 9.5, 7.3$ Hz, 1H), 4.31 (dd, $J = 55.3, 12.3$ Hz, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 3.54 (dd, $J = 39.9, 11.6$ Hz, 2H), 2.86 (bs, 1H), 2.56 (ddd, $J = 21.2, 13.9, 8.4$ Hz, 2H), 1.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.5, 162.1 (d, $J = 245.5$ Hz), 159.0, 144.0, 134.8 (d, $J = 3.2$ Hz), 134.1, 130.1 (d, $J = 8.1$ Hz), 127.3, 123.1, 115.4 (d, $J = 21.4$ Hz), 113.7, 61.9, 59.8, 55.3, 52.4, 48.2, 39.4, 21.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{26}$FNO$_4$ 388.1919; found: 388.1943. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t$_R$ =13.20 min (major), 14.96 min (minor).
3be (26.9 mg, 67% yield, PE/EA=3:1, 92% ee, Z/E >20:1) was synthesized in method A afforded 67% isolated yield as a colorless oil. [α]$_D^{25}$=+17 (c=0.42, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.25 (m, 2H), 7.24 – 7.16 (m, 2H), 7.16 – 7.08 (m, 2H), 6.98 – 6.78 (m, 2H), 5.69 (dd, J = 9.5, 7.3 Hz, 1H), 4.30 (dd, J = 57.1, 12.3 Hz, 2H), 3.71 (s, 3H), 3.54 (dd, J = 40.5, 11.6 Hz, 2H), 2.93 (s, 1H), 2.57 (dd, J = 21.2, 13.9, 8.5 Hz, 2H), 2.40 (s, 3H), 1.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, J = 245.3 Hz), 144.1, 138.4, 137.5, 134.7 (d, J = 8.1 Hz), 144.1, 126.5, 126.5, 124.2, 115.4 (d, J = 21.3 Hz), 61.9, 59.6, 52.4, 48.2, 39.4, 21.5, 15.8. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{26}$FNO$_3$S 404.1690; found:404.1715. HPLC conditions: OZ-H column, 254 nm, 30 ℃, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R=12.40 min (major), 13.82 min (minor).
3bf (31.6 mg, 72% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 72% isolated yield as white solid.

$[\alpha]_{25}^D = +9$ (c=0.40, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.82 (d, $J = 7.8$ Hz, 1H), 7.61 – 7.49 (m, 7H), 7.44 (t, $J = 7.5$ Hz, 2H), 7.37 – 7.28 (m, 3H), 7.02 (t, $J = 8.5$ Hz, 2H), 5.87 (dd, $J = 9.2$, 7.5 Hz, 1H), 4.45 (dd, $J = 55.9$, 12.2 Hz, 2H), 3.80 (s, 3H), 3.64 (dd, $J = 41.5$, 11.5 Hz, 2H), 3.15 (bs, 1H), 2.70 (ddd, $J = 21.1$, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, $J = 245.3$ Hz), 144.3, 140.6, 140.5, 140.2, 137.5, 134.6 (d, $J = 1.9$ Hz), 132.4, 130.1 (d, $J = 8.1$ Hz), 130.0, 128.7, 128.2, 127.3, 127.1, 127.0, 126.5, 124.7, 115.5 (d, $J = 21.4$ Hz), 62.0, 59.7, 52.4, 48.3, 39.4, 21.5.

HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{27}$H$_{28}$FNO$_3$ 434.2126; found: 434.2153. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; t_R = 15.88 min (major), 17.03 min (minor).
3bg (24.9 mg, 66% yield, PE/EA=3:1, 92% ee, Z/E > 20:1) was synthesized in method A afforded 66% isolated yield as a colorless oil. \([\alpha]_{25}^{D} = +20 \) (c=0.50, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 7.43 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 7.07 – 6.93 (m, 4H), 5.72 (dd, \(J = 9.5, 7.3 \) Hz, 1H), 4.37 (dd, \(J = 62.0, 12.3 \) Hz, 2H), 3.79 (s, 3H), 3.63 (dd, \(J = 42.7, 11.3 \) Hz, 2H), 3.07 (bs, 1H), 2.65 (ddd, \(J = 21.2, 13.9, 8.5 \) Hz, 2H), 1.48 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \): 176.3, 163.4 (d, \(J = 6.5 \) Hz), 161.0 (d, \(J = 5.7 \) Hz), 143.9, 137.7 (d, \(J = 3.0 \) Hz), 134.5 (d, \(J = 2.5 \) Hz), 130.2 (d, \(J = 8.1 \) Hz), 127.8 (d, \(J = 7.9 \) Hz), 124.5, 115.5 (d, \(J = 21.4 \) Hz), 115.2 (d, \(J = 21.4 \) Hz), 62.0, 52.5, 48.3, 39.2, 21.4. HRMS (ESI) m/z: [M + H]\(^+\) Calcd for C\(_{21}\)H\(_{23}\)F\(_2\)NO\(_3\): 376.1719; found: 376.1739. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25 min; \(t_R = 9.18 \) min (major), 10.55 min (minor).
3bh (25.7 mg, 66% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method A afforded 66% isolated yield as a colorless oil. \([\alpha]_D^{25} = +10\) (c=0.51, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.32 – 7.25 (m, 2H), 7.24 – 7.16 (m, 4H), 6.99 – 6.87 (m, 2H), 5.70 (dd, J = 9.4, 7.4 Hz, 1H), 4.28 (dd, J = 54.5, 12.3 Hz, 2H), 3.71 (s, 3H), 3.53 (dd, J = 38.1, 11.5 Hz, 2H), 2.80 (bs, 1H), 2.56 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 176.4, 162.1 (d, J = 245.6 Hz), 143.6, 140.1, 134.7 (d, J = 3.2 Hz), 133.1, 130.1 (d, J = 8.1 Hz), 128.4, 127.4, 125.3, 115.45 (d, J = 21.3 Hz), 61.9, 59.6, 52.4, 48.2, 39.2, 21.5. HRMS (ESI) m/z: [M + H]\(^+\) Calcd for C₂₁H₂₃ClFNO₃ 392.1423; found: 392.1448. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 7.24\) min (major), 7.81 min (minor).
3bi (25.3 mg, 58% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method A afforded 58% isolated yield as a colorless oil. $[\alpha]_{D}^{25} = +6$ (c=0.51, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.40 (m, 2H), 7.34 – 7.23 (m, 4H), 7.06 – 6.93 (m, 2H), 5.77 (dd, $J = 9.6$, 7.3 Hz, 1H), 4.36 (dd, $J = 62.4$, 12.3 Hz, 2H), 3.79 (s, 3H), 3.63 (dd, $J = 43.0$, 11.5 Hz, 2H), 2.65 (ddd, $J = 21.2$, 13.9, 8.6 Hz, 2H), 2.12 (bs, 1H), 1.48 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.2, 162.2 (d, $J = 245.6$ Hz), 143.9, 140.6, 134.3 (d, $J = 5.2$ Hz), 131.4, 130.2 (d, $J = 8.0$ Hz), 127.8, 125.2, 121.3, 115.5 (d, $J = 21.3$ Hz), 62.0, 59.5, 52.5, 48.3, 39.2, 21.4. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{23}$BrFNO$_3$ 436.0918; found: 436.0944. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 8.17 min (major), 9.08 min (minor).
3bj (29.9 mg, 70% yield, PE/EA=3:1, 86% ee, Z/E >20:1) was synthesized in method A afforded 70% isolated yield as a colorless oil. \([\alpha]_D^{25} = +17\ (c=0.30, \text{CHCl}_3)\). \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.58 – 7.50 (m, 4H), 7.32 – 7.26 (m, 2H), 7.05 – 6.97 (m, 2H), 5.86 (dd, \(J = 9.4, 7.4\) Hz, 1H), 4.39 (dd, \(J = 58.0, 12.3\) Hz, 2H), 3.79 (s, 3H), 3.62 (dd, \(J = 40.7, 11.5\) Hz, 2H), 2.75 (bs, 1H), 2.68 (ddd, \(J = 21.2, 13.9, 8.5\) Hz, 2H), 1.48 (s, 3H). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.2, 162.2 (d, \(J = 245.7\) Hz), 145.2, 143.9, 134.4 (d, \(J = 3.0\) Hz), 130.2 (d, \(J = 8.1\) Hz), 129.3 (q, \(J = 32.5\) Hz), 126.8, 126.4, 125.3 (q, \(J = 3.7\) Hz), 124.2 (q, \(J = 270.3\) Hz), 115.5 (d, \(J = 21.3\) Hz), 62.0, 59.5, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{22}\)H\(_{23}\)F\(_4\)NO\(_3\) 426.1687; found: 426.1713. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 8.42\) min (major), 9.26 min (minor).
3bk (16.7 mg, 44% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 44% isolated yield as a colorless oil. $[\alpha]_D^{25} = +11$ (c=0.29, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.55 – 7.50 (m, 2H), 7.48 – 7.43 (m, 2H), 7.23 – 7.16 (m, 2H), 7.00 – 6.89 (m, 2H), 5.83 (dd, $J = 9.1$, 7.8 Hz, 1H), 4.29 (dd, $J = 51.7$, 12.3 Hz, 2H), 3.73 (s, 3H), 3.55 (dd, $J = 37.5$, 11.5 Hz, 2H), 2.87 (s, 1H), 2.60 (ddd, $J = 21.3$, 13.9, 8.5 Hz, 2H), 1.41 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.2, 162.1 (d, $J = 245.8$ Hz), 146.2, 143.5, 134.3 (d, $J = 2.9$ Hz), 132.2, 130.1 (d, $J = 8.1$ Hz), 127.8, 126.7, 118.9, 115.6, 115.4, 110.7, 61.9, 59.2, 52.6, 48.3, 39.1, 21.4. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{23}$FN$_2$O$_3$ 383.1765; found: 383.1801. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 40 min; t_R =28.08 min (major), 31.53 min (minor).
3bl (25.6 mg, 69% yield, PE/EA=3:1, 93% ee, Z/E >20:1) was synthesized in method A afforded 69% isolated yield as a colorless oil. [α]D25 =+18 (c=0.27, CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, 2H), 7.25 (s, 1H), 7.23 – 7.19 (m, 2H), 7.10 – 7.07 (m, 1H), 7.03 – 6.98 (m, 2H), 5.77 (dd, J = 9.6, 7.3 Hz, 1H), 4.40 (dd, J = 57.6, 12.3 Hz, 2H), 3.78 (s, 3H), 3.63 (dd, J = 41.1, 11.5 Hz, 2H), 3.13 (bs, 1H), 2.66 (dd, J = 21.1, 13.9, 8.5 Hz, 2H), 2.35 (s, 3H), 1.45 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 176.4, 162.1 (d, J = 245.5 Hz), 144.9, 141.6, 138.0, 134.7 (d, J = 2.5 Hz), 130.1 (d, J = 8.1 Hz), 128.3, 128.1, 126.9, 124.5, 123.2, 115.4 (d, J = 21.4 Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.6, 21.4. HRMS (ESI) m/z: [M + H]+ Calcd for C22H26FNO3 372.1969; found:372.1991. HPLC conditions: OZ-H column, 254 nm, 30 ℃, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; tR = 8.14 min (major), 9.28 min (minor).
3bm (30.4 mg, 78% yield, PE/EA=3:1, 85% ee, Z/E >20:1) was synthesized in method A afforded 78% isolated yield as a colorless oil. $[\alpha]_D^{25} = +15$ (c=0.38, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.31 (m, 1H), 7.25 – 7.14 (m, 6H), 6.98 – 6.88 (m, 2H), 5.73 (dd, $J = 9.3$, 7.5 Hz, 1H), 4.29 (dd, $J = 54.7$, 12.3 Hz, 2H), 3.72 (s, 3H), 3.55 (dd, $J = 39.3$, 11.5 Hz, 2H), 2.81 (bs, $J = 76.5$ Hz, 1H), 2.58 (dd, $J = 21.2$, 13.9, 8.5 Hz, 3H), 1.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.1, 162.2 (d, $J = 245.6$ Hz), 143.7, 143.5, 134.35 (d, $J = 3.0$ Hz), 134.3, 130.2 (d, $J = 8.1$ Hz), 129.6, 127.3, 126.3, 125.8, 124.4, 115.5 (d, $J = 21.3$ Hz), 62.1, 59.5, 52.5, 48.2, 39.0, 21.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{23}$ClFNO$_3$ 382.1423; found: 382.1447. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 9.50$ min (minor), 10.15 min (major).
3bn (30.3 mg, 70% yield, PE/EA=3:1, 94% ee, Z/E >20:1) was synthesized in method A afforded 70% isolated yield as a colorless oil. [α]$^D_{25}$ =+23 (c=0.28, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.59 – 7.53 (m, 1H), 7.40 – 7.33 (m, 2H), 7.32 – 7.27 (m, 2H), 7.20 – 7.15 (m, 1H), 7.06 – 6.97 (m, 2H), 5.79 (dd, J = 9.5, 7.4 Hz, 1H), 4.35 (dd, J = 55.8, 12.3 Hz, 2H), 3.79 (s, 3H), 3.62 (dd, J = 39.7, 11.6 Hz, 2H), 2.95 (bs, 1H), 2.65 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.47 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.3, 162.1 (d, J = 245.6 Hz), 143.9, 143.7, 134.5 (d, J = 1.9 Hz), 130.2 (d, J = 6.0 Hz), 130.1, 129.9, 129.2, 126.0, 124.8, 122.5, 115.5 (d, J = 21.3 Hz), 62.0, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{23}$BrFNO$_3$ 436.0918; found: 436.0945. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; t_R =15.99 min (minor), 17.09 min (major).
3bo (22.7 mg, 53% yield, PE/EA=3:1, 91% ee, Z/E >20:1) was synthesized in method A afforded 53% isolated yield as a colorless oil.

$[\alpha]^2_D = +10$ (c=0.45, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (s, 1H), 7.55 (d, $J = 7.8$ Hz, 1H), 7.47 – 7.42 (m, 1H), 7.39 – 7.32 (m, 1H), 7.24 – 7.18 (m, 2H), 6.99 – 6.89 (m, 2H), 5.77 (dd, $J = 9.4$, 7.4 Hz, 1H), 4.32 (dd, $J = 56.1$, 12.3 Hz, 2H), 3.73 (s, 3H), 3.56 (dd, $J = 40.1$, 11.6 Hz, 2H), 2.89 (bs, 1H), 2.60 (ddd, $J = 21.3$, 13.9, 8.5 Hz, 2H), 1.41 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 176.3, 162.2 (d, $J = 245.6$ Hz), 143.8, 142.5, 134.5 (d, $J = 2.6$ Hz), 130.7 (q, $J = 64.3$, 32.3 Hz), 130.1 (d, $J = 8.1$ Hz), 129.5, 128.8, 126.4, 124.1 (q, $J = 270.8$ Hz), 123.9 (q, $J = 3.6$ Hz), 122.9 (q, $J = 3.7$ Hz), 115.5 (d, $J = 21.3$ Hz), 62.0, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{23}$F$_4$NO$_3$ 426.1687; found: 426.1712. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 5.95$ min (minor), 6.64 min (major).
3bp (21.6 mg, 56% yield, PE/EA=3:1, 88% ee, Z/E >20:1) was synthesized in method A afforded 56% isolated yield as a colorless oil.

$\left[\alpha\right]_D^{25} = +16 \,(c=0.43, \text{CHCl}_3).$

1H NMR (400 MHz, CDCl$_3$) δ 7.29 – 7.21 (m, 2H), 7.20 – 7.13 (m, 1H), 7.0 – 6.99 (m, 1H), 6.97 – 6.89 (m, 2H), 6.84 (t, $J = 7.4$ Hz, 1H), 6.77 (d, $J = 8.2$ Hz, 1H), 5.50 (dd, $J = 9.0, 7.1$ Hz, 1H), 4.25 (dd, $J = 44.8, 12.4$ Hz, 2H), 3.69 (s, 3H), 3.65 (s, 3H), 3.60 (dd, 2H), 2.70 (bs, 1H), 2.63 (ddd, $J = 21.2, 14.2, 8.1$ Hz, 2H), 1.39 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.0 (d, $J = 244.9$ Hz), 156.2, 143.2, 135.4 (d, $J = 3.0$ Hz), 131.9, 130.1, 129.9 (d, $J = 8.0$ Hz), 128.6, 127.1, 120.8, 115.2 (d, $J = 21.2$ Hz), 110.4, 61.8, 61.0, 55.3, 52.2, 47.9, 38.3, 21.9. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{26}$FNO$_4$: 388.1919; found: 388.1940. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; $t_R = 13.05$ min (minor), 14.46 min (major).
3bq (22.8 mg, 61% yield, PE/EA=3:1, 86% ee, Z/E >20:1) was synthesized in method A afforded 61% isolated yield as a colorless oil. \([\alpha]_D^{25} = +23\) (c=0.46, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.27 – 7.12 (m, 5H), 7.04 – 6.99 (m, 1H), 6.98 – 6.91 (m, 3H), 5.64 (dd, \(J = 9.4, 7.2\) Hz, 1H), 4.30 (dd, \(J = 62.7, 12.6\) Hz, 2H), 3.71 (s, 3H), 3.57 (dd, \(J = 36.5, 11.6\) Hz, 2H), 2.74 (bs, 1H), 2.62 (ddd, \(J = 21.2, 14.0, 8.3\) Hz, 2H), 1.41 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.2, 163.3, 159.6 (d, \(J = 246.0\) Hz), 140.1 (d, \(J = 0.8\) Hz), 134.8 (d, \(J = 2.8\) Hz), 130.1 (d, \(J = 3.8\) Hz), 130.0 (d, \(J = 8.1\) Hz), 129.7 (d, \(J = 14.4\) Hz), 128.9 (d, \(J = 8.3\) Hz), 128.2 (d, \(J = 2.5\) Hz), 124.1 (d, \(J = 3.4\) Hz), 115.7, 115.4 (d, \(J = 21.2\) Hz), 61.8, 60.5, 52.4, 48.1, 38.8, 21.6. HRMS (ESI) m/z: [M + H]\(^+\) Calcd for C\(_{21}\)H\(_{23}\)F\(_2\)NO\(_3\) 376.1719; found: 376.1741. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 10.99\) min (minor), 12.02 min (major).
3br (33.5 mg, 86% yield, PE/EA=3:1, 88% ee, Z/E >20:1) was synthesized in method A afforded 86% isolated yield as a colorless oil.

$[^{[\alpha]}]_{D}^{25} = +16$ (c=0.53, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.30 (m, 3H), 7.21 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 7.06 – 6.97 (m, 2H), 5.46 (dd, J = 9.7, 7.1 Hz, 1H), 4.33 (dd, J = 82.0, 13.1 Hz, 2H), 3.78 (s, 3H), 3.74 – 3.59 (m, 2H), 2.74 (ddd, J = 20.6, 13.6, 9.1 Hz, 2H), 1.51 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, J = 245.5 Hz), 143.6, 143.5, 134.6 (d, J = 3.3 Hz), 134.2, 130.1 (d, J = 8.1 Hz), 129.6, 127.3, 126.3, 126.0, 124.3, 115.5 (d, J = 21.3 Hz), 61.9, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]$^+$ Calcld for C$_{21}$H$_{23}$ClFNO$_3$ 392.1423; found: 392.1447. HPLC conditions: OZ-H column, 254 nm, 30 ℃, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 13.31 min (minor), 15.60 min (major).
3bs (29.4 mg, 72% yield, PE/EA=3:1, 92% ee, Z/E >20:1) was synthesized in method A afforded 72% isolated yield as a colorless oil. \(\alpha \) \(\delta \) \(\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 7.21 (d, \(J = 7.8 \text{ Hz}, 2\text{H} \)), 7.07 – 6.81 (m, 4H), 6.74 (d, \(J = 7.8 \text{ Hz}, 1\text{H} \)), 5.64 (dd, \(J = 11.1, 4.5 \text{ Hz}, 1\text{H} \)), 4.31 (dd, \(J = 56.6, 12.0 \text{ Hz}, 2\text{H} \)), 3.80 (s, 6H), 3.71 (s, 3H), 3.55 (dd, \(J = 39.4, 11.5 \text{ Hz}, 2\text{H} \)), 2.61 (bs, 1H), 2.70 – 2.46 (m, 2H), 1.40 (s, 3H). \(\text{C NMR} \) (100 MHz, CDCl\(_3\)) \(\delta \) 176.4, 162.1 (d, \(J = 245.5 \text{ Hz} \)), 148.7, 148.5, 144.4, 134.8 (d, \(J = 2.7 \text{ Hz} \)), 134.7, 130.1 (d, \(J = 8.0 \text{ Hz} \)), 123.4, 118.5, 115.4 (d, \(J = 21.3 \text{ Hz} \)), 110.9, 109.4, 62.0, 59.9, 55.9, 55.8, 52.4, 48.2, 39.4, 21.6. HRMS (ESI) m/z: [M + H]\(^+\) Calcd for C\(_{23}\)H\(_{28}\)FNO\(_5\) 418.2024; found: 418.2048. HPLC conditions: OD-H column, 254 nm, 30 \(\degree \text{C} \), flow rate: 1.3 mL/min, Hex:IPA = 92:8. 30min; \(t_R = 21.79 \text{ min} \) (minor), 24.15 min (major).
3bt (26.7 mg, 63% yield, PE/EA=3:1, 89% ee, Z/E >20:1) was synthesized in method A afforded 63% isolated yield as a colorless oil.

\[\alpha \] = +7 (c=0.53, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 2.0 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.23 – 7.18 (m, 3H), 7.00 – 6.88 (m, 2H), 5.74 (dd, J = 9.3, 7.5 Hz, 1H), 4.26 (dd, J = 52.5, 12.3 Hz, 2H), 3.72 (s, 3H), 3.54 (dd, J = 38.8, 11.5 Hz, 2H), 3.02 (bs, 1H), 2.57 (ddd, J = 21.3, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.3, 162.1 (d, J = 245.6 Hz), 142.8, 141.7, 134.5 (d, J = 2.7 Hz), 132.4, 131.1, 130.2, 130.1, 128.0, 126.3, 125.5, 115.5 (d, J = 21.4 Hz), 61.9, 59.3, 52.5, 48.3, 39.1, 21.4.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₂Cl₂FNO₃ 426.1034; found: 426.1058. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R \) = 16.07 min (major), 21.58 min (minor).
3bu (17.6 mg, 44% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 44% isolated yield as a colorless oil.

\([\alpha]^{25}_{D} = +20 \text{ (c=0.30, CHCl}_3)\).

1H NMR (400 MHz, CDCl$_3$) δ 7.31 – 7.26 (m, 2H), 7.05 – 6.95 (m, 2H), 6.94 – 6.87 (m, 2H), 6.75 (d, $J = 7.9$ Hz, 1H), 5.94 (s, 2H), 5.68 (dd, $J = 9.5, 7.3$ Hz, 1H), 4.35 (dd, $J = 56.5, 12.3$ Hz, 2H), 3.78 (s, 3H), 3.62 (dd, $J = 41.3, 11.6$ Hz, 2H), 2.65 (bs, 1H), 2.62 (ddd, $J = 21.2, 13.9, 8.5$ Hz, 2H), 1.46 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, $J = 245.4$ Hz), 147.7, 146.9, 144.3, 135.9, 134.7 (d, $J = 3.1$ Hz), 130.1 (d, $J = 8.1$ Hz), 123.6, 119.7, 115.5 (d, $J = 21.3$ Hz), 108.1, 106.8, 101.0, 62.0, 59.9, 52.4, 48.3, 39.3, 21.5.

HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{24}$FNO$_5$ 402.1711; found: 402.1733.

HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 18.19$ min (minor), 19.40 min (major).
3bv (21.5 mg, 48% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 48% isolated yield as white solid.

\([\alpha]_D^{25} = +9\) (c=0.43, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (dd, $J = 18.3, 7.7$ Hz, 2H), 7.63 (s, 1H), 7.54 (d, $J = 7.3$ Hz, 1H), 7.45 (d, $J = 7.9$ Hz, 1H), 7.37 (t, $J = 7.3$ Hz, 1H), 7.34–7.27 (m, 3H), 7.02 (t, $J = 8.6$ Hz, 2H), 5.86 (dd, $J = 9.2, 7.6$ Hz, 1H), 4.47 (dd, $J = 52.4, 12.3$ Hz, 2H), 3.89 (s, 2H), 3.80 (s, 3H), 3.64 (dd, $J = 39.7, 11.6$ Hz, 2H), 3.04 (bs, 1H), 2.69 (ddd, $J = 21.2, 13.9, 8.5$ Hz, 2H), 1.50 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 176.5, 162.1 (d, $J = 245.4$ Hz), 145.0, 143.5, 143.4, 141.3, 141.0, 140.3, 134.7 (d, $J = 3.0$ Hz), 130.1 (d, $J = 8.1$ Hz), 126.7, 126.6, 125.0, 124.9, 124.4, 122.8, 119.8, 119.7, 115.4 (d, $J = 21.4$ Hz), 62.0, 60.0, 52.4, 48.3, 39.5, 36.9, 21.6.

HRMS (ESI) m/z: [M + H]$^+$ Calcld for C$_{28}$H$_{28}$FNO$_3$ 446.2126; found: 446.2154. HPLC conditions: AS-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 12.35$ min (major), 18.12 min (minor).
3bw (16.9 mg, 42% yield, PE/EA=3:1, 92% ee, Z/E >20:1) was synthesized in method A afforded 42% isolated yield as a colorless oil. \([\alpha]_D^{25} = 13\) (c=0.34, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.77 (dd, \(J = 12.2, 8.4\) Hz, 2H), 7.68 (d, \(J = 8.2\) Hz, 1H), 7.40 – 7.35 (m, 1H), 7.35 – 7.21 (m, 4H), 7.18 – 7.14 (m, 1H), 7.04 – 6.91 (m, 2H), 5.54 (dd, \(J = 10.0, 6.9\) Hz, 1H), 4.32 (dd, \(J = 110.5, 12.5\) Hz, 2H), 3.69 (s, 3H), 3.61 (dd, \(J = 48.6, 9.0\) Hz, 2H), 3.04 (bs, 1H), 2.71 (ddd, \(J = 20.6, 13.7, 8.5\) Hz, 2H), 1.47 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.2, 162.2 (d, \(J = 245.5\) Hz), 145.8, 140.7, 134.8 (d, \(J = 3.0\) Hz), 133.5, 131.2, 130.2 (d, \(J = 8.1\) Hz), 128.3, 127.7, 127.2, 126.0, 125.9, 125.7, 125.6, 125.3, 115.5 (d, \(J = 21.3\) Hz), 61.6, 61.3, 52.4, 48.2, 39.6, 21.8. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{25}\)H\(_{26}\)FNO\(_3\) 408.1969; found: 408.1993. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; \(t_R = 11.85\) min (minor), 14.83 min (major).
3bx (23.3 mg, 57% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 57% isolated yield as a colorless oil.

$[\alpha]_{D}^{25}$ = +12 (c = 0.30, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (s, 1H), 7.85 – 7.76 (m, 3H), 7.61 – 7.55 (m, 1H), 7.49 – 7.43 (m, 2H), 7.35 – 7.28 (m, 2H), 7.07 – 6.98 (m, 2H), 5.95 (dd, J = 9.4, 7.4 Hz, 1H), 4.52 (dd, J = 49.0, 12.3 Hz, 2H), 3.80 (s, 3H), 3.65 (dd, J = 40.2, 11.6 Hz, 2H), 3.10 (bs, 1H), 2.73 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 176.4, 162.1 (d, J = 245.5 Hz), 144.7, 138.8, 134.7 (d, J = 2.8 Hz), 133.3, 132.6, 130.1 (d, J = 8.1 Hz), 128.1, 127.9, 127.5, 126.2, 125.8, 125.3, 124.7, 124.5, 115.4 (d, J = 21.3 Hz), 62.0, 59.8, 52.5, 48.3, 39.4, 21.6. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{26}$FNO$_3$ 408.1969; found: 408.1992.

HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 10.35 min (major), 11.36 min (minor).
3by (21.4 mg, 49% yield, PE/EA=3:1, 91% ee, Z/E >20:1) was synthesized in method A afforded 49% isolated yield as a colorless oil. \([\alpha]_D^{25} = +11\) (c=0.36, CHCl₃).

1H NMR (400 MHz, CDCl₃) \(\delta\) 7.82 (s, 1H), 7.74 – 7.66 (m, 2H), 7.56 – 7.51 (m, 1H), 7.34 – 7.27 (m, 2H), 7.15 – 7.09 (m, 2H), 7.05 – 6.97 (m, 2H), 5.90 (dd, \(J = 9.4, 7.4\) Hz, 1H), 4.50 (dd, \(J = 49.9, 12.3\) Hz, 2H), 3.91 (s, 3H), 3.79 (s, 3H), 3.71 – 3.57 (m, 2H), 3.02 (bs, 1H), 2.71 (ddd, \(J = 21.2, 13.9, 8.5\) Hz, 2H), 1.50 (s, 3H).

13C NMR (100 MHz, CDCl₃) \(\delta\) 176.4, 162.1 (d, \(J = 245.4\) Hz), 157.6, 144.6, 136.6, 134.7 (d, \(J = 1.5\) Hz), 133.8, 130.1 (d, \(J = 8.1\) Hz), 129.6, 128.8, 126.8, 125.0, 124.6, 124.4, 119.0, 115.4 (d, \(J = 21.3\) Hz), 105.4, 62.0, 59.8, 55.3, 52.4, 48.3, 39.5, 21.6. HRMS (ESI) \(m/z\): [M + H]* Calcd for C₂₆H₂₈FNO₄ 438.2075; found: 438.2100. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 16.74\) min (major), 18.87 min (minor).
3bz (21 mg, 64% yield, PE/EA=3:1, 92% ee, E/Z >20:1) was synthesized in method A afforded 64% isolated yield as a colorless oil. \([\alpha]_D^{25}=+22\) (c=0.22, CHCl₃). **H NMR** (400 MHz, CDCl₃) \(\delta\) 7.31 – 7.26 (m, 1H), 7.24 – 7.18 (m, 2H), 6.97 – 6.87 (m, 2H), 6.33 – 6.28 (m, 2H), 6.02 (dd, \(J = 9.5, 7.7\) Hz, 1H), 4.26 (dd, \(J = 39.4, 12.4\) Hz, 2H), 3.72 (s, 3H), 3.55 (dd, \(J = 38.3, 11.6\) Hz, 2H), 2.59 (ddd, \(J = 21.5, 14.0, 8.8\) Hz, 3H), 1.40 (s, 3H). **C NMR** (100 MHz, CDCl₃) \(\delta\) 176.5, 162.1 (d, \(J = 245.0\) Hz), 144.6, 141.6, 134.9 (d, \(J = 3.1\) Hz), 130.0 (d, \(J = 8.1\) Hz), 128.4, 127.3, 126.2, 124.8, 115.4 (d, \(J = 21.4\) Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.7. HRMS (ESI) \(m/z\): [M + H]⁺ Calcd for C₁⁹H₂₂FNO₄ 348.1606; found: 348.1627. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 9.72\) min (major), 10.91 min (minor).
3baa (25.7 mg, 74% yield, PE/EA=3:1, 92% ee, E/Z >20:1) was synthesized in method A afforded 74% isolated yield as a colorless oil. \([\alpha]_D^{25}=+20\) (c=0.40, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.23 – 7.19 (m, 2H), 7.09 – 7.06 (m, 1H), 7.06 – 7.02 (m, 1H), 6.96 – 6.89 (m, 3H), 5.87 (dd, \(J = 9.3, 7.6\) Hz, 1H), 4.34 (dd, \(J = 34.4, 12.4\) Hz, 2H), 3.72 (s, 3H), 3.54 (dd, \(J = 37.5, 11.6\) Hz, 2H), 2.82 (bs, 1H), 2.57 (ddd, \(J = 21.5, 14.0, 8.4\) Hz, 2H), 1.38 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.3, 162.1 (d, \(J = 244.0\) Hz), 144.9, 138.1, 134.7 (d, \(J = 2.9\) Hz), 130.1 (d, \(J = 8.1\) Hz), 127.6, 124.1, 123.6, 123.0, 115.5 (d, \(J = 21.1\) Hz), 62.2, 59.5, 52.4, 48.2, 38.8, 21.4. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{19}\)H\(_{22}\)FNO\(_3\)S 364.1377; found: 364.1397. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 10.92\) min (major), 14.75 min (minor).
3bab (20.2 mg, 57% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 57% isolated yield as a colorless oil.

\([\alpha]_D^{25} = +17 \, (c=0.32, \, \text{CHCl}_3)\).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 7.24 – 7.17 (m, 4H), 7.14 – 7.10 (m, 1H), 6.96 – 6.90 (m, 2H), 5.82 (dd, \(J = 9.4, 7.5\) Hz, 1H), 4.31 (dd, \(J = 41.7, 12.3\) Hz, 2H), 3.71 (s, 3H), 3.54 (dd, \(J = 38.2, 11.6\) Hz, 2H), 2.60 (bs, 1H), 2.57 (dd, \(J = 21.4, 14.0, 8.4\) Hz, 2H), 1.38 (s, 3H).

\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta\) 176.4, 162.1 (d, \(J = 245.5\) Hz), 142.3, 139.2, 134.7 (d, \(J = 3.1\) Hz), 130.1 (d, \(J = 8.1\) Hz), 125.7, 125.6, 123.0, 120.5, 115.4 (d, \(J = 21.3\) Hz), 62.1, 59.5, 52.4, 48.2, 38.8, 21.5.

HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{19}\)H\(_{22}\)FNO\(_3\)S 364.1377; found: 364.1396.

HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 10.15\) min (major), 12.48 min (minor).
3ea (29.2 mg, 79% yield, PE/EA=3:1, 92% ee, Z/E >20:1) was synthesized in method A afforded 79% isolated yield as a colorless oil.

$[\alpha]_D^{25} = +15$ (c=0.36, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.33 (m, 2H), 7.27 – 7.18 (m, 5H), 6.98 – 6.86 (m, 2H), 5.72 (dd, $J = 9.4$, 7.5 Hz, 1H), 4.33 (dd, $J = 52.9$, 12.3 Hz, 2H), 4.22 – 4.12 (m, 2H), 3.55 (dd, $J = 37.4$, 11.5 Hz, 2H), 2.74 (bs, 1H), 2.58 (ddd, $J = 21.2$, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H), 1.25 (t, $J = 7.1$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.9, 162.1 (d, $J = 245.4$ Hz), 144.7, 141.7, 134.8 (d, $J = 3.0$ Hz), 130.1 (d, $J = 8.1$ Hz), 128.4, 127.3, 126.1, 124.8, 115.4 (d, $J = 21.3$ Hz), 61.8, 61.4, 59.8, 48.2, 39.4, 21.5, 14.3. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{22}$H$_{26}$FNO$_3$ 372.1969; found: 372.1993. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 7.57 min (major), 10.07 min (minor).
3fa (17.5 mg, 54% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method A afforded 54% isolated yield as a colorless oil. \([\alpha]_{D}^{25} =+13 \text{ (c=0.36, CHCl}_3\text{).}^{1} \) **H NMR** (400 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.32 (m, 2H), 7.27 – 7.16 (m, 6H), 6.98 – 6.89 (m, 2H), 5.73 (dd, \(J = 9.3, 7.6\) Hz, 1H), 4.33 (dd, \(J = 53.9, 12.2\) Hz, 2H), 3.55 (dd, \(J = 37.6, 11.4\) Hz, 2H), 2.96 (bs, 1H), 2.55 (ddd, \(J = 21.1, 13.8, 8.5\) Hz, 2H), 1.44 (s, 9H), 1.35 (s, 3H). \(^{13}C\) **NMR** (100 MHz, CDCl\(_3\)) \(\delta\) 175.1, 162.1 (d, \(J = 245.3\) Hz), 144.6, 141.8, 134.8, 130.1 (d, \(J = 8.0\) Hz), 128.4, 127.2, 126.1, 125.0, 115.5 (d, \(J = 21.3\) Hz), 81.8, 62.1, 59.8, 48.3, 39.4, 28.1, 21.4. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{24}\)H\(_{30}\)FNO\(_3\) 400.2282; found: 400.2309. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 10min; \(t_R = 4.44\) min (major), 6.14 min (minor).
3ga (28.0 mg, 73% yield, PE/EA=3:1, 91% ee, Z/E >20:1) was synthesized in method A afforded 73% isolated yield as a colorless oil.

\[\alpha \] D \text{=} +7 (c=0.56, CHCl\textsubscript{3}), 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 7.38 – 7.32 (m, 2H), 7.27 – 7.17 (m, 5H), 6.98 – 6.87 (m, 2H), 5.72 (dd, \textit{J} = 9.5, 7.3 Hz, 1H), 5.09 – 4.98 (m, 1H), 4.34 (dd, \textit{J} = 55.2, 12.3 Hz, 2H), 3.56 (dd, \textit{J} = 39.0, 11.5 Hz, 2H), 2.99 (bs, 1H), 2.59 (ddd, \textit{J} = 21.2, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H), 1.22 (d, \textit{J} = 6.3 Hz, 6H).13C NMR (100 MHz, CDCl\textsubscript{3}) \delta 175.2, 162.2 (d, \textit{J} = 245.5 Hz), 144.6, 141.7, 134.7 (d, \textit{J} = 1.1 Hz), 130.1 (d, \textit{J} = 8.1 Hz), 128.4, 127.3, 126.1, 124.8, 115.5 (d, \textit{J} = 21.4 Hz), 69.0, 61.9, 59.8, 48.2, 39.2, 21.9, 21.8, 21.4. HRMS (ESI) \textit{m/z}: [M + H]+ Calcd for C\textsubscript{23}H\textsubscript{28}FNO\textsubscript{3} 386.2126; found: 386.2153. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 15min; \textit{t}_R = 6.21 min (major), 10.51 min (minor)
5ba (12.5 mg, 35% yield, PE/EA=3:1, 86% ee, Z/E >20:1) was synthesized in method A afforded 35% isolated yield as a colorless oil. $[\alpha]_D^{25} = +33$ (c=0.20, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.24 – 7.16 (m, 7H), 6.97 – 6.92 (m, 2H), 6.03 (t, $J = 6.9$ Hz, 1H), 4.09 (ddd, $J = 85.9$, 13.2, 6.9 Hz, 2H), 3.50 (dd, $J = 48.7$, 11.2 Hz, 2H), 3.07 (s, 3H), 3.02 (s, 2H), 1.37 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.5, 162.2 (d, $J = 244.0$ Hz), 142.0, 139.1, 134.78 (d, $J = 3.1$ Hz), 132.9, 130.2 (d, $J = 8.1$ Hz), 128.2, 127.4, 126.7, 115.5 (d, $J = 21.2$ Hz), 60.5, 58.3, 51.7, 48.3, 41.7, 22.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{24}$FNO$_3$ 358.1813; found: 358.1836. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =17.21 min (minor), 20.28 min (major).
5bb (14.4 mg, 33% yield, PE/EA=3:1, 85% ee, Z/E >20:1) was synthesized in method A afforded 33% isolated yield as white solid.

\([\alpha]_D^{25} = +24 \ (c=0.29, \text{CHCl}_3)\). **1H NMR** (400 MHz, CDCl\(_3\)) \(\delta\) 7.51 – 7.45 (m, 4H), 7.38 – 7.34 (m, 2H), 7.29 – 7.24 (m, 3H), 7.21 – 7.17 (m, 2H), 6.98 – 6.92 (m, 2H), 6.09 (t, \(J = 6.9\) Hz, 1H), 4.11 (ddd, \(J = 83.5, 13.2, 6.9\) Hz, 2H), 3.51 (dd, \(J = 50.5, 11.2\) Hz, 2H), 3.10 (s, 3H), 3.05 (s, 2H), 1.39 (s, 3H).

13C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 175.6, 162.17 (d, \(J = 245.5\) Hz), 140.9, 140.4, 140.2, 138.6, 134.8 (d, \(J = 3.0\) Hz), 132.9, 130.2 (d, \(J = 8.1\) Hz), 128.8, 127.4, 127.1, 126.9, 126.8, 115.54 (d, \(J = 21.3\) Hz), 60.6, 58.3, 51.8, 48.3, 41.6, 22.5.

HRMS (ESI) m/z: [M + H]\(^+\) Calcd for C\(_{27}\)H\(_{34}\)FNO\(_3\) 434.2126; found: 434.2155.

HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; \(t_R = 10.99\) min (major), 12.17 min (minor).
5bc (12.1 mg, 33% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method A afforded 33% isolated yield as a colorless oil. \([\alpha]^2_D = +11 (\text{c}=0.24, \text{CHCl}_3)\). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.21 – 7.17 \text{ (m, 2H)}, 7.12 – 7.08 \text{ (m, 1H)}, 6.99 – 6.92 \text{ (m, 5H)}, 6.03 \text{ (t, } J = 6.9 \text{ Hz, 1H)}, 4.08 \text{ (ddd, } J = 87.3, 13.1, 6.9 \text{ Hz, 2H)}, 3.50 \text{ (dd, } J = 48.3, 11.3 \text{ Hz, 2H)}, 3.10 \text{ (s, 3H)}, 3.00 \text{ (d, } J = 3.0 \text{ Hz, 2H)}, 2.26 \text{ (s, 3H)}, 1.37 \text{ (s, 3H)}. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 175.5, 162.2 \text{ (d, } J = 244.1 \text{ Hz)}, 141.9, 139.2, 137.7, 134.7 \text{ (d, } J = 2.3 \text{ Hz)}, 132.6, 130.2 \text{ (d, } J = 8.1 \text{ Hz)}, 128.2, 128.1, 127.3, 123.8, 115.5 \text{ (d, } J = 21.3 \text{ Hz)}, 60.6, 58.2, 51.7, 48.3, 41.5, 22.5, 21.4\). HRMS (ESI) \(m/z\): [M + H]^+ Calcd for C\(_{22}\)H\(_{26}\)FNO\(_3\) 372.1969; found: 372.1994. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R = 9.53 \text{ min (minor), 10.31 min (major)}\).
5bd (10.1 mg, 28% yield, PE/EA=3:1, 80% ee, Z/E >20:1) was synthesized in method A afforded 28% isolated yield as a colorless oil. \([\alpha]_D^{25} =+17 \) (c=0.20, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.21 - 7.17 \) (m, 2H), 7.15 – 7.11 (m, 1H), 6.96 – 6.92 (m, 2H), 6.78 – 6.76 (m, 1H), 6.72 – 6.71 (m, 2H), 6.08 (t, \(J = 6.9\) Hz, 1H), 4.08 (ddd, \(J = 85.2, 13.1, 7.0\) Hz, 2H), 3.72 (s, 3H), 3.50 (dd, \(J = 47.5, 11.2\) Hz, 2H), 3.15 (s, 3H), 3.00 (s, 2H), 1.37 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 175.5, 162.2 (d, \(J = 244.0\) Hz), 159.5, 143.4, 139.0, 134.8 (d, \(J = 1.7\) Hz), 132.8, 130.2 (d, \(J = 8.0\) Hz), 129.2, 119.1, 115.5 (d, \(J = 21.4\) Hz), 112.8, 112.4, 60.6, 58.1, 55.3, 51.8, 48.3, 41.6, 22.4. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C\(_{22}\)H\(_{26}\)FNO\(_4\) 388.1919; found: 388.1944. HPLC conditions: AD-H column, 254 nm, 30 \(^\circ\)C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25 min; \(t_R\) =11.53 min (major), 12.86 min (minor).
5be (6.2 mg, 16% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method A afforded 16% isolated yield as a colorless oil. \([\alpha]_D^{25} = +21 \) (c=0.12, CHCl$_3$). \(^1H\) NMR (400 MHz, CDCl$_3$) \(\delta \) 7.32 – 7.18 (m, 6H), 7.16 – 7.11 (m, 1H), 7.04 – 7.00 (m, 2H), 6.12 (t, \(J = 6.7 \) Hz, 1H), 4.16 (ddd, \(J = 79.4, 13.3, 6.8 \) Hz, 2H), 3.57 (dd, \(J = 48.9, 11.2 \) Hz, 2H), 3.25 (s, 3H), 3.06 (q, \(J = 13.8 \) Hz, 2H), 1.45 (s, 3H). \(^13C\) NMR (100 MHz, CDCl$_3$) \(\delta \) 175.3, 162.2 (d, \(J = 245.2 \) Hz), 143.8, 137.6, 134.5 (d, \(J = 3.5 \) Hz), 134.1, 134.0, 130.3 (d, \(J = 8.0 \) Hz), 129.6, 127.4, 126.6, 125.0, 115.6 (d, \(J = 21.4 \) Hz), 60.5, 58.2, 51.9, 48.3, 41.4, 22.4. HRMS (ESI) \(m/z \): [M + H]$^+$ Calcd for C$_{21}$H$_{23}$ClFNO$_3$ 392.1423; found: 392.1447. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; \(t_R \) =12.58 min (minor), 14.32 min (major).
5bf (16.3 mg, 40% yield, PE/EA=3:1, 80% ee, Z/E >20:1) was synthesized in method A afforded 40% isolated yield as a colorless oil. $[\alpha]_D^{25} = +49$ (c=0.33, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.80 – 7.76 (m, 3H), 7.71 – 7.69 (m, 1H), 7.48 – 7.38 (m, 3H), 7.27 – 7.22 (m, 2H), 7.04 – 6.94 (m, 2H), 6.26 (t, J = 6.9 Hz, 1H), 4.22 (ddd, J = 82.7, 13.2, 6.9 Hz, 2H), 3.57 (dd, J = 54.3, 11.3 Hz, 2H), 3.21 (q, J = 13.8 Hz, 2H), 2.98 (s, 3H), 1.47 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.5, 162.2 (d, J = 245.4 Hz), 139.2, 138.9, 134.7 (d, J = 3.2 Hz), 133.4, 133.4, 133.1, 132.7, 130.2 (d, J = 8.2 Hz), 128.0, 127.9, 127.5, 126.3, 125.9, 125.7, 125.1, 115.5 (d, J = 21.3 Hz), 60.7, 58.3, 51.7, 48.3, 41.5, 22.5. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{26}$FNO$_4$ 408.1919; found: 408.1998. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =13.14 min (major), 15.66 min (minor).
5bg (10.1 mg, 30% yield, PE/EA=3:1, 28% ee, Z/E >20:1) was synthesized in method A afforded 30% isolated yield as a colorless oil. \([\alpha]_D^{25} = +4\) (c=0.20, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.28 – 7.21 (m, 2H), 7.03 – 6.99 (m, 2H), 5.73 (t, \(J = 7.0\) Hz, 1H), 3.95 (dd, \(J = 83.0, 12.7, 7.0\) Hz, 2H), 3.78 (s, 3H), 3.63 (dd, \(J = 24.1, 11.2\) Hz, 2H), 2.59 (dd, \(J = 75.2, 13.6\) Hz, 2H), 1.92 – 1.78 (m, 2H), 1.46 (s, 3H), 1.37 – 1.24 (m, 4H), 0.86 (t, \(J = 7.1\) Hz, 3H). \(^13\)C NMR (100 MHz, CDCl₃) \(\delta\) 176.9, 162.2 (d, \(J = 245.4\) Hz), 138.8, 134.8 (d, \(J = 2.8\) Hz), 130.3 (d, \(J = 8.1\) Hz), 129.5, 115.51 (d, \(J = 21.4\) Hz), 60.5, 57.8, 52.2, 48.4, 41.7, 36.9, 30.3, 22.6, 22.3, 13.89. HRMS (ESI) \(m/z\): [M + H]\(^+\) Calcd for C₁₉H₂₈FNO₃ 338.2128; found: 338.2146. HPLC conditions: OZ-H column, 220 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 10min; \(t_R = 4.72\) min (major), 5.17 min (minor).
5bh (18.8 mg, 67% yield, PE/EA=3:1, 54% ee, Z/E >20:1) was synthesized in method A afforded 67% isolated yield as a colorless oil. \([\alpha]_D^{25} = +5\) (c=0.37, CHCl₃).¹H NMR (400 MHz, CDCl₃) \(\delta\) 7.25 – 7.19 (m, 2H), 6.98 – 6.86 (m, 2H), 5.73 – 5.45 (m, 2H), 4.00 (d, \(J = 5.2\) Hz, 2H), 3.66 (s, 3H), 3.53 (q, \(J = 11.9\) Hz, 2H), 2.37 (qd, \(J = 14.1, 7.1\) Hz, 2H), 1.86 (s, 2H), 1.27 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 176.4, 162.0 (d, \(J = 244.9\) Hz), 135.7 (d, \(J = 3.0\) Hz), 133.5, 129.9 (d, \(J = 8.0\) Hz), 126.2, 115.2 (d, \(J = 21.3\) Hz), 63.2, 62.3, 52.0, 47.7, 41.5, 22.0. HRMS (ESI) \(m/z\): [M + H]⁺ Calcd for C₁₅H₂₀FNO₃ 282.1500; found: 282.1515. HPLC conditions: AD-H column, 220 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; \(t_R = 10.93\) min (major), 11.59 min (minor).
3.5 Gram-scale reaction for compound 3ba.

\[
\text{Ar} - \text{N} - \text{COOMe} \quad 1b + \quad \text{O} - \text{O} - \text{Ph} \quad 2a \rightarrow \quad \text{Ph} \quad \text{COOMe} \quad 3ba
\]

\[
Pd(PPh_3)_4 (4 \text{ mol\%}), \quad \text{Cu(CH_3CN)_4PF_6 (5 \text{ mol\%})/L1 (6 \text{ mol\%})/Cs_2CO_3 (1.0 \text{ equiv}), DCE (1 mL)}
\]

1) NaBH_3CN (5 equiv), MeOH (1 mL)

83% yield, 90% ee >20:1 Z/E

The preparation of Cu catalyst: Cu(CH_3CN)_4PF_6 (5 mol\%), L (6 mol%) were stirred in DCE (20 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method: A flame-dried Schlenk tube was cooled to r.t. and prepared with Cu catalyst. To this flask were added Cs_2CO_3 (1.17g, 3.6 mmol), aldimine Schiff base 1b (3.6 mmol, 1.0 equiv) and vinylene carbonate 2a (4.68 mmol, 1.3 equiv), Pd catalyst (4 mol\%) and DCE (20 mL) was then added. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added dry MeOH (40 mL) and NaBH_3CN (1.2g, 5.0 equiv) at 0 °C and the mixture was stirred for 2 h. Extracted with EtOAc (5 mL x 3). The combined extracts were dried over Na_2SO_4 and concentrated in vacuo. The residue was then purified by SiO_2 column chromatography (PE/EA = 3:1) to give the desired products. The ee value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

<table>
<thead>
<tr>
<th>Signal: VWD1A, Wavelength=254 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT [min]</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>8.700</td>
</tr>
<tr>
<td>9.887</td>
</tr>
<tr>
<td>Sum</td>
</tr>
</tbody>
</table>

3.6 The method for the synthesis of 6aa

\[
\text{Ar} - \text{N} - \text{COOMe} \quad 1b + \quad \text{O} - \text{O} - \text{Ph} \quad 2a \rightarrow \quad \text{Ph} \quad \text{COOMe} \quad 6aa
\]

\[
Pd(PPh_3)_4 (4 \text{ mol\%}), \quad \text{Cu(CH_3CN)_4PF_6 (5 \text{ mol\%})/L1 (6 \text{ mol\%})/Cs_2CO_3 (1.0 \text{ equiv}), DCE (1 mL)}
\]

1) 2M HCl

6aa, 45% yield, 90% ee >20:1 Z/E
The preparation of Cu catalyst: Cu(CH$_3$CN)$_4$PF$_6$ (5 mol%), L (6 mol%) were stirred in THF (0.5 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method B: A flame-dried Schlenk tube was cooled to r.t. and prepared with Cu catalyst. To this flask were added Cs$_2$CO$_3$ (32.6 mg, 0.1 mmol), aldimine Schiff base (0.1 mmol, 1.0 equiv) and vinylethylene carbonates (24.7 mmol, 1.3 equiv) and DCE (0.5 mL) was then added. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added HCl (2.0 M, 2.0 mL) at 0 °C and the mixture was stirred for 2 h. Adjust pH to 7-8 by NaHCO$_3$, extracted with DCM (5 mL x 3). The combined extracts were dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was then purified by SiO$_2$ column chromatography (PE/EA = 1:2) to give the desired product. The ee value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

6aa (11.2 mg, 45% yield, PE/EA=3:1, 90% ee, Z/E >20:1) was synthesized in method B afforded 45% isolated yield as a colorless oil. [α]$_D^{25}$ = -29 (c=0.22, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.35 (m, 2H), 7.29 – 7.18 (m, 3H), 5.69 (dd, J = 9.2, 7.7 Hz, 1H), 4.35 (dd, J = 65.4, 12.1 Hz, 2H), 3.69 (s, 3H), 2.59 (ddd, J = 30.8, 18.3, 10.2 Hz, 6H), 1.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 177.3, 145.3, 142.0, 128.3, 127.2, 126.1, 125.2, 59.8, 56.8, 52.7, 39.9, 26.4. HRMS (ESI) m/z: [M + H]$^+$ Calcd for C$_{14}$H$_{19}$O$_3$ 250.1438; found: 250.1443. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.2 mL/min, Hex:IPA = 95:5, 25min; t_R =20.34 min (minor), 21.59 min (major).
3.7 The method for the synthesis of 6ab and 6ac.

Method C: A flame-dried Schlenk tube was cooled to rt and filled with N₂. To this flask were added 3ba (0.5 mmol, 1.0 equiv), I₂ (1.0 mmol, 2.0 equiv), NaHCO₃ (84.0 mg, 1.0 mmol) and dry MeCN at 0 °C for 30 min, then warm up to rt for 12h. The reaction mixture was quenched by Na₂S₂O₃(aq.) and extracted with EA, then concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 15:1) to give the desired products. The ee value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

Method D: A flame-dried Schlenk tube was cooled to rt and filled with N₂. To this flask were added 3ba (0.1 mmol, 1.0 equiv), PBr₃ (0.05 mmol, 0.5 equiv) and dry DCM at 0 °C for 2 hours, then add DIPEA (0.1 mmol) at 0 °C for 24 h. The reaction mixture was extracted with EA, then concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 20:1) to give the desired products. The ee value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

6ab (118.9 mg, 49% yield, PE/EA=3:1, 87% ee, Z/E >20:1) was synthesized in method C afforded 49% isolated yield as a yellow oil. \([\alpha]_D^{25} = +5 \text{ (c}=1.20, \text{ CHCl}_3)\). **¹H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 2H), 7.37 – 7.32 (m, 1H), 7.29 – 7.25 (m, 2H), 6.95 – 6.80 (m, 4H), 4.56 (t, J = 11.8 Hz, 1H), 4.36 (dd, J = 12.9, 7.3 Hz, 1H), 4.29 (d, J = 12.1 Hz, 1H), 3.80 – 3.68 (m, 3H), 3.61 (s, 3H), 3.03 (t, J = 12.6 Hz, 1H), 2.33 (dd, J = 12.1, 7.4 Hz, 1H), 1.57 (s, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ 177.5, 162.1 (d, J = 245.9 Hz), 140.4, 133.6 (d, J = 3.1 Hz),
131.2 (d, J = 8.1 Hz), 128.6, 127.7, 127.0, 114.9 (d, J = 21.2 Hz), 73.1, 68.4, 67.6, 52.8, 49.5, 49.2, 33.9, 22.5. HRMS (ESI) m/z: [M + H]^+ Calcd for C_{21}H_{23}FNO_3 484.0779; found: 484.0798. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 15 min; t_R = 5.77 min (major), 6.75 min (minor).

6ac (12.5 mg, 37% yield, PE/EA=20:1, 87% ee, Z/E >20:1) was synthesized in method D afforded 37% isolated yield as a colorless oil. [α]_D^{25} = +16 (c=0.25, CHCl_3). ^{1}H NMR (400 MHz, CDCl_3) δ 7.35 – 7.25 (m, 2H), 7.23 – 7.05 (m, 5H), 7.03 – 6.80 (m, 2H), 6.01 (s, 1H), 3.78 (dd, J = 151.7, 14.0 Hz, 5H), 3.52 – 3.25 (m, 2H), 2.91 – 2.23 (m, 2H), 1.43 (s, 3H). ^{13}C NMR (100 MHz, CDCl_3) δ 176.0, 161.9 (d, J = 244.3 Hz), 139.2, 135.7 (d, J = 2.9 Hz), 134.4, 129.8 (d, J = 7.9 Hz), 128.3, 127.1, 124.8, 120.2, 115.0 (d, J = 21.2 Hz), 61.3, 54.7, 51.8, 49.6, 36.5, 22.8. HRMS (ESI) m/z: [M + H]^+ Calcd for C_{21}H_{22}FNO_2 340.1707;
found: 340.1726. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 90:10, 15min; \(t_R = 7.05 \) min (minor), 7.89 min (major).

3.8 HPLC spectrum of compounds (\(R \))-3ga, (\(S \))-3ga, (\(S \))-1g', and (\(R \))-1g'

\[\begin{align*}
\text{(rac)-1g} & \quad + \quad \text{2a} \\
\text{(R,R)-L1} & \quad \text{standard conditions} \\
& \quad \text{then NaBH}_3\text{CN, 2 h} \\
\rightarrow & \quad \text{(R)-3ga, 52% yield, 93% ee}
\end{align*} \]
1g’ (12.9 mg, 54% recovered, PE/EA=20:1, 19% ee) was colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.13 (m, 2H), 7.08 – 6.82 (m, 2H), 5.30 – 4.69 (m, 1H), 3.62 (dd, J = 57.8, 12.7 Hz, 2H), 3.24 (q, J = 7.0 Hz, 1H), 1.79 (s, 1H), 1.52 – 0.89 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 162.0 (d, J = 244.7 Hz), 135.5 (d, J = 3.0 Hz), 129.8 (d, J = 8.0 Hz), 115.2 (d, J = 21.2 Hz), 68.2, 56.0, 51.2, 21.9, 21.8, 19.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₈FNO₂ 240.1394; found: 240.1411. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 97:3, 15 min; tᵣ = 3.61 min, 4.07 min.
Signal: VWD1A, Wavelength=254 nm

<table>
<thead>
<tr>
<th>RT [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.842</td>
<td>MM m</td>
<td>0.08</td>
<td>254.36</td>
<td>46.57</td>
<td>50.99</td>
<td></td>
</tr>
<tr>
<td>4.383</td>
<td>MM m</td>
<td>0.10</td>
<td>244.49</td>
<td>38.88</td>
<td>49.01</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>498.84</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal: VWD1A, Wavelength=254 nm

<table>
<thead>
<tr>
<th>RT [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.612</td>
<td>MM m</td>
<td>0.08</td>
<td>234.52</td>
<td>45.05</td>
<td>59.62</td>
<td></td>
</tr>
<tr>
<td>4.065</td>
<td>MM m</td>
<td>0.09</td>
<td>168.84</td>
<td>28.32</td>
<td>40.38</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>393.37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(R)-1g + O

standard conditions, 10 min
then NaBH₃CN, 2 h

3ga, 87% yield, 95% ee

(R)-1g', trace
4. References

5. Copies of 1H and 13C spectrum of trisubstituted allylic amino acids

1H NMR spectrum of 3ba in CDCl$_3$

13C NMR spectrum of 3ba in CDCl$_3$
1H NMR spectrum of 3bb in CDCl$_3$

13C NMR spectrum of 3bb in CDCl$_3$
1H NMR spectrum of 3bc in CDCl$_3$

13C NMR spectrum of 3bc in CDCl$_3$
1H NMR spectrum of 3bd in CDCl$_3$

13C NMR spectrum of 3bd in CDCl$_3$
1H NMR spectrum of 3be in CDCl$_3$

13C NMR spectrum of 3be in CDCl$_3$
^{1}H NMR spectrum of 3bf in CDCl$_3$

^{13}C NMR spectrum of 3bf in CDCl$_3$
1H NMR spectrum of 3bg in CDCl$_3$

13C NMR spectrum of 3bg in CDCl$_3$
\(^1\)H NMR spectrum of 3bh in CDCl\(_3\)

\(^{13}\)C NMR spectrum of 3bh in CDCl\(_3\)
1H NMR spectrum of 3bi in CDCl$_3$

13C NMR spectrum of 3bi in CDCl$_3$
$^1\text{H NMR}$ spectrum of 3bj in CDCl$_3$

$^{13}\text{C NMR}$ spectrum of 3bj in CDCl$_3$
1H NMR spectrum of 3bk in CDCl₃

13C NMR spectrum of 3bk in CDCl₃
1H NMR spectrum of 3bl in CDCl$_3$

13C NMR spectrum of 3bl in CDCl$_3$
\(^1\text{H NMR}\) spectrum of 3bm in CDCl\(_3\)

\[^{13}\text{C NMR}\) spectrum of 3bm in CDCl\(_3\)
1H NMR spectrum of 3bn in CDCl$_3$

13C NMR spectrum of 3bn in CDCl$_3$
1H NMR spectrum of 3bo in CDCl$_3$

13C NMR spectrum of 3bo in CDCl$_3$
1H NMR spectrum of 3bp in CDCl$_3$

13C NMR spectrum of 3bp in CDCl$_3$
1H NMR spectrum of 3bq in CDCl$_3$

13C NMR spectrum of 3bq in CDCl$_3$
$^1\text{H NMR}$ spectrum of 3br in CDCl$_3$

$^{13}\text{C NMR}$ spectrum of 3br in CDCl$_3$
1H NMR spectrum of 3bs in CDCl$_3$

13C NMR spectrum of 3bs in CDCl$_3$
^{1}H NMR spectrum of 3bt in CDCl$_3$

^{13}C NMR spectrum of 3bt in CDCl$_3$
$^1\text{H NMR}$ spectrum of 3bu in CDCl$_3$

$^{13}\text{C NMR}$ spectrum of 3bu in CDCl$_3$
1H NMR spectrum of 3bv in CDCl$_3$

13C NMR spectrum of 3bv in CDCl$_3$
1H NMR spectrum of 3bw in CDCl$_3$

13C NMR spectrum of 3bw in CDCl$_3$
1H NMR spectrum of 3bx in CDCl$_3$

13C NMR spectrum of 3bx in CDCl$_3$
1H NMR spectrum of 3by in CDCl$_3$

13C NMR spectrum of 3by in CDCl$_3$
1H NMR spectrum of 3bz in CDCl$_3$

13C NMR spectrum of 3bz in CDCl$_3$
\(^1\)H NMR spectrum of 3baa in CDCl\(_3\)

\(^{13}\)C NMR spectrum of 3baa in CDCl\(_3\)
1H NMR spectrum of 3bab in CDCl$_3$

13C NMR spectrum of 3bab in CDCl$_3$
1H NMR spectrum of 3ea in CDCl$_3$

13C NMR spectrum of 3ea in CDCl$_3$
1H NMR spectrum of 3fa in CDCl$_3$

13C NMR spectrum of 3fa in CDCl$_3$
1H NMR spectrum of 3ga in CDCl$_3$

13C NMR spectrum of 3ga in CDCl$_3$
1H NMR spectrum of 5ba in CDCl$_3$

13C NMR spectrum of 5ba in CDCl$_3$
1H NMR spectrum of 5bb in CDCl$_3$

13C NMR spectrum of 5bb in CDCl$_3$
1H NMR spectrum of 5bc in CDCl$_3$

13C NMR spectrum of 5bc in CDCl$_3$
1H NMR spectrum of 5bd in CDCl$_3$

13C NMR spectrum of 5bd in CDCl$_3$
1H NMR spectrum of 5be in CDCl$_3$

13C NMR spectrum of 5be in CDCl$_3$
1H NMR spectrum of 5bg in CDCl$_3$

13C NMR spectrum of 5bg in CDCl$_3$
1H NMR spectrum of 5bh in CDCl$_3$

13C NMR spectrum of 5bh in CDCl$_3$
1H NMR spectrum of 1g’ in CDCl$_3$

13C NMR spectrum of 1g’ in CDCl$_3$
1H NMR spectrum of 6aa in CDCl$_3$

13C NMR spectrum of 6aa in CDCl$_3$
1H NMR spectrum of 6ab in CDCl$_3$

13C NMR spectrum of 6ab in CDCl$_3$
1H NMR spectrum of 6ac in CDCl$_3$

13C NMR spectrum of 6ac in CDCl$_3$