Supporting Information

Regio- and Stereoselective Syntheses of Chiral α -Quaternary (Z)-

Trisubstituted Allylic Amino Acids via Synergistic Pd/Cu Catalysis

Miaolin Ke^{*a*}, Yuyan Yu^{*a*}, Longwu Sun^{*a*}, Xinzhi Li^{*a*}, Qianqian Cao^{*a*}, Xiao Xiao^{*a*} *, Fener Chen^{*a*}, *b*, *c* *

^a Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. pharmxiao@zjut.edu.cn

^b Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. Email: rfchen@fudan.edu.cn

^c Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China

Table of contents

1. General information	S2
2. Procedure for the synthesis chiral α -quaternary (Z)-trisubstituted allylic amino acids.	S2
3. Results and discussion	S3
3.1 Optimization of reaction conditions	S3
3.2 Stereocontrol experiments	S4
3.3 Reaction mechanism	S4
3.4. Characterization of trisubstituted allylic amino acids	S5
3.5 Gram-scale reaction for compound 3ba .	S44
3.6 The method for the synthesis of 6aa	S44
3.7 The method for the synthesis of 6ab and 6ac .	S46
3.8 HPLC spectrum of compounds (<i>R</i>)-3ga, (<i>S</i>)-3ga, (<i>S</i>)-1g', and (<i>R</i>)-1g'	S48
4. References	S51
5. Copies of ¹ H and ¹³ C spectrum of trisubstituted allylic amino acids	S52

1. General information

All reactions were accomplished in Schlenk tube and round flask. Column chromatograph was performed over silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Bruker AM400 spectrometer, chemical shifts (in ppm) were referred to CDCl₃ (δ = 7.26 ppm). ¹³C NMR spectrum were obtained by using the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.0 ppm). The following abbreviations have been used to illuminate the diversities: δ = chemical shifts, J = coupling constant, s = singlet, d= doublet, t = triplet, q = quartet, m = multiplet. HRMS were recorded on a Bruker microTOF spectrometer (ESI). Ee values were determined by Agilent high-performance liquid chromatograph (HPLC). All anhydrous solvents were dried by the standard treated method. Vinylethylene carbonates¹ and aldimine ester² were synthesized according to known references. All materials were obtained by commercial suppliers, unless otherwise notice, and most stating materials were purchased from Adamas, Bide and Energy Chemical. PE = petroleum ether, DCM = dichloromethane, MeOH = methanol, EA = ethyl acetate.

2. Procedure for the synthesis chiral α -quaternary (Z)-trisubstituted allylic amino acids

The preparation of Cu catalyst: Cu(CH₃CN)₄PF₆ (5 mol%), L1 (6 mol%) were stirred in DCE (0.5 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method A: To a Schlenk tube with prepared Cu catalyst were added Cs_2CO_3 (32.6 mg, 0.1 mmol), aldimine Schiff base (0.1 mmol, 1.0 equiv), vinylethylene carbonates (24.7 mmol, 1.3 equiv), Pd catalyst (4 mol%) and DCE (0.5 mL) under nitrogen atmosphere. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added dry MeOH (1 mL) and NaBH₃CN (31.4mg, 5.0 equiv) at 0 °C and the mixture was stirred for 2 h. Then the crude products were purified by SiO₂ column chromatography (PE/EA = 3:1) to give the desired products. The *ee* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

3. Results and discussion

3.1 Optimization of reaction conditions

	o	Pd(1 1) Cu	PPh ₃) ₄ (X mol%) (X mol%), L (X mol%)) Ph		Ph	_
Mi I		bas	e (1.0 equiv.), solven	t (1 mL)		+	
		2) redu	ictant (X equiv.), MeC	ОН (1 mL) НО—∕	₩ HN−CH₂A	کی۔ ۱.	N Bn
Ar = 4-F-	Ph, 1b 2a				3aa - 3da	ON M+1	le Na
Ar = 4-Cl Ar = 4-Ol	-Ph, 1c Me-Ph, 1d					HRMS: 4	02.1850
\sim	, Ph		,\Me	, ^t Bu		r _	, ^{/Pr}
)=N	0 /)=N)=N)=N	0' /)=N	Q)=N
	Ph ₂ PPh ₂		PPh ₂	PPh ₂	PPh ₂	Ø	PCy2
Fe	Fe PPh ₂		Fe	Fe	Fe	Fe	7
 L1	L2		 L3	 L4	 L5		L6
Entry	[Cu]	L	base	solvent	yield $(\%)^b$	<i>ee</i> (%) ^c	Z/E^d
1	Cu(CH ₃ CN) ₄ BF ₄	L1	Cs_2CO_3	DCE	66	92	>20:1
2	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	62	94	>20:1
3	CuI	L1	Cs_2CO_3	DCE	trace	-	-
4	CuCl	L1	Cs_2CO_3	DCE	trace	-	-
5	Cu(CH ₃ CN) ₄ PF ₆	L2	Cs_2CO_3	DCE	31	35	>20:1
6	Cu(CH ₃ CN) ₄ PF ₆	L3	Cs_2CO_3	DCE	48	73	>20:1
7	Cu(CH ₃ CN) ₄ PF ₆	L4	Cs_2CO_3	DCE	51	85	>20:1
8	Cu(CH ₃ CN) ₄ PF ₆	L5	Cs_2CO_3	DCE	52	83	>20:1
9	Cu(CH ₃ CN) ₄ PF ₆	L6	Cs_2CO_3	DCE	50	29	>20:1
10	Cu(CH ₃ CN) ₄ PF ₆	L1	Na ₂ CO ₃	DCE	50	91	>20:1
11	Cu(CH ₃ CN) ₄ PF ₆	L1	DIPEA	DCE	46	93	>20:1
12	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	toluene	27	82	>20:1
13	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCM	55	88	>20:1
14	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	THF	41	89	>20:1
15^e	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	16	90	>20:1
16 ^f	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	ND	-	-
17^{g}	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	70	91	>20:1
18^{h}	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	75	91	>20:1
19 ^{<i>i</i>}	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs ₂ CO ₃	DCE	86	92	>20:1
20 ^j	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs ₂ CO ₃	DCE	62	87	>20:1
21^{k}	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	65	91	>20:1
22^{l}	Cu(CH ₃ CN) ₄ PF ₆	L1	Cs_2CO_3	DCE	85	91	>20:1

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Pd(PPh₃)₄ (5 mol%), Cu (10 mol%), L (12 mol%), base (1.5 equiv.), solvent (1 mL), NaBH₄ (5 equiv.), MeOH (1 mL), N₂, 9 h, r.t. ^{*b*, *d*} Determined by 1H NMR using CHBr₂ as internal standard. ^{*c*} Determined by HPLC using chiral column. ^{*e*} LiAlH₄ (4 equiv.). ^{*f*} NaBH(OAc)₃ (4 equiv.). ^{*g*} NaBH₃CN (4 equiv.). ^{*h*} 40 °C. ^{*i*} **1b** (0.1 mmol). ^{*j*} **1c** (0.1 mmol). ^{*k*} **1d** (0.1 mmol). ^{*i*} **1b** (0.1 mmol), **2a** (0.13 mmol), Pd(PPh₃)₄ (4 mol%), Cu(CH₃CN)₄PF₆ (5 mol%), **L1** (6 mol%), Cs₂CO₃ (1 equiv.), DCE (1 mL), NaBH₃CN (5 equiv.), MeOH (1.0 mL), N₂, 6 h, 40 °C.

3.2 Stereocontrol experiments

Scheme S1. Stereocontrol experiments

3.3 Reaction mechanism

3.4. Characterization of trisubstituted allylic amino acids

3ba (30.7mg, 86% yield, PE/EA=3:1, 92% *ee*, *Z/E* >20:1) was synthesized in method A afforded 86% isolated yield as a colorless oil. $[\alpha]_{D}^{25}$ =+4 (c=0.60, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.3 Hz, 2H), 7.22 (ddd, *J* = 10.0, 8.0, 4.9 Hz, 5H), 7.02 – 6.84 (m, 2H), 5.72 (dd, *J* = 9.4, 7.4 Hz, 1H), 4.34 (dd, *J* = 52.1, 12.3 Hz, 2H), 3.70 (s, 3H), 3.55 (dd, *J* = 36.3, 11.7 Hz, 2H), 2.59 (ddd, *J* = 21.2, 13.9, 8.4 Hz, 2H), 2.33 (bs, 2H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.5,

162.1 (d, J = 245.0 Hz), 144.6, 141.6, 134.9 (d, J = 3.1 Hz), 130.0 (d, J = 8.1 Hz), 128.4, 127.3, 126.2, 124.8, 115.4 (d, J = 21.4 Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₄FNO₃ 358.1813; found: 358.1839. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 8.65$ min (major), 9.87 min (minor).

				-		-
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	95.86	392.06	6927.70	0.27	MM m	8.646
	4.14	13.76	299.06	0.33	MM m	9.867
			7226.75	Sum		

Signal:

VWD1A Wavelength=254 nm

3bb (32.1 mg, 87% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method A afforded 87% isolated yield as a colorless oil. $[a]_D^{25}$ =+16 (c=0.64, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.17 (m, 4H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.97 – 6.86 (m, 2H), 5.68 (dd, *J* = 9.4, 7.4 Hz, 1H), 4.32 (dd, *J* = 57.3, 12.3 Hz, 2H), 3.70 (s, 3H), 3.55 (dd, *J* = 41.4, 11.7 Hz, 2H), 2.81 (bs, 1H), 2.58 (ddd, *J* = 21.1, 13.9, 8.5 Hz, 3H), 2.26 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.4 Hz), 144.5, 138.7, 137.1, 134.7 (d,

J = 2.7 Hz), 130.1 (d, J = 8.0 Hz), 129.1, 126.0, 123.9, 115.4 (d, J = 21.2 Hz), 61.9, 59.8, 52.4, 48.2, 39.4, 21.6, 21.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₃ 372.1969; found: 372.1989. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 7.99$ min (major), 9.19 min (minor).

		2011 - 2011 - 101				
RT [min]	Туре	Width [min]	Area	Height	Area%	Nar
7.836	MM m	0.25	22572.19	1361.14	50.48	
8.995	MM m	0.30	22139.83	1146.12	49.52	
		Sum	44712.02			

Signal:	DAD1A,Si					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.986	MM m	0.24	7142.27	448.69	94.78	
9.186	MM m	0.26	393.15	24.25	5.22	
		Sum	7535.43			

3bc (25.3 mg, 61% yield, PE/EA=3:1, 84% *ee*, *Z/E* >20:1) was synthesized in method A afforded 61% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+12 (c=0.51, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.25 (m, 4H), 7.23 - 7.17 (m, 2H), 6.97 - 6.85 (m, 2H), 5.78 - 5.60 (m, 1H), 4.33 (dd, *J* = 56.9, 12.3 Hz, 2H), 3.70 (s, 3H), 3.54 (dd, *J* = 40.3, 11.6 Hz, 2H), 2.81 (bs, 1H), 2.58 (ddd, *J* = 21.0, 13.8, 8.7 Hz, 2H), 1.39 (s, 3H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.3 Hz), 150.3, 144.4, 138.6, 134.8 (d, *J* = 3.1 Hz),

130.1 (d, J = 8.1 Hz), 125.8, 125.3, 124.0, 115.4 (d, J = 21.4 Hz), 61.9, 59.8, 52.4, 48.2, 39.5, 34.4, 31.3, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₃₂FNO₃ 414.2439; found: 414.2465. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; t_R =10.49 min (major), 11.23 min (minor).

Signal:	DAD1A,Sig	=254,4 Ref=off	254,4 Ref=off			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.487	MM m	0.28	13303.32	740.17	91.76	
11.226	MM m	0.30	1194.31	61.84	8.24	
		Sum	14497.62			

3bd (25.0 mg, 65% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method A afforded 65% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =21+ (c=0.50, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.18 (m, 2H), 6.96 – 6.86 (m, 2H), 6.83 – 6.71 (m, 2H), 5.63 (dd, *J* = 9.5, 7.3 Hz, 1H), 4.31 (dd, *J* = 55.3, 12.3 Hz, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 3.54 (dd, *J* = 39.9, 11.6 Hz, 2H), 2.86 (bs, 1H), 2.56 (ddd, *J* = 21.2, 13.9, 8.4 Hz, 2H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 162.1 (d, *J* = 245.5 Hz), 159.0, 144.0, 134.8 (d, *J* = 3.2 Hz), 134.1, 130.1 (d, *J* = 8.1 Hz), 127.3, 123.1,

115.4 (d, J = 21.4 Hz), 113.7, 61.9, 59.8, 55.3, 52.4, 48.2, 39.4, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₄ 388.1919; found: 388.1943. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 13.20$ min (major), 14.96 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]	
	49.72	40.50	1084.54	0.41	MM m	13.159	
	50.28	36.20	1096.72	0.46	MM m	14.884	
			2181.26	Sum			

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.200	MM m	0.41	3534.49	131.03	93.67	
14.957	MM m	0.46	238.85	7.83	6.33	
		Sum	3773.34			

3be (26.9 mg, 67% yield, PE/EA=3:1, 92% *ee*, *Z/E* >20:1) was synthesized in method A afforded 67% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+17 (c=0.42, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 2H), 7.24 – 7.16 (m, 2H), 7.16 – 7.08 (m, 2H), 6.98 – 6.78 (m, 2H), 5.69 (dd, *J* = 9.5, 7.3 Hz, 1H), 4.30 (dd, *J* = 57.1, 12.3 Hz, 2H), 3.71 (s, 3H), 3.54 (dd, *J* = 40.5, 11.6 Hz, 2H), 2.93 (s, 1H), 2.57 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 2.40 (s, 3H), 1.39 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.3 Hz), 144.1, 138.4, 137.5, 134.7 (d, *J* = 2.9 Hz), 130.1 (d, *J* = 8.1 Hz), 126.5,

126.5, 124.2, 115.4 (d, J = 21.3 Hz), 61.9, 59.6, 52.4, 48.2, 39.4, 21.5, 15.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₃S 404.1690; found:404.1715. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =12.40 min (major), 13.82 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]	
	49.77	39.00	979.47	0.39	MM m	12.341	
	50.23	35.30	988.45	0.43	MM m	13.775	
			1967.93	Sum			

Signal:	DAD1A,Sig	g=254,4 Ref=off	254,4 Ref=off			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
12.400	MM m	0.39	1646.70	64.47	95.88	
13.817	MM m	0.39	70.70	2.73	4.12	
		Sum	1717.40			

Signal

DAD1A Sig=254.4 Ref=off

3bf (31.6 mg, 72% yield, PE/EA=3:1, 90% *ee*, Z/E > 20:1) was synthesized in method A afforded 72% isolated yield as white solid. [α]_D²⁵=+9 (c=0.40, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1H), 7.61 – 7.49 (m, 7H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 – 7.28 (m, 3H), 7.02 (t, J = 8.5 Hz, 2H), 5.87 (dd, J = 9.2, 7.5 Hz, 1H), 4.45 (dd, J = 55.9, 12.2 Hz, 2H), 3.80 (s, 3H), 3.64 (dd, J = 41.5, 11.5 Hz, 2H), 3.15 (bs, 1H), 2.70 (ddd, J = 21.1, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, J = 245.3 Hz),

144.3, 140.6, 140.5, 140.2, 137.5, 134.6 (d, J = 1.9 Hz), 132.4, 130.1 (d, J = 8.1 Hz), 130.0, 128.7, 128.2, 127.3, 127.1, 127.0, 126.5, 124.7, 115.5 (d, J = 21.4 Hz), 62.0, 59.7, 52.4, 48.3, 39.4, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈FNO₃ 434.2126; found: 434.2153. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 15.88$ min (major), 17.03 min (minor).

olgilal.							
RT [min]	Туре	Width [min]	Area	Height	Area%	Name	
15.700	MM m	0.42	452.51	16.75	49.04		
16.832	MM m	0.45	470.25	16.42	50.96		
		Sum	922.75				

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
15.878	MM m	0.42	3787.94	138.80	94.77	
17.027	MM m	0.41	208.84	8.03	5.23	
		Sum	3996.78			

3bg (24.9 mg, 66% yield, PE/EA=3:1, 92% *ee*, Z/E > 20:1) was synthesized in method A afforded 66% isolated yield as a colorless oil. $[\alpha]_D^{25} = +20$ (c=0.50, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 7.07 – 6.93 (m, 4H), 5.72 (dd, J = 9.5, 7.3 Hz, 1H), 4.37 (dd, J = 62.0, 12.3 Hz, 2H), 3.79 (s, 3H), 3.63 (dd, J = 42.7, 11.3 Hz, 2H), 3.07 (bs, 1H), 2.65 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.48 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 163.4 (d, J = 6.5 Hz), 161.0 (d, J = 5.7 Hz), 143.9, 137.7 (d, J = 3.0 Hz), 134.5 (d, J = 2.5 Hz), 130.2 (d, J = 8.1 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 143.9, 137.7 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 127.8 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 128.5 Hz, 128 (d, J = 7.9 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 128 (d, J = 5.7 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 128 (d, J = 5.7 Hz), 128 (d, J = 5.7 Hz), 124.5, 115.5 (d, J = 5.7 Hz), 128 (d, J = 5

21.4 Hz), 115.2 (d, J = 21.4 Hz), 62.0, 59.8, 52.5, 48.3, 39.2, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃F₂NO₃ 376.1719; found: 376.1739. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; $t_R = 9.18$ min (major), 10.55 min (minor).

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.248	MM m	0.27	137.79	7.73	49.71	
10.631	MM m	0.32	139.41	6.77	50.29	
		Sum	277.20			

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.182	MM m	0.27	434.97	24.47	96.08	
10.551	MM m	0.29	17.73	0.96	3.92	
		Sum	452.70			

3bh (25.7 mg, 66% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method A afforded 66% isolated yield as a colorless oil. $[\alpha]_D^{25} =+10$ (c=0.51, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.24 – 7.16 (m, 4H), 6.99 – 6.87 (m, 2H), 5.70 (dd, *J* = 9.4, 7.4 Hz, 1H), 4.28 (dd, *J* = 54.5, 12.3 Hz, 2H), 3.71 (s, 3H), 3.53 (dd, *J* = 38.1, 11.5 Hz, 2H), 2.80 (bs, 1H), 2.56 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.6 Hz), 143.6, 140.1, 134.7 (d, *J* = 3.2 Hz), 133.1, 130.1 (d,

J = 8.1 Hz), 128.4, 127.4, 125.3, 115.45 (d, J = 21.3 Hz), 61.9, 59.6, 52.4, 48.2, 39.2, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClFNO₃ 392.1423; found: 392.1448. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =7.24 min (major), 7.81 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]			
	50.86	74.07	1027.87	0.22	MM m	7.665			
	49.14	66.33	992.98	0.23	MM m	8.287			
			2020.85	Sum					

Signal:	DAD1A,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.236	MM m	0.19	207.43	16.87	6.17	
7.809	MM m	0.22	3152.88	219.97	93.83	
		Sum	3360.31			

3bi (25.3 mg, 58% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method A afforded 58% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+6 (c=0.51, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.34 – 7.23 (m, 4H), 7.06 – 6.93 (m, 2H), 5.77 (dd, *J* = 9.6, 7.3 Hz, 1H), 4.36 (dd, *J* = 62.4, 12.3 Hz, 2H), 3.79 (s, 3H), 3.63 (dd, *J* = 43.0, 11.5 Hz, 2H), 2.65 (ddd, *J* = 21.2, 13.9, 8.6 Hz, 2H), 2.12 (bs, 1H), 1.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 162.2 (d, *J* = 245.6 Hz), 143.9, 140.6, 134.3 (d, *J* = 5.2 Hz), 131.4,

130.2 (d, J = 8.0 Hz), 127.8, 125.2, 121.3, 115.5 (d, J = 21.3 Hz), 62.0, 59.5, 52.5, 48.3, 39.2, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃BrFNO₃ 436.0918; found: 436.0944. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =8.17 min (major), 9.08 min (minor).

Signal:	VWD1A,Wavelength=254 nm						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name	
7.756	MM m	0.25	1232.14	76.10	49.54		
8.590	MM m	0.27	1255.12	69.89	50.46		
		Sum	2487.26				

Signal:	DAD1A,Si					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
8.173	MM m	0.25	3271.08	198.84	93.58	
9.079	MM m	0.28	224.33	12.33	6.42	
		Sum	3495.41			

3bj (29.9 mg, 70% yield, PE/EA=3:1, 86% *ee*, *Z/E* >20:1) was synthesized in method A afforded 70% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+17 (c=0.30, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 4H), 7.32 – 7.26 (m, 2H), 7.05 – 6.97 (m, 2H), 5.86 (dd, *J* = 9.4, 7.4 Hz, 1H), 4.39 (dd, *J* = 58.0, 12.3 Hz, 2H), 3.79 (s, 3H), 3.62 (dd, *J* = 40.7, 11.5 Hz, 2H), 2.75 (bs, 1H), 2.68 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 1.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 162.2 (d, *J* = 245.7 Hz), 145.2, 143.9, 134.4 (d, *J* = 3.0 Hz), 130.2 (d,

J = 8.1 Hz), 129.3 (q, J = 32.5 Hz), 126.8, 126.4, 125.3 (q, J = 7.4, 3.7 Hz), 124.2 (q, J = 270.3 Hz), 115.5 (d, J = 21.3 Hz), 62.0, 59.5, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{22}H_{23}F_4NO_3$ 426.1687; found: 426.1713. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 8.42$ min (major), 9.26 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	93.05	62.93	853.45	0.21	MM m	8.415
	6.95	4.23	63.78	0.23	MM m	9.257
			917.23	Sum		

3bk (16.7 mg, 44% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method A afforded 44% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+11 (c=0.29, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.48 – 7.43 (m, 2H), 7.23 – 7.16 (m, 2H), 7.00 – 6.89 (m, 2H), 5.83 (dd, *J* = 9.1, 7.8 Hz, 1H), 4.29 (dd, *J* = 51.7, 12.3 Hz, 2H), 3.73 (s, 3H), 3.55 (dd, *J* = 37.5, 11.5 Hz, 2H), 2.87 (s, 1H), 2.60 (ddd, *J* = 21.3, 13.9, 8.5 Hz, 2H), 1.41 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 176.2, 162.1 (d, *J* = 245.8 Hz), 146.2, 143.5, 134.3 (d, *J* =

2.9 Hz), 132.2, 130.1 (d, J = 8.1 Hz), 127.8, 126.7, 118.9, 115.6, 115.4, 110.7, 61.9, 59.2, 52.6, 48.3, 39.1, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₃FN₂O₃ 383.1765; found: 383.1801. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 40 min; t_R =28.08 min (major), 31.53 min (minor).

Signal.	DAD IA, Si					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
28.078	MM m	0.92	6423.80	105.77	95.25	
31.528	MM m	0.83	320.53	5.05	4.75	
		Sum	6744.33			

3bl (25.6 mg, 69% yield, PE/EA=3:1, 93% *ee*, *Z/E* >20:1) was synthesized in method A afforded 69% isolated yield as a colorless oil. $[\alpha]_{D}^{25}$ =+18 (c=0.27, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 (s, 1H), 7.23 – 7.19 (m, 2H), 7.10 – 7.07 (m, 1H), 7.03 – 6.98 (m, 2H), 5.77 (dd, *J* = 9.6, 7.3 Hz, 1H), 4.40 (dd, *J* = 57.6, 12.3 Hz, 2H), 3.78 (s, 3H), 3.63 (dd, *J* = 41.1, 11.5 Hz, 2H), 3.13 (bs, 1H), 2.66 (ddd, *J* = 21.1, 13.9, 8.5 Hz, 2H), 2.35 (s, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.5

Hz), 144.9, 141.6, 138.0, 134.7 (d, J = 2.5 Hz), 130.1 (d, J = 8.1 Hz), 128.3, 128.1, 126.9, 124.5, 123.2, 115.4 (d, J = 21.4 Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.6, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₃ 372.1969; found:372.1991. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 8.14$ min (major), 9.28 min (minor).

3bm (30.4 mg, 78% yield, PE/EA=3:1, 85% *ee*, *Z/E* >20:1) was synthesized in method A afforded 78% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+15 (c=0.38, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 1H), 7.25 – 7.14 (m, 6H), 6.98 – 6.88 (m, 2H), 5.73 (dd, *J* = 9.3, 7.5 Hz, 1H), 4.29 (dd, *J* = 54.7, 12.3 Hz, 2H), 3.72 (s, 3H), 3.55 (dd, *J* = 39.3, 11.5 Hz, 2H), 2.81 (bs, *J* = 76.5 Hz, 1H), 2.58 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 3H), 1.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 162.2 (d, *J* = 245.6 Hz), 143.7, 143.5, 134.35 (d, *J* = 3.0 Hz), 134.3,

130.2 (d, J = 8.1 Hz), 129.6, 127.3, 126.3, 125.8, 124.4, 115.5 (d, J = 21.3 Hz), 62.1, 59.5, 52.5, 48.2, 39.0, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClFNO₃ 382.1423; found: 382.1447. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 9.50$ min (minor), 10.15 min (major).

781.08

Sum

3bn (30.3 mg, 70% yield, PE/EA=3:1, 94% *ee*, *Z/E* >20:1) was synthesized in method A afforded 70% isolated yield as a colorless oil. $[a]_{D}^{25}$ =+23 (c=0.28, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 1H), 7.40 – 7.33 (m, 2H), 7.32 – 7.27 (m, 2H), 7.20 – 7.15 (m, 1H), 7.06 – 6.97 (m, 2H), 5.79 (dd, *J* = 9.5, 7.4 Hz, 1H), 4.35 (dd, *J* = 55.8, 12.3 Hz, 2H), 3.79 (s, 3H), 3.62 (dd, *J* = 39.7, 11.6 Hz, 2H), 2.95 (bs, 1H), 2.65 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 1.47 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 162.1 (d, *J* = 245.6 Hz), 143.9, 143.7,

134.5 (d, J = 1.9 Hz), 130.2 (d, J = 6.0 Hz), 130.1, 129.9, 129.2, 126.0, 124.8, 122.5, 115.5 (d, J = 21.3 Hz), 62.0, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃BrFNO₃ 436.0918; found: 436.0945. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; $t_R = 15.99$ min (minor), 17.09 min (major).

6873.49

Sum

3bo (22.7 mg, 53% yield, PE/EA=3:1, 91% *ee*, *Z/E* >20:1) was synthesized in method A afforded 53% isolated yield as a colorless oil. $[\alpha]_{D}^{25}$ =+10 (c=0.45, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.39 – 7.32 (m, 1H), 7.24 – 7.18 (m, 2H), 6.99 – 6.89 (m, 2H), 5.77 (dd, *J* = 9.4, 7.4 Hz, 1H), 4.32 (dd, *J* = 56.1, 12.3 Hz, 2H), 3.73 (s, 3H), 3.56 (dd, *J* = 40.1, 11.6 Hz, 2H), 2.89 (bs, 1H), 2.60 (ddd, *J* = 21.3, 13.9, 8.5 Hz, 2H), 1.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 162.2 (d, *J* = 245.6 Hz), 143.8,

142.5, 134.5 (d, J = 2.6 Hz), 130.7 (q, J = 64.3, 32.3 Hz), 130.1 (d, J = 8.1 Hz), 129.5, 128.8, 126.4, 124.1 (q, J = 270.8 Hz), 123.9 (q, J = 3.6 Hz), 122.9 (q, J = 3.7 Hz), 115.5 (d, J = 21.3 Hz), 62.0, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₃F₄NO₃ 426.1687; found: 426.1712. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 5.95$ min (minor), 6.64 min (major).

3bp (21.6 mg, 56% yield, PE/EA=3:1, 88% *ee*, Z/E > 20:1) was synthesized in method A afforded 56% isolated yield as a colorless oil. $[\alpha]_D^{25} = +16$ (c=0.43, CHCl₃).¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.21 (m, 2H), 7.20 – 7.13 (m, 1H), 7.0 – 6.99 (m, 1H), 6.97 – 6.89 (m, 2H), 6.84 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 5.50 (dd, J = 9.0, 7.1 Hz, 1H), 4.25 (dd, J = 44.8, 12.4 Hz, 2H), 3.69 (s, 3H), 3.65 (s, 3H), 3.60 (dd, 2H), 2.70 (bs, 1H), 2.63 (ddd, J = 21.2, 14.2, 8.1 Hz, 2H), 1.39

(s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.0 (d, J = 244.9 Hz), 156.2, 143.2, 135.4 (d, J = 3.0 Hz), 131.9, 130.1, 129.9 (d, J = 8.0 Hz), 128.6, 127.1, 120.8, 115.2 (d, J = 21.2 Hz), 110.4, 61.8, 61.0, 55.3, 52.2, 47.9, 38.3, 21.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₄ 388.1919; found: 388.1940. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 13.05$ min (minor), 14.46 min (major).

Signal:	DAD1A,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.106	MM m	0.34	341.05	15.69	50.68	
14.553	MM m	0.45	331.91	11.21	49.32	
		Sum	672.96			

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.051	MM m	0.32	62.27	3.00	6.21	
14.462	MM m	0.43	940.11	32.94	93.79	
		Sum	1002.37			

3bq (22.8 mg, 61% yield, PE/EA=3:1, 86% *ee*, Z/E > 20:1) was synthesized in method A afforded 61% isolated yield as a colorless oil. $[\alpha]_D^{25} = +23$ (c=0.46, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.12 (m, 5H), 7.04 – 6.99 (m, 1H), 6.98 – 6.91 (m, 3H), 5.64 (dd, J = 9.4, 7.2 Hz, 1H), 4.30 (dd, J = 62.7, 12.6 Hz, 2H), 3.71 (s, 3H), 3.57 (dd, J = 36.5, 11.6 Hz, 2H), 2.74 (bs, 1H), 2.62 (ddd, J = 21.2, 14.0, 8.3 Hz, 2H), 1.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 163.3, 159.6 (d, J = 21.2, 14.0, 8.3, 159.6 (d, J = 21.2, 14.0, 8.3, 159.6 (d, J = 1.4, 12, 14.0, 15, 159.6 (d, J = 1.4, 12, 14.0, 15, 159.6 (d, J = 1.4, 12, 14.0, 15, 159.6 (d, J = 1.4, 14.0, 150.6 (d, J = 1.4, 12.0, 14.0, 150.6 (d, J = 1.4, 14.0, 150.6 (d, J = 1.4, 14.0, 150.6 (d, J = 1.4, 140.6 (d, J = 1.4,

246.0 Hz), 140.1 (d, J = 0.8 Hz), 134.8 (d, J = 2.8 Hz), 130.1 (d, J = 3.8 Hz), 130.0 (d, J = 8.1 Hz), 129.7 (d, J = 14.4 Hz), 128.9 (d, J = 8.3 Hz), 128.2 (d, J = 2.5 Hz), 124.1 (d, J = 3.4 Hz), 115.7, 115.4 (d, J = 21.2 Hz), 61.8, 60.5, 52.4, 48.1, 38.8, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃F₂NO₃ 376.1719; found: 376.1741. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 10.99$ min (minor), 12.02 min (major).

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.107	MM m	0.27	23.00	1.33	7.03	
12.208	MM m	0.31	304.13	15.40	92.97	
		Sum	327.13			

3br (33.5 mg, 86% yield, PE/EA=3:1, 88% *ee*, Z/E > 20:1) was synthesized in method A afforded 86% isolated yield as a colorless oil. $[\alpha]_{D}^{25} =+16$ (c=0.53, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 3H), 7.21 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 7.06 – 6.97 (m, 2H), 5.46 (dd, J = 9.7, 7.1 Hz, 1H), 4.33 (dd, J = 82.0, 13.1 Hz, 2H), 3.78 (s, 3H), 3.74 – 3.59 (m, 2H), 2.74 (ddd, J = 20.6, 13.6, 9.1 Hz, 2H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 162.1 (d, J = 245.5 Hz), 143.6,

143.5, 134.6 (d, J = 3.3 Hz), 134.2, 130.1 (d, J = 8.1 Hz), 129.6, 127,3, 126.3, 126.0, 124.3, 115.5 (d, J = 21.3 Hz), 61.9, 59.6, 52.5, 48.3, 39.2, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClFNO₃ 392.1423; found: 392.1447. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 13.31$ min (minor), 15.60 min (major).

DAD1A,Sig					
Туре	Width [min]	Area	Height	Area%	Name
MM m	0.38	41.50	1.59	5.91	
MM m	0.52	660.63	19.45	94.09	
	Sum	702.13			
	DAD1A,Sig Type MM m MM m	DAD1A,Sig=254,4 Ref=off Type Width [min] MM m 0.38 MM m 0.52 Sum	Type Width [min] Area MM m 0.38 41.50 MM m 0.52 660.63 Sum 702.13	DAD1A,Sig=254,4 Ref=off Type Width [min] Area Height MM m 0.38 41.50 1.59 MM m 0.52 660.63 19.45 Sum 702.13	Type Width [min] Area Height Area% MM m 0.38 41.50 1.59 5.91 MM m 0.52 660.63 19.45 94.09 Sum 702.13 500 100 100

3bs (29.4 mg, 72% yield, PE/EA=3:1, 92% *ee*, *Z/E* >20:1) was synthesized in method A afforded 72% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+9 (c=0.46, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 7.8 Hz, 2H), 7.07 – 6.81 (m, 4H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.64 (dd, *J* = 11.1, 4.5 Hz, 1H), 4.31 (dd, *J* = 56.6, 12.0 Hz, 2H), 3.80 (s, 6H), 3.71 (s, 3H), 3.55 (dd, *J* = 39.4, 11.5 Hz, 2H), 2.61 (bs, 1H), 2.70 – 2.46 (m, 2H), 1.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.5 Hz), 148.7, 148.5, 144.4, 134.8

(d, J = 2.7 Hz), 134.7, 130.1 (d, J = 8.0 Hz), 123.4, 118.5, 115.4 (d, J = 21.3 Hz), 110.9, 109.4, 62.0, 59.9, 55.9, 55.8, 52.4, 48.2, 39.4, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₈FNO₅ 418.2024; found: 418.2048. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 30min; $t_R = 21.79$ min (minor), 24.15 min (major).

Signal:	VWD1A,Wavelength=254 nm						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name	
21.830	MM m	0.86	889.70	15.70	50.73		
24.326	MM m	0.92	864.06	13.39	49.27		
		Sum	1753.76				

Signal:	VWD1A,Wavelength=254 nm					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
21.785	MM m	0.63	29.35	0.55	4.19	
24.146	MM m	0.93	671.08	10.88	95.81	
		Sum	700.43			

3bt (26.7 mg, 63% yield, PE/EA=3:1, 89% *ee*, Z/E > 20:1) was synthesized in method A afforded 63% isolated yield as a colorless oil. $[\alpha]_D^{25} = +7$ (c=0.53, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, J = 2.0 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.23 – 7.18 (m, 3H), 7.00 – 6.88 (m, 2H), 5.74 (dd, J = 9.3, 7.5 Hz, 1H), 4.26 (dd, J = 52.5, 12.3 Hz, 2H), 3.72 (s, 3H), 3.54 (dd, J = 38.8, 11.5 Hz, 2H), 3.02 (bs, 1H), 2.57 (ddd, J = 21.3, 13.9, 8.5 Hz, 2H), 1.39 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.3, 162.1 (d, J = 245.6 Hz), 142.8, 141.7, 134.5 (d, J = 2.7 Hz),

132.4, 131.1, 130.2 (d, J = 4.9 Hz), 130.1, 128.0, 126.3, 125.5, 115.5 (d, J = 21.4 Hz), 61.9, 59.3, 52.5, 48.3, 39.1, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₂Cl₂FNO₃ 426.1034; found: 426.1058. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 16.07$ min (major), 21.58 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	94.29	340.42	11279.23	0.51	MM m	16.073
	5.71	15.45	683.38	0.68	MM m	21.575
			11962.61	Sum		

3bu (17.6 mg, 44% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method A afforded 44% isolated yield as a colorless oil. $[\alpha]_D^{25} = +20$ (c=0.30, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.05 – 6.95 (m, 2H), 6.94 – 6.87 (m, 2H), 6.75 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 2H), 5.68 (dd, *J* = 9.5, 7.3 Hz, 1H), 4.35 (dd, *J* = 56.5, 12.3 Hz, 2H), 3.78 (s, 3H), 3.62 (dd, *J* = 41.3, 11.6 Hz, 2H), 2.65 (bs, 1H), 2.62 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 1.46 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.4 Hz), 147.7, 146.9, 144.3,

135.9, 134.7 (d, J = 3.1 Hz), 130.1 (d, J = 8.1 Hz), 123.6, 119.7, 115.5 (d, J = 21.3 Hz), 108.1, 106.8, 101.0, 62.0, 59.9, 52.4, 48.3, 39.3, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₄FNO₅ 402.1711; found: 402.1733. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 18.19$ min (minor), 19.40 min (major).

927.86

Sum

3bv (21.5 mg, 48% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method A afforded 48% isolated yield as white solid. $[\alpha]_{D}^{25} =+9$ (c=0.43, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 18.3, 7.7 Hz, 2H), 7.63 (s, 1H), 7.54 (d, *J* = 7.3 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.34–7.27 (m, 3H), 7.02 (t, *J* = 8.6 Hz, 2H), 5.86 (dd, *J* = 9.2, 7.6 Hz, 1H), 4.47 (dd, *J* = 52.4, 12.3 Hz, 2H), 3.89 (s, 2H), 3.80 (s, 3H), 3.64 (dd, *J* = 39.7, 11.6 Hz, 2H), 3.04 (bs, 1H), 2.69 (ddd, *J* = 21.2, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 176.5, 162.1 (d, *J* = 245.4 Hz), 145.0,

143.5, 143.4, 141.3, 141.0, 140.3, 134.7 (d, J = 3.0 Hz), 130.1 (d, J = 8.1 Hz), 126.7, 126.6, 125.0, 124.9, 124.4, 122.8, 119.8, 119.7, 115.4 (d, J = 21.4 Hz), 62.0, 60.0, 52.4, 48.3, 39.5, 36.9, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₈FNO₃ 446.2126; found: 446.2154. HPLC conditions: AS-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 12.35$ min (major), 18.12 min (minor).

Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	94.76	51.73	1411.93	0.42	MM m	12.348
	5.24	1.83	78.06	0.52	MM m	18.116
			1489.99	Sum		

3bw (16.9 mg, 42% yield, PE/EA=3:1, 92% *ee*, Z/E > 20:1) was synthesized in method A afforded 42% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =-13 (c=0.34, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (dd, J = 12.2, 8.4 Hz, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.35 – 7.21 (m, 4H), 7.18 – 7.14 (m, 1H), 7.04 – 6.91 (m, 2H), 5.54 (dd, J = 10.0, 6.9 Hz, 1H), 4.32 (dd, J = 110.5, 12.5 Hz, 2H), 3.69 (s, 3H), 3.61 (dd, J = 48.6, 9.0 Hz, 2H), 3.04 (bs, 1H), 2.71 (ddd, J = 20.6, 13.7, 8.5 Hz, 2H), 1.47 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.2, 162.2 (d,

J = 245.5 Hz), 145.8, 140.7, 134.8 (d, J = 3.0 Hz), 133.5, 131.2, 130.2 (d, J = 8.1 Hz), 128.3, 127.7, 127.2, 126.0, 125.9, 125.7, 125.6, 125.3, 115.5 (d, J = 21.3 Hz), 61.6, 61.3, 52.4, 48.2, 39.6, 21.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₆FNO₃ 408.1969; found: 408.1993. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 11.85$ min (minor), 14.83 min (major).

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.101	MM m	0.28	719.19	39.27	50.55	
14.293	MM m	0.40	703.53	27.03	49.45	
		Sum	1422.71			

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.751	MM m	0.31	45.35	2.28	4.03	
14.828	MM m	0.42	1080.49	39.57	95.97	
		Sum	1125.83			

3bx (23.3 mg, 57% yield, PE/EA=3:1, 90% *ee*, Z/E > 20:1) was synthesized in method A afforded 57% isolated yield as a colorless oil. $[\alpha]_{D}^{25} =+12$ (c=0.30, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.85 – 7.76 (m, 3H), 7.61 – 7.55 (m, 1H), 7.49 – 7.43 (m, 2H), 7.35 – 7.28 (m, 2H), 7.07 – 6.98 (m, 2H), 5.95 (dd, J = 9.4, 7.4 Hz, 1H), 4.52 (dd, J = 49.0, 12.3 Hz, 2H), 3.80 (s, 3H), 3.65 (dd, J = 40.2, 11.6 Hz, 2H), 3.10 (bs, 1H), 2.73 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, J = 245.5 Hz), 144.7, 138.8, 134.7 (d, J = 2.8 Hz), 133.3, 132.6, 130.1 (d, J = 8.1

Hz), 128.1,127.9, 127.5, 126.2, 125.8, 125.3, 124.7, 124.5, 115.4 (d, J = 21.3 Hz), 62.0, 59.8, 52.5, 48.3, 39.4, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₆FNO₃ 408.1969; found: 408.1992. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 10.35$ min (major), 11.36 min (minor).

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.233	MM m	0.32	6697.77	318.77	49.57	
11.236	MM m	0.36	6813.67	293.85	50.43	
		Sum	13511.44			

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.353	MM m	0.33	16918.17	776.39	94.83	
11.362	MM m	0.35	922.87	39.80	5.17	
		Sum	17841.04			

3by (21.4 mg, 49% yield, PE/EA=3:1, 91% *ee*, Z/E > 20:1) was synthesized in method A afforded 49% isolated yield as a colorless oil. $[\alpha]_D^{25} = +11$ (c=0.36, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.74 – 7.66 (m, 2H), 7.56 – 7.51 (m, 1H), 7.34 – 7.27 (m, 2H), 7.15 – 7.09 (m, 2H), 7.05 – 6.97 (m, 2H), 5.90 (dd, J = 9.4, 7.4 Hz, 1H), 4.50 (dd, J = 49.9, 12.3 Hz, 2H), 3.91 (s, 3H), 3.79 (s, 3H), 3.71 – 3.57 (m, 2H), 3.02 (bs, 1H), 2.71 (ddd, J = 21.2, 13.9, 8.5 Hz, 2H), 1.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, J = 245.4 Hz), 157.6, 144.6, 136.6, 134.7 (d, J = 1.5 Hz), 133.8, 130.1 (d, J = 8.1 Hz), 129.6, 128.8, 126.8, 125.0, 124.6, 124.4, 119.0, 115.4

(d, J = 21.3 Hz), 105.4, 62.0, 59.8, 55.3, 52.4, 48.3, 39.5, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₈FNO₄ 438.2075; found: 438.2100. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 16.74$ min (major), 18.87 min (minor).

3bz (21 mg, 64% yield, PE/EA=3:1, 92% *ee*, *E*/*Z* >20:1) was synthesized in method A afforded 64% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+22 (c=0.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 1H), 7.24 – 7.18 (m, 2H), 6.97 – 6.87 (m, 2H), 6.33 – 6.28 (m, 2H), 6.02 (dd, J = 9.5, 7.7 Hz, 1H), 4.26 (dd, J = 39.4, 12.4 Hz, 2H), 3.72 (s, 3H), 3.55 (dd, J = 38.3, 11.6 Hz, 2H), 2.59 (ddd, J = 21.5, 14.0, 8.8 Hz, 3H), 1.40 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 176.5, 162.1 (d, *J* = 245.0 Hz), 144.6, 141.6, 134.9 (d, *J* = 3.1 Hz), 130.0 (d, *J* = 8.1 Hz), 128.4, 127.3, 126.2, 124.8, 115.4 (d, *J* = 21.4 Hz), 61.9, 59.9, 52.4, 48.2, 39.4, 21.7. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₂₂FNO₄ 348.1606; found: 348.1627. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; *t*_R = 9.72 min (major), 10.91 min (minor).

3baa (25.7 mg, 74% yield, PE/EA=3:1, 92% *ee*, *E/Z* >20:1) was synthesized in method A afforded 74% isolated yield as a colorless oil. $[\alpha]_D^{25} = +20$ (c=0.40, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.19 (m, 2H), 7.09 – 7.06 (m, 1H), 7.06 – 7.02 (m, 1H), 6.96 – 6.89 (m, 3H), 5.87 (dd, *J* = 9.3, 7.6 Hz, 1H), 4.34 (dd, *J* = 34.4, 12.4 Hz, 2H), 3.72 (s, 3H), 3.54 (dd, *J* = 37.5, 11.6 Hz, 2H), 2.82 (bs, 1H), 2.57 (ddd, *J* = 21.5, 14.0, 8.4 Hz, 2H), 1.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.3,

162.1 (d, J = 244.0 Hz), 144.9, 138.1, 134.7 (d, J = 2.9 Hz), 130.1 (d, J = 8.1 Hz), 127.6, 124.1, 123.6, 123.0, 115.5 (d, J = 21.1 Hz), 62.2, 59.5, 52.4, 48.2, 38.8, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₂FNO₃S 364.1377; found: 364.1397. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 10.92$ min (major), 14.75 min (minor).

3bab (20.2 mg, 57% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method A afforded 57% isolated yield as a colorless oil. $[\alpha]_D^{25} =+17$ (c=0.32, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 4H), 7.14 – 7.10 (m, 1H), 6.96 – 6.90 (m, 2H), 5.82 (dd, *J* = 9.4, 7.5 Hz, 1H), 4.31 (dd, *J* = 41.7, 12.3 Hz, 2H), 3.71 (s, 3H), 3.54 (dd, *J* = 38.2, 11.6 Hz, 2H), 2.60 (bs, 1H), 2.57 (ddd, *J* = 21.4, 14.0, 8.4 Hz, 2H), 1.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.1 (d, *J* = 245.5 Hz), 142.3, 139.2, 134.7 (d, *J* = 3.1 Hz), 130.1 (d, *J* = 8.1 Hz),

125.7, 125.6, 123.0, 120.5, 115.4 (d, J = 21.3 Hz), 62.1, 59.5, 52.4, 48.2, 38.8, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₂FNO₃S 364.1377; found: 364.1396. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 10.15$ min (major), 12.48 min (minor).

Signal:	DAD1A,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.151	MM m	0.31	7031.46	345.59	94.96	
12.485	MM m	0.37	373.32	15.92	5.04	
		Sum	7404.79			

3ea (29.2 mg, 79% yield, PE/EA=3:1, 92% *ee*, *Z/E* >20:1) was synthesized in method A afforded 79% isolated yield as a colorless oil. $[\alpha]_{D}^{25}$ =+15 (c=0.36, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.27 – 7.18 (m, 5H), 6.98 – 6.86 (m, 2H), 5.72 (dd, *J* = 9.4, 7.5 Hz, 1H), 4.33 (dd, *J* = 52.9, 12.3 Hz, 2H), 4.22 – 4.12 (m, 2H), 3.55 (dd, *J* = 37.4, 11.5 Hz, 2H), 2.74 (bs, 1H), 2.58 (ddd, *J* = 21.2, 13.9,

8.5 Hz, 2H), 1.39 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 162.1 (d, J = 245.4 Hz), 144.7, 141.7, 134.8 (d, J = 3.0 Hz), 130.1 (d, J = 8.1 Hz), 128.4, 127.3, 126.1, 124.8, 115.4 (d, J = 21.3 Hz), 61.8, 61.4, 59.8, 48.2, 39.4, 21.5, 14.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₃ 372.1969; found: 372.1993. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 7.57$ min (major), 10.07 min (minor).

Signal:	DAD1A,Si	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.552	MM m	0.22	918.19	63.12	49.46	
10.061	MM m	0.31	938.21	46.57	50.54	
		Sum	1856.40			

RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.567	MM m	0.23	1618.44	108.33	96.13	
10.068	MM m	0.31	65.21	3.26	3.87	
		Sum	1683.65			

3fa (17.5 mg, 54% yield, PE/EA=3:1, 90% *ee*, Z/E > 20:1) was synthesized in method A afforded 54% isolated yield as a colorless oil. $[\alpha]_{D}^{25} = +13$ (c=0.36, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.27 – 7.16 (m, 6H), 6.98 – 6.89 (m, 2H), 5.73 (dd, J = 9.3, 7.6 Hz, 1H), 4.33 (dd, J = 53.9, 12.2 Hz, 2H), 3.55 (dd, J = 37.6, 11.4 Hz, 2H), 2.96 (bs, 1H), 2.55 (ddd, J = 21.1, 13.8, 8.5 Hz, 2H), 1.44 (s,

9H), 1.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.1, 162.1 (d, J = 245.3 Hz), 144.6, 141.8, 134.8, 130.1 (d, J = 8.0 Hz), 128.4, 127.2, 126.1, 125.0, 115.5 (d, J = 21.3 Hz), 81.8, 62.1, 59.8, 48.3, 39.4, 28.1, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₀FNO₃ 400.2282; found: 400.2309. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 10min; t_R =4.44 min (major), 6.14 min (minor).

Signal:	DAD1A,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
4.444	MM m	0.14	558.74	61.28	49.17	
6.155	MM m	0.20	577.54	43.91	50.83	
		Sum	1136.28			

Signal:	DAD1A,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
4.437	MM m	0.14	944.10	102.91	94.96	
6.139	MM m	0.19	50.14	3.96	5.04	
		Sum	994.23			

3ga (28.0 mg, 73% yield, PE/EA=3:1, 91% *ee*, Z/E > 20:1) was synthesized in method A afforded 73% isolated yield as a colorless oil. [α]_D²⁵=+7 (c=0.56, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.27 – 7.17 (m, 5H), 6.98 – 6.87 (m, 2H), 5.72 (dd, J = 9.5, 7.3 Hz, 1H), 5.09 – 4.98 (m, 1H), 4.34 (dd, J = 55.2, 12.3 Hz, 2H), 3.56 (dd, J = 39.0, 11.5 Hz, 2H), 2.99 (bs, 1H), 2.59 (ddd, J = 21.2, 13.9,

8.5 Hz, 2H), 1.39 (s, 3H), 1.22 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 162.2 (d, J = 245.5 Hz), 144.6, 141.7, 134.7 (d, J = 1.1 Hz), 130.1 (d, J = 8.1 Hz), 128.4, 127.3, 126.1, 124.8, 115.5 (d, J = 21.4 Hz), 69.0, 61.9, 59.8, 48.2, 39.2, 21.9, 21.8, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₈FNO₃ 386.2126; found: 386.2153. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 15min; $t_R = 6.21$ min (major), 10.51 min (minor)

Signal:	VWD1A,Wavelength=254 nm					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
6.227	MM m	0.24	880.09	59.32	47.86	
10.509	MM m	0.37	958.74	40.22	52.14	
		Sum	1838.83			

Signal:	VWD1A,Wavelength=254 nm					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
6.213	MM m	0.23	938.50	64.44	95.73	
10.508	MM m	0.35	41.91	1.84	4.27	
		Sum	980.41			

5ba (12.5 mg, 35% yield, PE/EA=3:1, 86% *ee*, *Z/E* >20:1) was synthesized in method A afforded 35% isolated yield as a colorless oil. $[\alpha]_{D}^{25}$ =+33 (c=0.20, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 7H), 6.97 – 6.92 (m, 2H), 6.03 (t, *J* = 6.9 Hz, 1H), 4.09 (ddd, *J* = 85.9, 13.2, 6.9 Hz, 2H), 3.50 (dd, *J* = 48.7, 11.2 Hz, 2H), 3.07 (s, 3H), 3.02 (s, 2H), 1.37 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃)

δ 175.5, 162.2 (d, J = 244.0 Hz), 142.0, 139.1, 134.78 (d, J = 3.1 Hz), 132.9, 130.2 (d, J = 8.1 Hz), 128.2, 127.4, 126.7, 115.5 (d, J = 21.2 Hz), 60.5, 58.3, 51.7, 48.3, 41.7, 22.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₄FNO₃ 358.1813; found: 358.1836. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =17.21 min (minor), 20.28 min (major).

Signal:	VWD1A,Wavelength=254 nm						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name	
16.815	MM m	0.55	1028.16	28.97	50.99		
19.944	MM m	0.66	988.32	23.39	49.01		
		Sum	2016.48				

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
17.214	MM m	0.53	249.30	7.34	7.24	
20.279	MM m	0.67	3195.09	73.82	92.76	
		Sum	3444.39			

5bb (14.4 mg, 33% yield, PE/EA=3:1, 85% ee, Z/E >20:1) was synthesized in method A afforded 33% isolated yield as white solid. $[\alpha]_{D}^{25} = +24$ (c=0.29, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 4H), 7.38 - 7.34 (m, 2H), 7.29 - 7.24 (m, 3H), 7.21 - 7.17 (m, 2H), 6.98 - 6.92 (m, 2H), 6.09 (t, J = 6.9 Hz, 1H), 4.11 (ddd, J =83.5, 13.2, 6.9 Hz, 2H), 3.51 (dd, *J* = 50.5, 11.2 Hz, 2H), 3.10 (s, 3H), 3.05 (s, 2H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 16

2.17 (d, J = 245.5 Hz), 140.9, 140.4, 140.2, 138.6, 134.8 (d, J = 3.0 Hz), 132.9, 130.2 (d, J = 8.1 Hz), 128.8, 127.4, 127.1, 126.9, 126.8, 115.54 (d, *J* = 21.3 Hz), 60.6, 58.3, 51.8, 48.3, 41.6, 22.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₂₈FNO₃ 434.2126; found: 434.2155. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R = 10.99 min (major), 12.17 min (minor).

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.806	MM m	0.44	2249.17	78.08	49.22	
13.064	MM m	0.49	2320.82	72.32	50.78	
		Sum	4569.99			

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.989	MM m	0.40	11550.88	443.19	92.53	
12.166	MM m	0.43	932.90	32.91	7.47	
		Sum	12483.78			

5bc (12.1 mg, 33% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method A afforded 33% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+11 (c=0.24, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.17 (m, 2H), 7.12 – 7.08 (m, 1H), 6.99 – 6.92 (m, 5H), 6.03 (t, *J* = 6.9 Hz, 1H), 4.08 (ddd, *J* = 87.3, 13.1, 6.9 Hz, 2H), 3.50 (dd, *J* = 48.3, 11.3 Hz, 2H), 3.10 (s, 3H), 3.00 (d, *J* = 3.0 Hz, 2H), 2.26 (s,

3H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 162.2 (d, J = 244.1 Hz), 141.9, 139.2, 137.7, 134.7 (d, J = 2.3 Hz), 132.6, 130.2 (d, J = 8.1 Hz), 128.2, 128.1, 127.3, 123.8, 115.5 (d, J = 21.3 Hz), 60.6, 58.2, 51.7, 48.3, 41.5, 22.5, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FNO₃ 372.1969; found: 372.1994. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =9.53 min (minor), 10.31 min (major).

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.667	MM m	0.30	830.75	43.62	50.93	
10.503	MM m	0.33	800.45	38.13	49.07	
		Sum	1631.20			

						-
Area%	Area%	Height	Area	Width [min]	Туре	RT [min]
6.48	6.48	6.70	120.80	0.28	MM m	9.528
93.52	93.52	85.59	1744.51	0.32	MM m	10.308
			1865.30	Sum		

5bd (10.1 mg, 28% yield, PE/EA=3:1, 80% *ee*, *Z/E* >20:1) was synthesized in method A afforded 28% isolated yield as a colorless oil. $[\alpha]_D^{25} =+17$ (c=0.20, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.17 (m, 2H), 7.15 – 7.11 (m, 1H), 6.96 – 6.92 (m, 2H), 6.78 – 6.76 (m, 1H), 6.72 – 6.71 (m, 2H), 6.08 (t, *J* = 6.9 Hz, 1H), 4.08 (ddd, *J* = 85.2, 13.1, 7.0 Hz, 2H), 3.72 (s, 3H), 3.50 (dd, *J* = 47.5,

11.2 Hz, 2H), 3.15 (s, 3H), 3.00 (s, 2H), 1.37 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.5, 162.2 (d, *J* = 244.0 Hz), 159.5, 143.4, 139.0, 134.8 (d, *J* = 1.7 Hz), 132.8, 130.2 (d, *J* = 8.0 Hz), 129.2, 119.1, 115.5 (d, *J* = 21.4 Hz), 112.8, 112.4, 60.6, 58.1, 55.3, 51.8, 48.3, 41.6, 22.4. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₂H₂₆FNO₄ 388.1919; found: 388.1944. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; *t_R* =11.53 min (major), 12.86 min (minor).

Signal:	VWD1A,W	/avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.575	MM m	0.30	1195.62	61.44	48.95	
12.905	MM m	0.34	1246.74	56.41	51.05	
		Sum	2442.36			

Sum

2784.40

5be (6.2 mg, 16% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method A afforded 16% isolated yield as a colorless oil. $[\alpha]_{D}^{25} =+21$ (c=0.12, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.18 (m, 6H), 7.16 – 7.11 (m, 1H), 7.04 – 7.00 (m, 2H), 6.12 (t, *J* = 6.7 Hz, 1H), 4.16 (ddd, *J* = 79.4, 13.3, 6.8 Hz, 2H), 3.57 (dd, *J* = 48.9, 11.2 Hz, 2H), 3.25 (s, 3H), 3.06 (q, *J* = 13.8 Hz, 2H), 1.45

(s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.3, 162.2 (d, J = 245.2 Hz), 143.8, 137.6, 134.5 (d, J = 3.5 Hz), 134.1, 134.0, 130.3 (d, J = 8.0 Hz), 129.6, 127.4, 126.6, 125.0, 115.6 (d, J = 21.4 Hz), 60.5, 58.2, 51.9, 48.3, 41.4, 22.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClFNO₃ 392.1423; found: 392.1447. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; $t_R = 12.58$ min (minor), 14.32 min (major).

Signal:	VWD1A,W					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
12.257	MM m	0.57	401.06	10.88	50.87	
14.122	MM m	0.51	387.31	11.76	49.13	
		Sum	788.38			

VWD1A,W	avelength=254 nm				
Туре	Width [min]	Area	Height	Area%	Name
MM m	0.49	47.37	1.44	6.48	
MM m	0.49	684.07	21.69	93.52	
	Sum	731.44			
	VWD1A,W Type MM m MM m	VWD1A,Wavelength=254 nm Type Width [min] MM m 0.49 MM m 0.49 Sum	WWD1A,Wavelength=254 nm Type Width [min] Area MM m 0.49 47.37 MM m 0.49 684.07 Sum 731.44	Type Width [min] Area Height MM m 0.49 47.37 1.44 MM m 0.49 684.07 21.69 Sum 731.44	Type Width [min] Area Height Area% MM m 0.49 47.37 1.44 6.48 MM m 0.49 684.07 21.69 93.52 Sum 731.44 5.44 5.44

5bf (16.3 mg, 40% yield, PE/EA=3:1, 80% *ee*, *Z/E* >20:1) was synthesized in method A afforded 40% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+49 (c=0.33, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.76 (m, 3H), 7.71 – 7.69 (m, 1H), 7.48 – 7.38 (m, 3H), 7.27 – 7.22 (m, 2H), 7.04 – 6.94 (m, 2H), 6.26 (t, *J* = 6.9 Hz, 1H), 4.22 (ddd, *J* = 82.7, 13.2, 6.9 Hz, 2H), 3.57 (dd, *J* = 54.3, 11.3 Hz, 2H), 3.21 (q, *J* = 13.8 Hz, 2H), 2.98 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 175.5, 162.2 (d, J = 245.4 Hz), 139.2, 138.9, 134.7 (d, J = 3.2 Hz), 133.4, 133.4, 133.1, 132.7, 130.2 (d, J = 8.2 Hz), 128.0, 127.9, 127.5, 126.3, 125.9, 125.7, 125.1, 115.5 (d, J = 21.3 Hz), 60.7, 58.3, 51.7, 48.3, 41.5, 22.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₆FNO₄ 408.1919; found: 408.1998. HPLC conditions: OD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 25min; t_R =13.14 min (major), 15.66 min (minor).

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.556	MM m	0.49	1952.56	61.54	50.39	
16.359	MM m	0.67	1922.52	44.03	49.61	
		Sum	3875.08			

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.135	MM m	0.49	499.40	15.57	10.09	
15.658	MM m	0.62	4448.14	110.40	89.91	
		Sum	4947.54			

5bg (10.1 mg, 30% yield, PE/EA=3:1, 28% *ee*, *Z/E* >20:1) was synthesized in method A afforded 30% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+4 (c=0.20, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.03 – 6.99 (m, 2H), 5.73 (t, *J* = 7.0 Hz, 1H), 3.95 (ddd, *J* = 83.0, 12.7, 7.0 Hz, 2H), 3.78 (s, 3H), 3.63 (dd, *J* = 24.1,

11.2 Hz, 2H), 2.59 (dd, J = 75.2, 13.6 Hz, 2H), 1.92 – 1.78 (m, 2H), 1.46 (s, 3H), 1.37 – 1.24 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.9, 162.2 (d, J = 245.4 Hz), 138.8, 134.8 (d, J = 2.8 Hz), 130.3 (d, J = 8.1 Hz), 129.5, 115.51 (d, J = 21.4 Hz), 60.5, 57.8, 52.2, 48.4, 41.7, 36.9, 30.3, 22.6, 22.3, 13.89. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₈FNO₃ 338.2126; found: 338.2146. HPLC conditions: OZ-H column, 220 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 10min; t_R =4.72 min (major), 5.17 min (minor).

RT [min]	Туре	Width [min]	Area	Height	Area%
4.715	MM m	0.13	1027.09	118.99	64.14
5.173	MM m	0.15	574.17	58.23	35.86
		Sum	1601.25		

5bh (18.8 mg, 67% yield, PE/EA=3:1, 54% *ee*, *Z/E* >20:1) was synthesized in method A afforded 67% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =+5 (c=0.37, CHCl₃).¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 6.98 – 6.86 (m, 2H), 5.73 – 5.45 (m, 2H), 4.00 (d, *J* = 5.2 Hz, 2H), 3.66 (s, 3H), 3.53 (q, *J* = 11.9 Hz, 2H), 2.37 (qd, *J* =

14.1, 7.1 Hz, 2H), 1.86 (s, 2H), 1.27 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 162.0 (d, J = 244.9 Hz), 135.7 (d, J = 3.0 Hz), 133.5, 129.9 (d, J = 8.0 Hz), 126.2, 115.2 (d, J = 21.3 Hz), 63.2, 62.3, 52.0, 47.7, 41.5, 22.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₀FNO₃ 282.1500; found: 282.1515. HPLC conditions: AD-H column, 220 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 95:5, 25min; $t_R = 10.93$ min (major), 11.59 min (minor).

Signal:	VWD1A,W	avelength=220 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
11.027	MM m	0.25	346.29	21.72	49.37	
11.680	MM m	0.27	355.09	20.22	50.63	
		Sum	701.38			

Signal:	VWD1A,W	avelength=220 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.932	MM m	0.25	660.12	41.49	76.78	
11.594	MM m	0.27	199.61	11.34	23.22	
		Sum	859.73			

3.5 Gram-scale reaction for compound 3ba.

The preparation of Cu catalyst: Cu(CH₃CN)₄PF₆ (5 mol%), L (6 mol%) were stirred in DCE (20 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method: A flame-dried Schlenk tube was cooled to r.t. and prepared with Cu catalyst. To this flask were added Cs_2CO_3 (1.17g, 3.6 mmol), aldimine Schiff base **1b** (3.6 mmol, 1.0 equiv) and vinylethylene carbonate **2a** (4.68 mmol, 1.3 equiv), Pd catalyst (4 mol%) and DCE (20 mL) was then added. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added dry MeOH (40 mL) and NaBH₃CN (1.2g, 5.0 equiv) at 0 °C and the mixture was stirred for 2 h. Extracted with EtOAc (5 mL x 3). The combined extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 3:1) to give the desired products. The *ee* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

3.6 The method for the synthesis of 6aa

The preparation of Cu catalyst: $Cu(CH_3CN)_4PF_6$ (5 mol%), L (6 mol%) were stirred in THF (0.5 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 30 min.

Method B: A flame-dried Schlenk tube was cooled to r.t. and prepared with Cu catalyst. To this flask were added $C_{s_2}CO_3$ (32.6 mg, 0.1 mmol), aldimine Schiff base (0.1 mmol, 1.0 equiv) and vinylethylene carbonates (24.7 mmol, 1.3 equiv). Pd catalyst (4 mol%) and DCE (0.5 mL) was then added. The reaction mixture was stirred at 40 °C for 4 h. To the reaction mixture was added HCl (2.0 M, 2.0 mL) at 0 °C and the mixture was stirred for 2 h. Adjust pH to 7-8 by NaHCO₃, extracted with DCM (5 mL x 3). The combined extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 1:2) to give the desired product. The *ee* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

6aa (11.2 mg, 45% yield, PE/EA=3:1, 90% *ee*, *Z/E* >20:1) was synthesized in method B afforded 45% isolated yield as a colorless oil. $[\alpha]_D^{25}$ =-29 (c=0.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.29 – 7.18 (m, 3H), 5.69 (dd, *J* = 9.2, 7.7 Hz, 1H), 4.35 (dd, *J* = 65.4, 12.1 Hz, 2H), 3.69 (s, 3H),

2.59 (ddd, J = 30.8, 18.3, 10.2 Hz, 6H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 145.3, 142.0, 128.3, 127.2, 126.1, 125.2, 59.8, 56.8, 52.7, 39.9, 26.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₉O₃ 250.1438; found: 250.1443. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.2 mL/min, Hex:IPA = 95:5, 25min; t_R =20.34 min (minor), 21.59 min (major).

3.7 The method for the synthesis of 6ab and 6ac.

Method C: A flame-dried Schlenk tube was cooled to rt and filled with N₂. To this flask were added **3ba** (0.5 mmol, 1.0 equiv), I₂ (1.0 mmol, 2.0 equiv), NaHCO₃ (84.0 mg, 1.0 mmol) and dry MeCN at 0 °C for 30 min, then warm up to rt for 12h. The reaction mixture was quenched by Na₂S₂O₃(aq.) and extracted with EA, then concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 15:1) to give the desired products. The *ee* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

Method D: A flame-dried Schlenk tube was cooled to rt and filled with N₂. To this flask were added **3ba** (0.1 mmol, 1.0 equiv), PBr₃ (0.05 mmol, 0.5 equiv) and dry DCM at 0 °C for 2 hours, then add DIPEA (0.1 mmol) at 0 °C for 24 h. The reaction mixture was extracted with EA, then concentrated in vacuo. The residue was then purified by SiO₂ column chromatography (PE/EA = 20:1) to give the desired products. The *ee* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

6ab (118.9 mg, 49% yield, PE/EA=3:1, 87% *ee*, *Z/E* >20:1) was synthesized in method C afforded 49% isolated yield as a yellow oil. $[\alpha]_{D}^{25} =+5$ (c=1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.37 (m, 2H), 7.37 - 7.32 (m, 1H), 7.29 - 7.25 (m, 2H), 6.95 - 6.80 (m, 4H), 4.56 (t, *J* = 11.8 Hz, 1H), 4.36 (dd, *J* = 12.9, 7.3 Hz, 1H), 4.29 (d, *J* = 12.1 Hz, 1H), 3.80 - 3.68 (m, 3H), 3.61

(s, 3H), 3.03 (t, J = 12.6 Hz, 1H), 2.33 (dd, J = 12.1, 7.4 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 162.1 (d, J = 245.9 Hz), 140.4, 133.6 (d, J = 3.1 Hz),

131.2 (d, J = 8.1 Hz), 128.6, 127.7, 127.0, 114.9 (d, J = 21.2 Hz), 73.1, 68.4, 67.6, 52.8, 49.5, 49.2, 33.9, 22.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃FINO₃ 484.0779; found: 484.0798. HPLC conditions: OZ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 92:8, 15min; t_R =5.77 min (major), 6.75 min (minor).

6ac (12.5 mg, 37% yield, PE/EA=20:1, 87% *ee*, *Z/E* >20:1) was synthesized in method D afforded 37% isolated yield as a colorless oil. $[\alpha]_{D}^{25} =+16$ (c=0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 2H), 7.23 – 7.05 (m, 5H), 7.03 – 6.80 (m, 2H), 6.01 (s, 1H), 3.78 (dd, *J* = 151.7, 14.0 Hz, 5H), 3.52 – 3.25 (m, 2H), 2.91 – 2.23 (m, 2H), 1.43 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 176.0, 161.9 (d, J = 244.3 Hz), 139.2, 135.7 (d, J = 2.9 Hz), 134.4, 129.8 (d, J = 7.9 Hz), 128.3, 127.1, 124.8, 120.2, 115.0 (d, J = 21.2 Hz), 61.3, 54.7, 51.8, 49.6, 36.5, 22.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₂FNO₂ 340.1707;

found: 340.1726. HPLC conditions: OJ-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 90:10, 15min; t_R =7.05 min (minor), 7.89 min (major).

3.8 HPLC spectrum of compounds (R)-3ga, (S)-3ga, (S)-1g', and (R)-1g'

1g' (12.9 mg, 54% recovered, PE/EA=20:1, 19% *ee*) was colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.13 (m, 2H), 7.08 – 6.82 (m, 2H), 5.30 – 4.69 (m, 1H), 3.62 (dd, *J* = 57.8, 12.7 Hz, 2H), 3.24 (q, *J* = 7.0 Hz, 1H), 1.79 (s, 1H), 1.52 – 0.89 (m, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.2, 162.0 (d, *J* = 244.7

Hz), 135.5 (d, J = 3.0 Hz), 129.8 (d, J = 8.0 Hz), 115.2 (d, J = 21.2 Hz), 68.2, 56.0, 51.2, 21.9, 21.8, 19.1. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₃H₁₈FNO₂ 240.1394; found: 240.1411. HPLC conditions: AD-H column, 254 nm, 30 °C, flow rate: 1.3 mL/min, Hex:IPA = 97:3, 15min; t_R =3.61 min, 4.07 min.

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
3.842	MM m	0.08	254.36	46.57	50.99	
4.383	MM m	0.10	244.49	38.88	49.01	
		Sum	498.84			

Signal:	VWD1A,Wavelength=254 nm					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
3.612	MM m	0.08	234.52	45.95	59.62	
4.065	MM m	0.09	158.84	28.32	40.38	
		Sum	393.37			

4. References

- a) M. Ke, G. Huang, L. Ding, J. Fang, F. Chen, *ChemCatChem*, 2019, **11**, 4720-4724; b) M. Ke, Z. Liu, G. Huang, J. Wang, Y. Tao, F. Chen, *Org. Lett.* 2020, **22**, 4135-4140.
- 2. X. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am. Chem. Soc. 2018, 140, 2080-2084.

5. Copies of ¹H and ¹³ C spectrum of trisubstituted allylic amino acids

S56

S63

¹H NMR spectrum of **3bm** in $CDCl_3$ 5.75 5.73 5.73 5.71 -1.40 COOMe -{··Me HN--__ 4.5 fl (ppm) F-92677 2. 5 1.055 3.018 <u>−</u> 3.090 <u>−</u> F 686:0. 7.0 5 9.0 8.5 6. 5 5. 0 4. 0 2.0 0.5 8.0 7.5 5.5 1. 0 -0 6.0 0.0 ¹³C NMR spectrum of 3bm in CDCl₃ --163.35 --160.91 145.25 143.80 130.15 126.83 126.85 12 --176.34 ~61.89 ~59.51 -52.51 -48.29 -39.24 --1.00 COOMe (''Me HN

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

S69

S78

¹H NMR spectrum of **3ea** in CDCl₃

¹H NMR spectrum of **3ga** in CDCl₃

7.135 7.122 7.122 7.122 7.122 7.122 7.121 7.121 6.933 6.9326 7.932 7.932 7.932 7.932 7.932 7.932 7.932 7.932 7.932

¹H NMR spectrum of **5bd** in CDCl₃

¹H NMR spectrum of **5bh** in CDCl₃

