Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Visible-Light Induced Metal-Free Intramolecular Reductive Cyclisations of Ketones with Alkynes and Allenes

Nana Tang, §[a] Raphael Jonas Zachmann, §[a] Hui Xie, [a] Jun Zheng, *[b] and Bernhard Breit*[a]

[a] Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104

Freiburg im Breisgau, Germany

E-mail: <u>bernhard.breit@chemie.uni-freiburg.de</u>

[b] Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai,

China

E-mail: jz@ecust.edu.cn

Table of Contents

General methods and materials	S2-S3
Optimization studies	S4-S5
Experimental details and characterization data	S6-S39
Unsuccessful results and up-scaling experiment	S40
Transformations	S41-S44
Experimental details for mechanistic studies	S45-S48
X-Ray crystal structure of 2I and 4a	S49-S53
References	S54
Copies of NMR spectra	S55-S129

General methods and materials

Reagents were purchased from commercial suppliers and used as received unless noted otherwise. The photocatalysts,^[1] Hantzsch esters **HEH-1**^[2] and **HEH-2**^[3] were either commercially available or synthesized according to reported procedures.

Reactions were carried out in dry glassware under an argon atmosphere (Argon 5.0, Sauerstoffwerk Friedrichshafen). For this, the glassware was dried by heat gun under high vacuum (oil pump, 0.1 mbar), cooled to room temperature and backfilled with argon. An argon atmosphere in the reaction vessel was maintained throughout the reaction, unless noted otherwise. For the addition of solvents and reagents, syringes and cannula were flushed with argon three times prior to use. All yields are isolated yields, unless noted otherwise. For optimization studies in catalytic reactions, yields were determined from the ¹H-NMR spectrum of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

Solvents were bought in p.a. quality and used without further purification. Dry solvents for air/moisture sensitive reactions were bought from commercial suppliers and used as received. Toluene was freshly distilled over sodium/benzophenone. Solvents were evaporated at 40°C under reduced pressure using a *Heidolph Laborota 4001* rotatory evaporator system and a rotary vane pump (≥ 8 mbar) from Vaccubrand GmbH & Co. KG.

Thin layer chromatography (TLC) was performed on Macherey-Nagel silica gel 60 F254 aluminum plates (0.25 mm layer thickness). Compounds were visualized using UV light ($\lambda = 254$ nm) or by applying common staining solution and heating:

KMnO₄ stain: KMnO₄ (3.00 g), Na₂CO₃ (20.0 g), aq. NaOH solution (5 % w/v, 5.00 mL) in H₂O (300 mL). MOPS stain: phosphomolybdic acid hydrate (25.0 g) in EtOH (250 mL).

Flash column chromatography was carried out using standard glass columns packed with a plug of cotton wool, sea sand (1-2 cm), silica gel 60 (Macherey-Nagel, 0.04-0.063 mm, 230-240 mesh) and sea sand (1-2 cm). Alternatively, purification was performed on an Ultra Performance Flash Purification System- *puriFlash® XS 420*+ equipped with a PF-15C18HP/35G column.

Melting points (mp) were determined on a Stuart[®] SMP10 digital melting point apparatus and are uncorrected.

Nuclear magnetic resonance (NMR) spectra were measured on BRUKER Avance III HD 300 MHz, BRUKER Avance Neo 400 MHz and BRUKER Avance 500 MHz spectrometers. ¹H-NMR spectra were measured at 300, 400 or 500 MHz, ¹³C-NMR spectra were measured at 101 or 125 MHz, ¹⁹F-NMR spectra were measure at 282, 377 or 471 MHz. All signals are referenced to the signal of the deuterated solvent (¹H-NMR: CHCl₃, δ = 7.26 ppm; DMSO-d₅, δ = 2.49 ppm, C₆D₆, δ = 7.15 ppm; ¹³C-NMR: ¹³CDCl₃, δ = 77.1 ppm; DMSO-d₆, δ = 39.5 ppm, C₆D₆, δ = 128 ppm). ¹³C-NMR spectra are ¹H broad band decoupled. Measurements on the BRUKER Avance Neo 400 MHz and BRUKER Avance 500 MHz spectrometers as well as all 2D experiments were performed in the institute's analytical department. NMR data are reported as follows: chemical shift (δ /*ppm*), multiplicity (s: singlet; d: doublet; t: triplet; q: quartett; p: pentett; m: multiplet; brs: broad signal), coupling constants (*J*/Hz), integration.

High resolution mass spectrometry (HRMS) experiments were performed on a Thermo Fisher Scientific ExactiveTM mass spectrometer (Orbitrap instrument). Samples were infused directly or via a LC/MS setup. Ionization was achieved by electrospray ionization (ESI, needle voltage 2.5-5.0 kV, ion transfer tube 250°C, sheath/auxiliary gas N₂) or atmospheric pressure chemical ionization (APCI, corona needle current 5-10 μ A, vaporizer temperature 50-400°C, sheath gas N₂, auxiliary gas N₂/NH₃). All experiments were performed in the institute's analytic department. HRMS data are reported as follows: ionization method (ESI or APCI in positive or negative mode), chemical formula, [ion]^{charge}, mass to charge ratio (*m/z*): calculated value, found value.

Stern-Volmer quenching experiments were performed using a PerkinElmer LS55 Fluorescence Spectrometer.

Reaction Setup A reaction setup containing a 4.8 W, 3528 300 Blue LEDs strip as light source and a case fan as cooling system was used to run the catalysis,^[4] see Figure 1.

Figure 1: Reaction setup containing blue LED strips and a case fan.

Optimization studies

Table S1: Screening of Photocatalysts in ketone-alkyne cyclization reaction

^aReaction conditions (unless otherwise specified): **1a** (0.2 mmol), Photocatalyst (x mol %), and **HEH-1** (1.0 equiv.) in MeOH (4 mL), irradiated by blue LEDs at rt. NMR yields are reported by using 1,3,5-trimethoxybenzene as internal standard, isolated yield is presented in parenthesis.

	4-CzIPN (2 mol %) HEH-1 (1.25 equiv.		
''' TsN ✓ 3a	solvent (0.05 M), R 23 h, blue LEDs	T N Ts 4a	Me Ne Me HEH-1
Entry ^a	solvent	Yield [%]	d.r.
1	MeCN	48	1.8:1
2	THF	53	1.7:1
3	EA	44	1.1:1
4	DCM	29	0.8:1

11 ^{<i>b</i>}	DMSO	74	3.5:1
10	DMSO	74	2.8:1
9	DMF	80	2.5:1
8	toluene	31	1:1
7	1,4-Dioxane	38	1.1:1
6	DMA	64	2.5:1
5	MeOH	65	2.5:1

^aReaction conditions: 5-allenyl ketones **3a** (0.1 mmol), 4-CzIPN (2 mol %), and **HEH-1** (1.25 equiv.) in solvent (1 mL), irradiated by blue LEDs at rt. NMR yields are reported by using 1,3,5-trimethoxybenzene as internal standard. Diastereoselective ratio (d.r.) was determined by ¹H NMR spectroscopy of the crude mixture. ^{*b*}6 mL DMSO was used.

Experimental details and characterization data

General Procedure GP1 - Coupling of alkynes and α -haloacetophenones

In a modified procedure,^[5] α -haloacetophenone, alkynes **S1** and K₂CO₃ were suspended in acetone and it was stirred at rt until completion of the reaction was confirmed by TLC. H₂O was added and it was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure.

General Procedure GP2 - Synthesis of propargylic tosyl amides

tert-Butyl tosyl-carbamate and PPh₃ (1.5 equiv.) were dissolved in THF. After cooling to 0°C, propargylic alcohol (1.1 equiv.) and diisopropyl azodicarboxylate (1.1 equiv.) were added dropwise. The mixture was allowed to warm to rt and stirred overnight. The solvent was removed under reduced pressure. Propargylic tosyl carbamate was dissolved in CH₂Cl₂ and CF₃COOH (4.5 equiv.) was added dropwise. It was stirred at rt until completion of the reaction was confirmed by TLC. The solvent was evaporated under reduced pressure.

General Procedure GP3 - Synthesis of Allenyl propargylic tosyl amides

To a 1,2-dichloroethane (0.5 M) solution of amide (1.0 equiv.) were added Boc₂O (1.2 equiv.), triethylamine (1.1 equiv.), and dimethylaminopyridines (DMAP) (0.1 equiv.) at room temperature. The reaction mixture was stirred overnight and poured into water (20 mL). The organic layer was separated and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layer was washed with 1 M HCl (50 mL), water (50 mL) and then dried over MgSO₄. The solvent was removed under reduced pressure. The residue was precipitated from n-hexane and filtered off to give the N-Boc-amine (quant).^[6]

To a stirred suspension of NaH (60 % in oil, 1.0 equiv.) in DMF (0.5 M) at 0 °C was added N-Boc-amine (1 equiv.) as a solution in DMF (10 mL). The reaction mixture was stirred at room temperature for 30 min. **S3a**^[7] (1.2 equiv.) was added dropwise at room temperature. The reaction mixture was stirred overnight and poured into H₂O (50 mL) and EtOAc (20 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (3 x 50 mL), dried over MgSO₄, filtered and concentrated. The crude material was purified by flash chromatography on silica gel to afford allene.^[8]

To a DCM (0.5 M) solution of allenylamine (1.0 equiv.) was added dropwise trifluoroacetic acid (20 equiv.) at room temperature. The reaction mixture was stirred overnight and evaporated under reduced pressure. The crude material was purified by flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) to afford **S3b** as a white solid (quant).^[8]

N-(buta-2,3-dien-1-yl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP3**, starting from 4-methylbenzenesulfonamide (1.7 g, 10 mmol, 1.0 equiv.). This compound has been reported already.^[9]

N-(buta-2,3-dien-1-yl)-4-methoxyaniline

PMPHN

Prepared according to the general procedure **GP3**, starting from 4-methoxyaniline (1.2 g, 10 mmol, 1.0 equiv.). This compound has been reported already.^[9]

General Procedure GP4 - Coupling of allenes and α -haloacetophenones

To a solution of **S3** (1.0 equiv.) in acetone (0.2 M) was added K_2CO_3 (2.0 equiv.) followed by α -haloacetophenones (1.05 equiv.), and the mixture was stirred at room temperature for 16 h. The reaction was quenched with and the acetone was removed under reduced pressure. The resulting aqueous

phase was extracted with EtOAc, and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (*n*-pentane/EtOAc) gave allene **4**.^[9]

General Procedure GP5 - Photoredox-catalyzed ketone-alkyne coupling reaction

To an oven-dried Schlenk-tube equipped with magnetic stirring was charged with **1** (0.2 mmol), Hantzsch-ester **HEH** (0.25 mmol, 1.25 equiv.) and 4-CzIPN (2 mol %). The Schlenk tube was put on vacuum and backfilled with argon three times. DMF or MeOH (4 mL) was added and the reaction mixture was degassed twice before it was stirred at rt under blue LEDs light until completion of the reaction was confirmed by TLC. The solvent was evaporated under reduced pressure.

General Procedure GP6 - Photoredox-catalyzed ketone-allene coupling reaction

To an oven-dried Schlenk-tube equipped with magnetic stirring was charged with **3** (0.2 mmol), Hantzsch-ester **HEH-1** (63mg, 0.25 mmol, 1.25 equiv.) and 4-CzIPN (3.2 mg, 2 mol %). The Schlenk tube was put on vacuum and backfilled with argon three times. DMSO (6 mL) was added and then the mixture was stirred at room temperature under blue LEDs until completion of the reaction was confirmed by TLC. Then poured into water (40 mL), The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with brine (3 x 40 mL) and then dried over Na₂SO₄. The solvent was removed under reduced pressure. Purification of the residue by column chromatography (*n*-pentane/EtOAc) gave **4**.

Reagent and Substrate Synthesis

5-alkynyl-ketones 1a,^[5] 1c,^[10] 1e,^[10] 1g,^[11] 1h,^[12] 1l^[10] were synthesized according to the corresponding literatures. Propargylic tosyl amides S1a,^[13] S1i, ^[14] S1j, ^[15] S1m, ^[16] were synthesized according to reported procedure.

The others were synthesized according to the general procedure mentioned above.

N-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (1b)

According to **GP1** from propargylic tosyl amides (**S1a**) (500 mg, 2.39 mmol), 1-([1,1'-biphenyl]-4-yl)-2bromoethan-1-one (986 mg, 3.58 mmol, 1.5 equiv.) and K₂CO₃ (495 mg, 3.58 mmol, 1.5 equiv.). After stirring in acetone (16 mL) for 2 days, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×50 mL). Flash chromatography on silica gel (7:3 *n*-pentane/Et₂O) provided the title compound as a white solid (318 mg, 33%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.55. **m.p.** = 136°C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.01-8.05 (m, 2H), 7.76-7.80 (m, 2H), 7.68-7.73 (m, 2H), 7.61-7.65 (m, 2H), 7.46-7.51 (m, 2H), 7.40-7.45 (m, 1H), 7.31-7.35 (m, 2H), 4.84 (d, *J* = 0.6 Hz, 2H), 4.30 (dd, *J* = 2.6, 0.7 Hz, 2H), 2.44 (s, 3H), 2.13 (t, *J* = 2.5 Hz, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 193.0, 146.7, 144.0, 139.8, 136.2, 133.6, 129.8, 129.2, 128.8, 128.6, 127.8, 127.6, 127.4, 76.7, 74.6, 51.7, 37.5, 21.7. **HR-MS**: *calcd*. for C₂₄H₂₁NO₃S: 404.1315 [(M+H)⁺]; *found*: 404.1315 [(M+H)⁺]. N-(2-(4-methoxyphenyl)-2-oxoethyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (1d)

According to **GP1** from propargylic tosyl amides (**S1a**) (500 mg, 2.39 mmol), 2-bromo-1-(4methoxyphenyl)ethan-1-one (821 mg, 3.58 mmol, 1.5 equiv.) and K₂CO₃ (495 mg, 3.58 mmol, 3.58 equiv.). After stirring in acetone (16 mL) for two days, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×50 mL). Flash chromatography on silica gel (1:1 *n*-pentane/Et₂O) provided the title compound as a white-yellow solid (558 mg, 59%). **R**_f (1:2 *n*-pentane/Et₂O) = 0.50. **m.p.** = 97°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90-7.97 (m, 2H), 7.74-7.79 (m, 2H), 7.28-7.33 (m, 2H), 6.92-6.97 (m, 2H), 4.74 (d, *J* = 0.6 Hz, 2H), 4.27 (dd, *J* = 2.5, 0.6 Hz, 2H), 3.87 (s, 3H), 2.43 (s, 3H), 2.10 (t, *J* = 2.5 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 191.8, 164.2, 143.9, 136.3, 130.6, 129.7, 128.0, 127.8, 114.2, 76.8, 74.4, 55.7, 51.3, 37.5, 21.7. **HR-MS**: *calcd.* for C₁₉H₁₉NO₄S: 358.1108 [(M+H)⁺]; *found:* 358.1107 [(M+H)⁺].

4-Methyl-*N*-(2-oxo-2-(3-(trifluoromethyl)phenyl)ethyl)-*N*-(prop-2-yn-1-yl)benzenesulfon-amide (1f)

According to **GP1** from propargylic tosyl amides (**S1a**) (500 mg, 2.39 mmol), 2-bromo-1-(3-(trifluoromethyl)phenyl)ethan-1-one (829 mg, 3.11 mmol, 1.3 equiv.) and K₂CO₃ (429 mg, 3.11 mmol, 1.3 equiv.). After stirring in acetone (18 mL) overnight, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×50 mL). Flash chromatography on silica gel (4:1 to 3:2 *n*-pentane/Et₂O) provided the title compound as yellow oil (821 mg, 87%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.65. ¹**H NMR** (500 MHz, CDCl₃) δ 8.20 (dq, J = 1.7, 0.9 Hz, 1H), 8.16 (dt, J = 7.9, 1.6 Hz, 1H), 7.87 (ddt, J = 7.8, 1.6, 0.9 Hz, 1H), 7.73-7.80 (m, 2H), 7.65 (tt, J = 7.8, 0.8 Hz, 1H), 7.31-7.38 (m, 2H), 4.79 (d, J = 0.7 Hz, 2H), 4.26 (dd, J = 2.6, 0.7 Hz, 2H), 2.45 (s, 3H), 2.12-2.16 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 192.5, 144.2, 135.9, 135.5, 131.7 (q, $J_{C-F} = 33.0$ Hz), 131.4, 130.4 (q, $J_{C-F} = 3.7$ Hz), 129.9, 129.7, 127.8, 125.1 (q, $J_{C-F} = 3.7$ Hz),

123.7 (q, $J_{C-F} = 272.6 \text{ Hz}$), 76.5, 74.9, 51.9, 37.7, 21.7. ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -62.87$ (s). **HR-MS**: *calcd.* for C₁₉H₁₆F₃NO₃S: 418.0695 [(M+Na)⁺]; *found:* 418.0697 [(M+Na)⁺].

4-Methyl-*N*-(non-2-yn-1-yl)benzenesulfonamide (S1k)

TsNH

S1k

According to **GP2** from BocNHTs. Flash chromatography on silica gel (3:1 *n*-pentane/Et₂O) provided the title compound as waxy oil (505 mg, 63%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.35. ¹**H NMR** (500 MHz, CDCl₃) δ 7.74-7.79 (m, 2H), 7.29-7.33 (m, 2H), 4.46 (s, 1H), 3.80 (dt, *J* = 5.9, 2.3 Hz, 2H), 2.43 (s, 3H), 1.95 (tt, *J* = 7.1, 2.3 Hz, 2H), 1.16-1.36 (m, 8H), 0.88 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.6, 137.0, 129.7, 127.5, 85.8, 74.1, 33.6, 31.4, 28.6, 28.4, 22.6, 21.6, 18.6, 14.1. **HR-MS**: *calcd.* for C₁₆H₂₃NO₂S: 294.1522 [(M+H)⁺]; *found:* 294.1523 [(M+H)⁺].

4-Methyl-N-(2-oxo-2-phenylethyl)-N-(pent-2-yn-1-yl)benzenesulfonamide (1i)

According to **GP1** from **S1i** (750 mg, 3.16 mmol), 2-bromo-1-phenylethan-1-one (818 mg, 4.11 mmol, 1.3 equiv.) and K₂CO₃ (568 mg, 4.11 mmol, 1.3 equiv.). After stirring in acetone (22 mL) for 20 h, it was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 50 mL). Flash chromatography on silica gel (2:1 *n*-pentane/Et₂O) provided the title compound as a white-yellow solid (684 mg, 59%). **R**_f (2:1 *n*-pentane/Et₂O) = 0.45. **m.p.** = 66°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.99 (m, 2H), 7.73-7.80 (m, 2H), 7.54-7.61 (m, 1H), 7.43-7.51 (m, 2H), 7.28-7.33 (m, 2H), 4.74 (d, *J* = 0.7 Hz, 2H), 4.21 (td, *J* = 2.3, 0.7 Hz, 2H), 2.42 (s, 3H), 1.93 (qt, *J* = 7.5, 2.3 Hz, 2H), 0.89 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 193.6, 143.7, 136.3, 135.1, 133.8, 129.6, 128.8, 128.1, 127.8, 88.4, 71.8, 51.8, 38.0, 21.6, 13.5, 12.2. **HR-MS**: *calcd.* for C₂₀H₂₁NO₃S: 356.1315 [(M+H)⁺]; *found*: 356.1315 [(M+H)⁺].

N-(hept-2-yn-1-yl)-4-methyl-N-(2-oxo-2-phenylethyl)benzenesulfonamide (1j)

According to **GP1** from **S1j** (462 mg, 1.74 mmol), 2-bromo-1-phenylethan-1-one (465 mg, 2.33 mmol, 1.2 equiv.) and K₂CO₃ (329 mg, 2.38 mmol, 1.4 equiv.). After stirring in acetone (15 mL) overnight, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×30 mL). Flash chromatography on silica gel (4:1 *n*-pentane/Et₂O) provided the title compound as a white-yellow solid (547 mg, 76%). **R**_f (2:1 *n*-pentane/Et₂O) = 0.40. **m.p.** = 69°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.99 (m, 2H), 7.74-7.79 (m, 2H), 7.56-7.63 (m, 1H), 7.45-7.52 (m, 2H), 7.29-7.33 (m, 2H), 4.75 (s, 2H), 4.22 (td, *J* = 2.3, 0.7 Hz, 2H), 2.44 (s, 3H), 1.94 (ddt, *J* = 6.9, 4.7, 2.3 Hz, 2H), 1.15-1.31 (m, 4H), 0.77-0.84 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 193.7, 143.7, 136.5, 135.2, 133.8, 129.7, 128.9, 128.2, 127.9, 87.3, 72.5, 51.9, 38.1, 30.5, 22.0, 21.7, 18.3, 13.6. **HR-MS**: *calcd.* for C₂₂H₂₆NO₃S: 384.1628 [(M+H)⁺]; *found:* 384.1633 [(M+H)⁺].

4-Methyl-N-(non-2-yn-1-yl)-N-(2-oxo-2-phenylethyl)benzenesulfonamide (1k)

1k

According to **GP1** from **S1k** (441 mg, 1.50 mmol), 2-bromo-1-phenylethan-1-one (421 mg, 2.12 mmol, 1.4 equiv.) and K₂CO₃ (297 mg, 2.15 mmol, 1.4 equiv.). After stirring in acetone (15 mL) overnight, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×30 mL). Flash chromatography on silica gel (4:1 *n*-pentane/Et₂O) provided the title compound as yellow oil (601 mg, 86%). **R**_f (2:1 *n*-pentane/Et₂O) = 0.50. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.99 (m, 2H), 7.74-7.80 (m, 2H), 7.56-7.63 (m, 1H), 7.44-7.52 (m, 2H), 7.29-7.35 (m, 2H), 4.75 (s, 2H), 4.23 (td, *J* = 2.3, 0.7 Hz, 2H), 2.43 (s, 3H), 1.94 (tt, *J* = 6.9, 2.3 Hz, 2H), 1.11-1.34 (m, 8H), 0.79-0.94 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 193.7, 143.7, 136.5, 135.2, 133.8, 129.7, 128.9, 128.2, 127.9, 87.3, 72.5, 51.8, 38.1, 31.4, 28.6, 28.5, 22.6, 21.7, 18.7, 14.2. **HR-MS**: *calcd.* for C₂₄H₂₉NO₃S: 412.1941 [(M+H)+]; *found:* 412.1938 [(M+H)+].

4-Methyl-*N*-(3-(*p*-tolyl)prop-2-yn-1-yl)benzenesulfonamide (S1n)

Propargyl amine **S1a** (500 mg, 2.39 mmol), 1-iodo-4-methoxybenzene (727 mg, 3.11 mmol, 1.3 equiv.), [PdCl₂(PPh₃)₂] (33.5 mg, 47.8 μmol, 2 mol%) and Cul (18.2 mg, 95.6 μmol, 4 mol%) were suspended in THF (15 mL). NEt₃ (1 mL, 7.18 mmol, 3.0 equiv.) was added dropwise. After stirring at rt overnight, purification via flash chromatography on silica gel (1:1 *n*-pentane/Et₂O) provided the title compound as a yellow solid (382 mg, 51%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.40. **m.p.** = 125°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.84 (m, 2H), 7.24-7.43 (m, 2H), 7.06-7.11 (m, 2H), 6.74-6.80 (m, 2H), 4.85 (t, *J* = 6.1 Hz, 1H), 4.05 (dd, *J* = 6.1, 1.3 Hz, 2H), 3.79 (d, *J* = 1.3 Hz, 3H), 2.37 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.0, 143.8, 137.1, 133.2, 129.8, 127.6, 114.3, 113.9, 84.8, 82.0, 55.4, 34.0, 21.6. **HR-MS**: *calcd.* for C₁₇H₁₇NO₃S: 314.0856 [(M-H)⁻]; *found:* 314.0856 [(M-H)⁻].

4-Methyl-N-(2-oxo-2-phenylethyl)-N-(3-(p-tolyl)prop-2-yn-1-yl)benzenesulfonamide (1m)

According to **GP1** from **S1m** (300 mg, 1.00 mmol), 2-bromo-1-phenylethan-1-one (199 mg, 1.00 mmol, 1.0 equiv.) and K₂CO₃ (138 mg, 1.00 mmol, 1.0 equiv.). After stirring in acetone (10 mL) overnight, it was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). Flash chromatography on silica gel (2:1 *n*-pentane/Et₂O) provided the title compound as a white solid (277 mg, 66%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.60. **m.p.** = 121°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-8.02 (m, 2H), 7.77-7.87 (m, 2H), 7.56-7.65 (m, 1H), 7.44-7.52 (m, 2H), 7.28-7.35 (m, 2H), 6.97-7.08 (m, 4H), 4.80 (d, *J* = 0.5 Hz, 2H), 4.48 (s, 2H), 2.40 (s, 3H), 2.31 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 193.6, 143.8, 138.8, 136.3, 135.1, 133.9, 131.6, 129.8, 129.0, 128.9, 128.3, 127.8, 119.1, 86.5, 81.0, 52.0, 38.5, 21.6, 21.5. **HR-MS**: *calcd.* for C₂₅H₂₃NO₃S: 440.1291 [(M+Na)⁺]; *found:* 440.1295 [(M+Na)⁺].

N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-oxo-2-phenylethyl)benzenesulfon-amide (1n)

According to **GP3** from **S1n** (300 mg, 951 µmol), 2-bromo-1-phenyl-ethan-1-one (189 mg, 951 µmol, 1.0 equiv.) and K₂CO₃ (131 mg, 951 µmol, 1.0 equiv.). After stirring in acetone (9 mL) overnight, it was quenched with H₂O (20 mL) and extracted with EtOAc (3×20 mL). Flash chromatography on silica gel (1:1 to 1:2 *n*-pentane/Et₂O) provided the title compound as a white solid (226 mg, 55%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.40. **m.p.** = 146°C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.95-8.00 (m, 2H), 7.79-7.83 (m, 2H), 7.56-7.63 (m, 1H), 7.44-7.51 (m, 2H), 7.29-7.33 (m, 2H), 7.02-7.08 (m, 2H), 6.73-6.77 (m, 2H), 4.80 (s, 2H), 4.47 (s, 2H), 3.78 (s, 3H), 2.40 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 193.6, 159.9, 143.9, 136.3, 135.1, 133.9, 133.2, 129.8, 128.9, 128.3, 127.9, 114.2, 113.9, 86.3, 80.3, 55.4, 52.0, 38.5, 21.7. **HR-MS**: *calcd.* for C₂₅H₂₃NO₄S: 456.1240 [(M+Na)⁺]; *found:* 456.1245 [(M+Na)⁺].

5-allenyl-ketones 30, 3p were synthesized according to the corresponding literatures. Allenyl tosyl amides S3a-3c were synthesized according to reported procedure.

N-(buta-2,3-dien-1-yl)-4-methyl-N-(2-oxo-2-phenylethyl)benzenesulfonamide (3a)

Prepared according to the general procedure **GP4**, starting from 2-Bromoacetophenone (1.04 g, 5.25 mmol, 1.05 equiv.) and **S3b** (1.12 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (1.1 g, 68%). \mathbf{R}_{f} (5:1 *n*-pentane/EtOAc) = 0.4. This compound has been reported already.^[9]

N-(buta-2,3-dien-1-yl)-4-methyl-N-(2-oxo-2-(p-tolyl)ethyl)benzenesulfonamide (3b)

Prepared according to the general procedure **GP4**, starting from 2-Bromo-4'-methylacetophenone (1.12 g, 5.25 mmol, 1.05 equiv.) and **S3b** (1.12 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (1.4 g, 80%). **R**_f (5:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 56 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.78-7.73 (m, 2H), 7.32-7.23 (m, 4H), 5.03-4.94 (m, 1H), 4.74 (s, 2H), 4.61 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.93 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.41 (s, 3H), 2.40 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 193.4, 144.6, 143.4, 137.1, 132.7, 129.6, 129.5, 128.1, 127.5, 85.7, 76.2, 51.9, 47.2, 21.7, 21.5. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₁NNaO₃S⁺: 378.1134; *found*: 378.1140.

N-(buta-2,3-dien-1-yl)-N-(2-(4-methoxyphenyl)-2-oxoethyl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-4'-methoxyacetophenone (1.20 g, 5.25 mmol, 1.05 equiv.) and **S3b** (1.12 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (1.3 g, 72%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 68 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.89 (m, 2H), 7.77-7.73 (m, 2H), 7.31-7.26 (m, 2H), 6.95-6.90 (m, 2H), 5.02-4.93 (m, 1H), 4.70 (s, 2H), 4.61 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.92 (dt, *J* = 7.2, 2.4 Hz, 2H), 3.85 (s, 3H), 2.41 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 192.2, 164.0,

143.4, 137.1, 130.3, 129.6, 128.2, 127.5, 114.0, 85.7, 76.2, 55.5, 51.7, 47.3, 21.5. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₁NNaO₄S⁺: 394.1083; *found*: 394.1085.

N-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-N-(buta-2,3-dien-1-yl)-4-methylbenzenesulfonamide

TsŃ 3d

Prepared according to the general procedure **GP4**, starting from 2-Bromo-4'-phenylacetophenone (0.58 g, 2.1 mmol, 1.05 equiv.) and **S3b** (0.45 g, 2.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1to 5:1) provided the title compound as white solid (0.76 g, 91%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 85 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04-8.00 (m, 2H), 7.81-7.77 (m, 2H), 7.72-7.68 (m, 2H), 7.65-7.60 (m, 2H), 7.51-7.45 (m, 2H), 7.44-7.38 (m, 1H), 7.34-7.29 (m, 2H), 5.06-4.98 (m, 1H), 4.80 (s, 2H), 4.65 (dt, *J* = 6.8, 2.4 Hz, 2H), 3.97 (dt, *J* = 7.6, 2.4 Hz, 2H), 2.43 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 193.5, 146.4, 143.5, 139.6, 137.0, 133.8, 129.6, 129.0, 128.6, 128.4, 127.5, 127.4, 127.3, 85.7, 76.3, 52.1, 47.3, 21.5. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₃NNaO₃S⁺: 440.1291; *found*: 440.1299.

N-(buta-2,3-dien-1-yl)-N-(2-(4-fluorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-4'-fluoroacetophenone (0.91 g, 4.2 mmol, 1.05 equiv.) and **S3b** (0.89 g, 4.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1to 5:1) provided the title compound as white solid (1.2 g, 84%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 63 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.00-7.94 (m, 2H), 7.76-7.72 (m, 2H), 7.32-7.27 (m, 2H), 7.16-7.09 (m, 2H), 4.98-4.91 (m, 1H), 4.69 (s, 2H), 4.63-4.59 (m, 2H), 4.24 (dt, *J* = 7.0, 2.5 Hz, 2H), 2.41 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 209.8, 192.4, 166.0 (d, *J*_{C-F} = 256.5 Hz), 143.6, 136.7, 131.5 (d, *J*_{C-F} = 3.2 Hz), 130.8 (d, *J*_{C-F} = 9.7 Hz), 129.7, 127.4, 116.0 (d, *J*_{C-F} = 21.8 Hz), 85.5, 76.3, 52.1, 47.3, 21.5; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.7 (m). **HR-MS** (+ p ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₈FNNaO₃S⁺: 382.0884; *found*: 382.0886.

N-(2-(4-bromophenyl)-2-oxoethyl)-N-(buta-2,3-dien-1-yl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2,4'-Dibromoacetophenone (0.58 g, 2.1 mmol, 1.05 equiv.) and **S3b** (0.45 g, 2.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (0.66 g, 78%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 84 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.78 (m, 2H), 7.76-7.71 (m, 2H), 7.63-7.58 (m, 2H), 7.33-7.27 (m, 2H), 4.99-4.90 (m, 1H), 4.67 (s, 2H), 4.62 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.90 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.41 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 193.2, 143.6, 136.8, 133.9, 132.2, 129.7, 129.6, 128.9, 127.5, 85.5, 76.3, 52.2, 47.4, 21.6. **HR-MS** (+ p ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₈BrNNaO₃S⁺: 442.0083; *found*: 442.0081.

N-(buta-2,3-dien-1-yl)-4-methyl-N-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide

Prepared 2-Bromo-4'according to the general procedure GP4. starting from (trifluoromethyl)acetophenone (0.56 g, 2.1 mmol, 1.05 equiv.) and S3b (0.45 g, 2.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (n-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (0.47 g, 57%). \mathbf{R}_{f} (4:1 *n*-pentane/EtOAc) = 0.4. $\mathbf{m.p.}$ = 66 °C. ¹H NMR (400 MHz, CDCI₃) δ 8.07-8.03 (m, 2H), 7.76-7.71 (m, 4H), 7.33-7.28 (m, 2H), 4.99-4.90 (m, 1H), 4.72 (s, 2H), 4.63 (dt, J = 6.8, 2.4 Hz, 2H), 3.90 (dt, J = 7.2, 2.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.9, 193.5, 143.8, 137.9, 136.6, 134.9 (q, J_{C-F} = 32.9 Hz), 129.8, 128.5, 127.5, 125.9 (q, J_{C-F} = 3.8 Hz), 123.5 (q, J_C-_F = 273.8 Hz), 85.5, 76.4, 52.6, 47.6, 21.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -63.2 (s). HR-MS (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₁₈F₃NNaO₃S⁺: 432.0852; *found*: 432.0860.

N-(buta-2,3-dien-1-yl)-N-(2-(4-chlorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-4'-chloroacetophenone (0.98 g, 4.2 mmol, 1.05 equiv.) and **S3b** (0.89 g, 4.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (1.2 g, 73%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 85 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.76-7.71 (m, 2H), 7.45-7.41 (m, 2H), 7.32-7.27 (m, 2H), 4.99-4.90 (m, 1H), 4.68 (s, 2H), 4.62 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.90 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.41 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 192.9, 143.6, 140.2, 136.8, 133.5, 129.7, 129.5, 129.1, 127.5, 85.5, 76.3, 52.2, 47.4, 21.5. **HR-MS** (+ p ESI) *m/z*: [M+Na]+ Calcd for C₁₉H₁₈CINNaO₃S+: 398.0588; *found*: 398.0592.

N-(buta-2,3-dien-1-yl)-N-(2-(2-chlorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-2'-chloroacetophenone (0.74 g, 3.15 mmol, 1.05 equiv.) and **S3b** (0.67 g, 3.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (0.62 g, 55%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 136 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (ddd, *J* = 2.0, 1.6, 0.4 Hz, 1H), 7.83 (ddd, *J* = 7.6, 1.6, 1.2 Hz, 1H), 7.77-7.73 (m, 2H), 7.57 (ddd, *J* = 8.0, 2.0, 1.2 Hz, 1H), 7.46-7.40 (m, 1H), 7.34-7.29 (m, 2H), 5.02-4.94 (m, 1H), 4.70 (s, 2H), 4.65 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.92 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.44 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 210.0, 193.0, 143.7, 136.9, 136.7, 135.3, 133.7, 130.3, 129.8, 128.2, 127.6, 126.2, 85.7, 76.4, 52.3, 47.5, 21.6. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₉CINO₃S⁺: 376.0769; *found*: 376.0778.

N-(buta-2,3-dien-1-yl)-N-(2-(3-chlorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-3'-chloroacetophenone (0.74 g, 3.15 mmol, 1.05 equiv.) and **S3b** (0.67 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (0.76 mg, 67%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 68 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.73 (m, 2H), 7.50 (ddd, *J* = 8.0, 1.2, 0.8 Hz, 1H), 7.44-7.41 (m, 2H), 7.38-7.32 (m, 1H), 7.32-7.28 (m, 2H), 5.03-4.94 (m, 1H), 4.71-4.66 (m, 4H), 3.95 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.43 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 210.0, 197.3, 143.6, 137.1, 132.4, 131.2, 130.6, 129.73, 129.5, 127.6, 127.2, 85.8, 76.5, 54.9, 47.5, 21.6. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₉CINO₃S⁺: 376.0769; *found*: 376.0776.

N-(buta-2,3-dien-1-yl)-4-methyl-N-(2-(naphthalen-2-yl)-2-oxoethyl)benzenesulfonamide

Prepared according to the general procedure **GP4**, starting from 2-Bromo-2'-acetonaphthone (1.04 g, 4.2 mmol, 1.05 equiv.) and **S3b** (1.12 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (1 g, 64%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 90 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (d, *J* = 1.6 Hz, 1H), 7.98-7.94 (m, 2H), 7.90-7.84 (m, 2H), 7.82-7.78 (m, 2H), 7.64-7.53 (m, 2H), 7.33-7.28 (m, 2H), 5.07-4.99 (m, 1H), 4.91 (s, 2H), 4.63 (dt, *J* = 6.4, 2.4 Hz, 2H), 4.00 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.42 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.8, 193.8, 143.5, 137.0, 135.8, 132.4, 129.8, 129.6, 128.8, 128.7, 127.8, 127.5, 127.0, 123.5, 85.7, 76.3, 52.1, 47.3, 21.5. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₃S⁺: 414.1134; *found*: 414.1141.

N-(buta-2,3-dien-1-yl)-4-methyl-N-(2-oxo-2-(thiophen-2-yl)ethyl)benzenesulfonamide

****.. 31

Prepared according to the general procedure **GP4**, starting from 2-(2-Bromoacetyl)thiophene (1.0 g, 4.2 mmol, 1.05 equiv.) and **S3b** (1.12 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (572.5 mg, 41%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 58 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 4.0, 1.2 Hz, 1H), 7.77-7.73 (m, 2H), 7.67 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.32-7.27 (m, 2H), 7.15 (dd, *J* = 4.8, 3.6 Hz, 1H), 5.03-4.94 (m, 1H), 4.6-4.61 (m, 4H), 3.92 (dt, *J* = 7.6, 2.4 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 209.9, 187.0, 143.6, 141.4, 136.8, 134.3, 132.6, 129.7, 128.4, 127.6, 85.5, 76.3, 52.3, 47.5, 21.6. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₈NO₃S₂⁺: 348.0723; *found*: 348.0726.

2-(buta-2,3-dien-1-yl(4-methoxyphenyl)amino)-1-phenylethan-1-one

Prepared according to the general procedure **GP4**, starting from 2-Bromoacetophenone (853 mg, 4.2 mmol, 1.05 equiv.) and **S3c** (0.88 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (751 mg, 64%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **m.p.** = 65 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.63-7.57 (m, 1H), 7.52-7.46 (m, 2H), 6.83-6.78 (m, 2H), 6.71-6.65 (m, 2H), 5.28-5.20 (m, 1H), 4.75 (dt, *J* = 6.8, 2.8 Hz, 2H), 4.71 (s, 2H), 4.03 (dt, *J* = 6.8, 2.8 Hz, 2H), 3.74 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.2, 196.9, 152.4, 143.0, 135.7, 133.5, 128.8, 128.0, 115.2, 114.8, 87.2, 76.0, 57.6, 55.8, 51.5. **HR-MS** (+ p APCl) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₀NO₂⁺: 294.1489; *found*: 294.1491.

2-(benzyl(buta-2,3-dien-1-yl)amino)-1-phenylethan-1-one

Prepared according to the general procedure **GP4**, starting from 2-Bromoacetophenone (564 mg, 2.83 mmol, 1.05 equiv.) and **S3d** (0.8 g, 5.0 mmol, 1.0 equiv.). Flash chromatography on silica gel (*n*-pentane/EtOAc 10:1 to 5:1) provided the title compound as white solid (634 mg, 84%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. ¹**H NMR** (400 MHz, CDCl₃) δ 7.92-7.90 (m, 1H), 7.90-7.88 (m, 1H), 7.54-7.48 (m, 1H),

7.42-7.36 (m, 2H), 7.32-7.18 (m, 5H), 5.21-5.13 (m, 1H), 4.66 (dt, J = 6.4, 2.4 Hz, 2H), 3.89 (s, 2H), 3.7 (s, 2H), 3.28 (dt, J = 7.2, 2.4 Hz, 2H), 3.74 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 209.9, 198.4, 138.5, 136.4, 133.1, 129.3, 128.5, 128.4, 127.3, 86.6, 75.0, 59.4, 58.2, 53.1. HR-MS (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₀NO⁺: 278.1539; *found*: 278.1547.

To a solution of dimethyl malonate (2.97 g, 22.5 mmol,1.5 equiv.) in acetone (0.5 M) was added K₂CO₃ (6.2 g, 45 mmol, 3.0 equiv.) followed by **S3a** (15 mmol, 1.0 equiv.), and the mixture was stirred at room temperature overnight. The reaction was quenched with H₂O (20 mL) and the acetone was removed under reduced pressure. The resulting aqueous phase was extracted with EtOAc (3 x 10 mL), and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (*n*-pentane/EtOAc 15:1 to 10:1) gave *allene* **S3e** as colorless oil(0.64 g, 21%).

To a solution of sodium hydride (128 mg, 3.2 mmol, 60% in mineral oil) in DMF (10 mL) was added a solution of **S3e** (0.64 g, 3.2 mmol) in DMF (5 mL) at 0 °C. The reaction mixture was stirred at room temperature for 30 min, a solution of 2-Bromoacetophenone (796 mg, 4 mmol) in DMF (5 mL) was added. After stirring at room temperature overnight, the reaction was quenched with saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexane/EtOAc 10:1 to 5:1) gave **3o** as colorless oil (742 mg, 76%).^[17]

¹H NMR (400 MHz, CDCl₃) δ 7.98-7.93 (m, 2H), 7.59-7.53 (m, 1H), 7.48-7.42 (m, 2H), 5.01-4.92 (m, 1H), 4.49 (dt, *J* = 6.4, 2.4 Hz, 2H), 3.74 (s, 6H), 2.82 (dt, *J* = 8.0, 2.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃)

δ 210.1, 196.7, 170.8, 136.6, 133.4, 128.7, 128.1, 84.7, 74.7, 55.7, 52.8, 41.3, 32.8. **HR-MS** (+ p APCI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₉O₅⁺: 303.1227; *found*: 303.1227.

2-(buta-2,3-dien-1-yloxy)-1-phenylethan-1-one

To a solution of **S3f**^[7] (20 mmol, 1.0 equiv.) in acetone (0.5 M) was added K₂CO₃ (6.2 g, 45 mmol, 3.0 equiv.) followed by 2-Bromoacetophenone (3.98 g, 20 mmol, 1.0 equiv.), and the mixture was stirred at room temperature overnight. The reaction was quenched with H₂O (20 mL) and the acetone was removed under reduced pressure. The resulting aqueous phase was extracted with EtOAc (3 x 10 mL), and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (*n*-pentane/EtOAc 25:1 to 20 :1) gave *allene* **S3p** as colorless oil (0.95 g, 25%).^[18]

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.90 (m, 2H), 7.59-7.53 (m, 1H), 7.48-7.42 (m, 2H), 5.31-5.23 (m, 1H), 4.81-4.76 (m, 2H), 4.76-4.74 (m, 2H), 4.20-4.16 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 209.7, 196.2, 135.1, 133.5, 128.7, 127.9, 87.2, 75.9, 72.3, 69.3. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₃O₂⁺: 189.0910; *found*: 189.0912.

Catalysis

4-Methylene-3-phenyl-1-tosylpyrrolidin-3-ol (2a)

2a

According to **GP5** from **1a** (65.4 mg, 200 μ mol) with 4-CzIPN (3.4 mg, 4.25 μ mol, 2.1 mol%) and **HEH-1** (63.6 mg, 251 μ mol, 1.25 equiv.) in DMF (4 mL) within 23 h. Flash chromatography on silica gel (3:1:1 *n*-pentane/Et₂O/CH₂Cl₂) provided the title compound as yellow oil (52.1 mg, 79%). **R**_f (3:1:1 *n*- pentane/Et₂O/CH₂Cl₂) = 0.30. ¹H NMR (500 MHz, CDCl₃) δ 7.68-7.73 (m, 2H), 7.37-7.41 (m, 2H), 7.25-7.35 (m, 5H), 5.15 (t, *J* = 2.1 Hz, 1H), 4.98 (t, *J* = 2.4 Hz, 1H), 4.20 (dt, *J* = 14.2, 2.3 Hz, 1H), 3.97 (dt, *J* = 14.2, 2.3 Hz, 1H), 3.57 (d, *J* = 2.2 Hz, 2H), 2.44 (s, 3H), 2.40 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 144.0, 141.1, 133.0, 129.9, 128.4, 128.0, 127.9, 126.1, 110.9, 80.6, 62.3, 51.7, 21.7. HR-MS: *calcd.* for C₁₈H₁₉NO₃S: 330.1158 [(M+H)⁺]; *found:* 330.1158 [(M+H)⁺].

3-([1,1'-Biphenyl]-4-yl)-4-methylene-1-tosylpyrrolidin-3-ol (2b)

According to **GP5** from **1b** (80.7 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2.0 mol%) and **HEH-1** (63.4 mg, 250 µmol, 1.25 equiv.) in DMF (4 mL) within 14 h. Flash chromatography on silica gel (2:1 *c*-hexane/Et₂O) provided the title compound as yellow oil (72.9 mg, 90%). **R**_f (1:1 *c*-hexane/Et₂O) = 0.30. ¹H **NMR** (400 MHz, CDCl₃) δ 7.70-7.75 (m, 2H), 7.51-7.60 (m, 4H), 7.41-7.49 (m, 4H), 7.30-7.39 (m, 3H), 5.17-5.20 (m, 1H), 5.06 (td, *J* = 2.5, 0.5 Hz, 1H), 4.23 (dt, *J* = 14.2, 2.2 Hz, 1H), 4.01 (dt, *J* = 14.3, 2.3 Hz, 1H), 3.62 (d, *J* = 1.0 Hz, 2H), 2.42 (s, 3H), 2.39 (brs, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 150.8, 144.0, 140.9, 140.6, 140.2, 133.2, 129.9, 129.0, 128.0, 127.6, 127.2, 127.1, 126.6, 111.0, 80.6, 62.3, 51.7, 21.7. **HR-MS**: *calcd.* for C₂₄H₂₄NO₃S: 406.1471 [(M+H)⁺]; *found:* 406.1476 [(M+H)⁺].

4-Methylene-3-(p-tolyl)-1-tosylpyrrolidin-3-ol (2c)

According to **GP5** from **1c** (68.6 mg, 201 µmol) with 4-CzIPN (3.3 mg, 4.1 µmol, 2.1 mol%) and **HEH-1** (63.9 mg, 252 µmol, 1.26 equiv.) in DMF (4 mL) within 2 days. Flash chromatography on silica gel (3:1:1 *n*-pentane/Et₂O/CH₂Cl₂) provided the title compound as yellow oil (63.5 mg, 92%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.45. ¹**H NMR** (400 MHz, CDCl₃) δ 7.68-7.73 (m, 2H), 7.26-7.34 (m, 4H), 7.09-7.15 (m, 2H), 5.14 (t, *J* = 2.1 Hz, 1H), 5.00 (t, *J* = 2.4 Hz, 1H), 4.19 (dt, *J* = 14.2, 2.2 Hz, 1H), 3.97 (dt, *J* = 14.2, 2.3 Hz, 1H), 3.56 (s, 2H), 2.44 (s, 3H), 2.33 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 151.0, 143.9, 138.1,

137.8, 133.2, 129.9, 129.1, 128.0, 126.1, 110.7, 80.6, 62.3, 51.7, 21.7, 21.2. **HR-MS**: *calcd.* for C₁₉H₂₁NO₃S: 344.1315 [(M+H)⁺]; *found:* 344.1315 [(M+H)⁺].

3-(4-Methoxyphenyl)-4-methylene-1-tosylpyrrolidin-3-ol (2d)

According to **GP5** from **1d** (71.1 mg, 199 µmol) with 4-CzIPN (3.4 mg, 4.3 µmol, 2.1 mol%) and **HEH-1** (63.8 mg, 252 µmol, 1.26 equiv.) in DMF (4 mL) within 2 days. Flash chromatography on silica gel (3:1:1 *n*-pentane/Et₂O/CH₂Cl₂) provided the title compound as yellow oil (54.4 mg, 76%). **R**_f (1:2 *n*-pentane/Et₂O) = 0.65. ¹**H NMR** (400 MHz, CDCl₃) δ 7.67-7.72 (m, 2H), 7.29-7.33 (m, 4H), 6.81-6.86 (m, 2H), 5.14 (t, *J* = 2.1 Hz, 1H), 5.01 (t, *J* = 2.4 Hz, 1H), 4.18 (dt, *J* = 14.2, 2.2 Hz, 1H), 3.96 (dt, *J* = 14.2, 2.3 Hz, 1H), 3.80 (s, 3H), 3.55 (d, *J* = 3.4 Hz, 2H), 2.44 (s, 3H), 2.22 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.4, 150.9, 143.9, 133.2, 133.1, 129.9, 128.0, 127.4, 113.8, 110.6, 80.4, 62.1, 55.4, 51.6, 21.7. **HR-MS**: *calcd.* for C₁₉H₂₁NO₄S: 382.1084 [(M+Na)⁺]; *found:* 382.1083 [(M+Na)⁺].

3-(4-Fluorophenyl)-4-methylene-1-tosylpyrrolidin-3-ol (2e)

According to **GP5** from **1e** (69.0 mg, 200 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2.0 mol%) and **HEH-1** (63.3 mg, 250 μmol, 1.25 equiv.) in DMF (4 mL) within 13 h. The solvent was evaporated, and the residue was resolved in MeOH (2 mL) and H₂O (1 mL). KOH (112 mg, 2.00 mmol, 10 equiv.) was added and it was stirred overnight. The mixture was extracted with EtOAc (3 × 20 mL) and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure. Flash chromatography on silica gel (2:3 *n*-pentane/Et₂O) provided the title compound as yellow oil (52.1 mg, 75%). **R**_f (2:3 *n*-pentane/Et₂O) = 0.35. ¹**H NMR** (400 MHz, CDCl₃) δ 7.67-7.73 (m, 2H), 7.29-7.40 (m, 4H), 6.94-7.02 (m, 2H), 5.16 (td, *J* = 2.1, 0.5 Hz, 1H), 4.99 (td, *J* = 2.5, 0.5 Hz, 1H), 4.15-4.24 (m, 1H), 3.96 (dt, *J* = 14.3, 2.3 Hz, 1H), 3.47-3.62 (m, 2H), 2.44 (s, 3H), 2.34 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.5 (d, *J*_{C-F} = 247.5 Hz), 150.8, 144.1, 136.91 (d, *J*_{C-F} = 3.0 Hz), 133.1, 129.9, 128.1, 128.0,

115.2 (d, *J*_{C-F} = 22.0 Hz), 111.0, 80.3, 62.4, 51.6, 21.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.57 (m). HR-MS: *calcd.* for C₁₈H₁₈FNO₃S: 348.1064 [(M+H)⁺]; *found:* 348.1066 [(M+H)⁺].

4-Methylene-1-tosyl-3-(3-(trifluoromethyl)phenyl)pyrrolidin-3-ol (2f)

According to **GP4** from **1f** (79.3 mg, 201 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2.0 mol%) and **HEH-1** (63.4 mg, 250 μmol, 1.25 equiv.) in DMF (4 mL) within 13 h. The solvent was evaporated, and the residue was resolved in MeOH (2 mL) and H₂O (1 mL). KOH (112 mg, 2.00 mmol, 10 equiv.) was added and it was stirred overnight. The mixture was extracted with EtOAc (3 × 20 mL) and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure. Flash chromatography on silica gel (2:3 *n*-pentane/Et₂O) provided the title compound as yellow oil (56.7 mg, 71%). **R**_f (2:3 *n*-pentane/Et₂O) = 0.40. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69-7.74 (m, 3H), 7.56 (ddddd, *J* = 10.4, 7.8, 2.0, 1.3, 0.7 Hz, 2H), 7.43 (tt, *J* = 7.8, 0.7 Hz, 1H), 7.31-7.36 (m, 2H), 5.20 (td, *J* = 2.1, 0.6 Hz, 1H), 4.97 (td, *J* = 2.5, 0.7 Hz, 1H), 4.25 (dt, *J* = 14.3, 2.3 Hz, 1H), 3.99 (dt, *J* = 14.4, 2.3 Hz, 1H), 3.62 (d, *J* = 10.7 Hz, 1H), 3.50 (d, *J* = 10.7 Hz, 1H), 2.48 (brs, 1H), 2.44 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.7, 144.3, 142.4, 133.0, 130.8 (q, *J* = 32.2 Hz), 130.0, 129.7, 128.9, 128.0, 124.8 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 272.4 Hz), 123.1 (q, *J* = 3.9 Hz), 111.7, 80.4, 62.6, 51.7, 21.7. ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -62.6 (s). **HR-MS**: *calcd*. for C₁₉H₁₈F₃NO₃S: 398.1032 [(M+H)⁺]; found: 398.1034 [(M+H)⁺].

4-Methylene-3-phenyltetrahydrofuran-3-ol (2g)

According to **GP5** from **1g** (34.5 mg, 198 µmol) with 4-CzIPN (3.1 mg, 3.9 µmol, 2.0 mol%) and **HEH-1** (63.6 mg, 251 µmol, 1.27 equiv.) in DMF (4 mL) within 20 h. Flash chromatography on silica gel (5:1 *n*-pentane/Et₂O) provided the title compound as colourless oil (17.8 mg, 51%). **R**_f (1:2 *n*-pentane/Et₂O) = 0.65. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50-7.55 (m, 2H), 7.34-7.40 (m, 2H), 7.27-7.32 (m, 1H), 5.17 (t, *J* = 2.2 Hz, 1H), 4.99-5.06 (m, 1H), 4.77 (dddd, *J* = 13.7, 2.6, 2.2, 0.7 Hz, 1H), 4.54 (dddd, *J* = 13.7, 2.7, 2.3, 0.8 Hz, 1H), 4.03-4.10 (m, 1H), 3.96 (dd, *J* = 9.6, 0.7 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃)

CDCl₃) δ 155.4, 141.4, 128.3, 127.6, 126.2, 108.2, 82.2, 81.6, 71.8. **HR-MS**: *calcd.* for C₁₁H₁₂O₄: 194.1176 [(M+NH₄)⁺]; *found:* 194.1179 [(M+NH₄)⁺].

Dimethyl 3-hydroxy-4-methylene-3-phenylcyclopentane-1,1-dicarboxylate (2h)

According to **GP5** from **1h** (58.2 mg, 202 µmol) with 4-CzIPN (3.3 mg, 4.1 µmol, 2.0 mol%) and **HEH-1** (63.3 mg, 250 µmol, 1.24 equiv.) in DMF (4 mL) for 3 days. Flash chromatography on silica gel (5:1 to 4:1 *n*-pentane/Et₂O) provided the title compound as colourless oil (28.3 mg, 49%). **R**_f (1:1 *n*-pentane/Et₂O) = 0.50. ¹**H NMR** (500 MHz, CDCl₃) δ 7.45-7.48 (m, 2H), 7.31-7.36 (m, 2H), 7.23-7.28 (m, 1H), 5.17 (ddd, J = 2.4, 1.8, 0.5 Hz, 1H), 4.87 (dd, J = 2.9, 2.0 Hz, 1H), 3.80 (s, 3H), 3.72 (s, 3H), 3.50 (dq, J = 17.1, 1.9 Hz, 1H), 3.08 (dt, J = 17.1, 2.6 Hz, 1H), 2.81-2.88 (m, 1H), 2.70 (d, J = 14.3 Hz, 1H), 2.53 (brs, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.2, 171.9, 155.6, 144.3, 128.1, 127.3, 126.1, 111.7, 82.4, 57.9, 53.3, 53.1, 51.0, 40.6. **HR-MS**: *calcd.* for C₁₆H₁₈O₅: 273.112. [(M-(OH⁻))⁺]; *found:* 273.1128 [(M-(OH⁻))⁺].

(Z)-3-Phenyl-4-propylidene-1-tosylpyrrolidin-3-ol (2i)

According to **GP5** from **1i** (71.0 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2.0 mol%) and **HEH-2** (78.3 mg, 250 µmol, 1.25 equiv.) in MeOH (4 mL) within 14 h. The isomers could be separated by flash chromatography on silica gel (4:1:1 to 3:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as colourless oil (60.9 mg, 85% for both isomers, Z/E = 11:1). **R**_f (4:1:1 *n*-pentane/Et₂O/CH₂Cl₂) = 0.30 (*Z*-isomer); 0.20 (*E*-isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66-7.71 (m, 2H), 7.21-7.41 (m, 7H), 5.50 (tt, J = 7.7, 2.0 Hz, 1H), 4.13-4.19 (m, 1H), 3.74 (ddt, J = 13.1, 2.0 Hz, 1H), 3.61 (d, J = 10.4 Hz, 1H), 3.12 (dd, J = 10.4, 0.5 Hz, 1H), 2.49 (brs, 1H), 2.44 (s, 3H), 1.55-1.87 (m, 2H), 0.69 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 144.1, 142.9, 140.1, 132.1, 130.7, 129.8, 128.3, 128.3, 127.4, 125.4, 80.2,

65.7, 53.9, 21.8, 21.6, 13.3. **HR-MS**: *calcd.* for C₂₀H₂₃NO₃S: 358.1471 [(M+H)⁺]; *found:* 358.1471 [(M+H)⁺].

(Z)-4-Pentylidene-3-phenyl-1-tosylpyrrolidin-3-ol (2j)

According to **GP5** from **1j** (77.2 mg, 201 µmol) with 4-CzIPN (3.3 mg, 4.1 µmol, 2.0 mol%) and **HEH-2** (78.6 mg, 251 µmol, 1.25 equiv.) in MeOH (4 mL) within 14 h. The isomers could be separated by flash chromatography on silica gel (5:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as colourless oil (62.0 mg, 80% for both isomers, Z/E = 11:1). **R**_f (4:1:1 *n*-pentane/Et₂O/CH₂Cl₂) = 0.40 (*Z*-isomer); 0.30 (*E*-isomer). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.71 (m, 2H), 7.19-7.41 (m, 7H), 5.51 (tt, *J* = 7.7, 2.0 Hz, 1H), 4.12-4.21 (m, 1H), 3.74 (dqd, *J* = 13.1, 2.0, 0.5 Hz, 1H), 3.61 (dd, *J* = 10.4, 0.8 Hz, 1H), 3.12 (dd, *J* = 10.4, 0.5 Hz, 1H), 2.52 (brs, 1H), 2.44 (s, 3H), 1.56-1.81 (m, 2H), 0.93-1.16 (m, 4H), 0.62-0.70 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 143.0, 140.6, 131.9, 129.9, 129.3, 128.3, 128.3, 127.4, 125.4, 80.1, 65.8, 54.0, 31.0, 28.0, 22.3, 21.7, 13.8. HR-MS: *calcd.* for C₂₂H₂₇NO₃S: 386.1784 [(M+H)⁺]; *found*: 386.1789 [(M+H)⁺].

(Z)-4-Heptylidene-3-phenyl-1-tosylpyrrolidin-3-ol (2k)

According to **GP5** from **1k** (83.3 mg, 202 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2.0 mol%) and **HEH-2** (78.4 mg, 250 µmol, 1.24 equiv.) in MeOH (4 mL) within 14 h. The isomers could be separated by flash chromatography on silica gel (5:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as colourless oil (63.5 mg, 76% for both isomers, Z/E = 9:1). **R**_f (4:1:1 *n*-pentane/Et₂O/CH₂Cl₂) = 0.40 (*Z*-isomer); 0.30 (*E*-isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.67-7.71 (m, 2H), 7.19-7.41 (m, 7H), 5.51 (tt, *J* = 7.4, 2.0 Hz, 1H), 4.16 (ddt, *J* = 13.2, 1.5, 0.7 Hz, 1H), 3.75 (dq, *J* = 13.1, 2.1 Hz, 1H), 3.56-3.65 (m, 1H), 3.14 (d, *J* = 10.4 Hz, 1H), 2.51 (brs, 1H), 2.44 (s, 3H), 1.53-1.84 (m, 2H), 0.92-1.20 (m, 8H), 0.79 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 144.1, 143.1, 140.6, 132.1, 129.9, 129.3, 128.3, 128.3,

127.4, 125.4, 80.2, 65.8, 54.0, 31.6, 28.9, 28.8, 28.3, 22.6, 21.7, 14.1. **HR-MS**: *calcd*. for C₂₄H₃₁NO₃S: 414.2097 [(M+H)⁺]; *found:* 414.2098 [(M+H)⁺].

(Z)-4-Benzylidene-3-phenyl-1-tosylpyrrolidin-3-ol (2I)

According to **GP5** from **1I** (80.5 mg, 200 µmol) with 4-CzIPN (3.4 mg, 4.3 µmol, 2.1 mol%) and **HEH-2** (78.1 mg, 249 µmol, 1.25 equiv.) in MeOH (4 mL) within 14 h. The isomers could be separated by flash chromatography on silica gel (5:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as white-yellow solid (74.2 mg, 92% for both isomers, Z/E = 14:1). **R**_f (3:1:1 *n*-pentane/Et₂O/CH₂Cl₂) = 0.55 (*Z*-isomer); 0.40 (*E*-isomer). **m.p.** = 180°C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.72 (m, 2H), 7.28-7.35 (m, 4H), 7.12-7.22 (m, 3H), 6.99-7.05 (m, 5H), 6.60 (t, *J* = 2.1 Hz, 1H), 4.25-4.38 (m, 1H), 4.10 (ddd, *J* = 14.0, 2.3, 0.6 Hz, 1H), 3.49-3.66 (m, 1H), 3.31 (dd, *J* = 10.1, 0.5 Hz, 1H), 2.79 (brs, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.2, 141.2, 134.6, 132.3, 129.9, 129.1, 128.3, 128.2, 128.0, 127.6, 127.6, 126.9, 125.7, 80.5, 65.4, 54.9, 21.7. HR-MS: *calcd.* for C₂₄H₂₃NO₃S: 406.1471 [(M+H)⁺]; *found:* 406.1472 [(M+H)⁺].

(Z)-4-(4-Methylbenzylidene)-3-phenyl-1-tosylpyrrolidin-3-ol (2m)

According to **GP5** from **1m** (83.0 mg, 199 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2.0 mol%) and **HEH-2** (78.4 mg, 250 µmol, 1.25 equiv.) in MeOH (4 mL) within 14 h. The isomers could be separated by flash chromatography on silica gel (5:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as yellow oil (77.6 mg, 93% for both isomers, Z/E = 12:1). **R**_f (3:1:1 *n*-pentane/Et₂O/CH₂Cl₂) = 0.60 (*Z*-isomer); 0.50 (*E*-isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.65-7.72 (m, 2H), 7.29-7.38 (m, 4H), 7.13-7.24 (m, 3H), 6.90 (d, *J* = 8.2 Hz, 2H), 6.81-6.88 (m, 2H), 6.52-6.62 (m, 1H), 4.27 (dd, *J* = 14.0, 2.0 Hz, 1H), 4.12 (dd, *J* = 14.1, 2.3 Hz, 1H), 3.55 (d, *J* = 10.0 Hz, 1H), 3.34 (dd, *J* = 9.9, 0.5 Hz, 1H), 2.77 (brs, 1H), 2.44 (s, 3H), 2.18 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 144.1, 142.6, 140.2, 137.5, 132.2, 131.6, 129.8, 129.0, 128.8, 128.4, 128.2, 127.5, 126.7, 125.6, 80.4, 65.3, 54.9, 21.6, 21.2. **HR-MS**: *calcd.* for C₂₅H₂₅NO₃S: 420.1628 [(M+H)⁺]; *found:* 420.1633 [(M+H)⁺].

(Z)-4-(4-Methoxybenzylidene)-3-phenyl-1-tosylpyrrolidin-3-ol (2n)

According to **GP5** from **1n** (86.0 mg, 198 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2.0 mol%) and **HEH-1** (62.8 mg, 248 µmol, 1.25 equiv.) in MeOH (4 mL) within 16 h. The isomers could be separated by flash chromato-graphy on silica gel (4:1:1 *n*-pentane/Et₂O/CH₂Cl₂). The title compound was obtained as yellow oil (81.1 mg, 94% for both isomers, Z/E = 10:1). **R**_f (1:2 *n*-pentane/Et₂O) = 0.55 (*Z*-isomer); 0.50 (*E*-isomer). ¹H **NMR** (500 MHz, CDCl₃) δ 7.66-7.70 (m, 2H), 7.30-7.34 (m, 4H), 7.14-7.22 (m, 3H), 6.94-7.01 (m, 2H), 6.54-6.57 (m, 2H), 6.53 (t, J = 2.2 Hz, 1H), 4.29 (dd, J = 13.9, 1.9 Hz, 1H), 4.06 (dd, J = 13.9, 2.3 Hz, 1H), 3.67 (s, 3H), 3.57 (d, J = 10.0 Hz, 1H), 3.27 (d, J = 10.1 Hz, 1H), 2.79 (brs, 1H), 2.44 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 159.1, 144.2, 142.1, 138.8, 132.1, 130.6, 129.9, 128.4, 128.3, 127.6, 127.1, 126.6, 125.7, 113.5, 80.4, 65.6, 55.3, 55.0, 21.7. **HR-MS**: *calcd*. for C₂₅H₂₅NO₄S: 436.1577 [(M+H)⁺]; *found*: 436.1582 [(M+H)⁺].

3-phenyl-1-tosyl-4-vinylpyrrolidin-3-ol (4a)

According to **GP6** from **3a** (68.3 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (3:1 *n*-pentane/EtOAc) provided the title compound (50.8 mg, 74%). **R**_f (4:1 *n*-pentane/ EtOAc) = 0.4. **4a-1**, **major**: white solid, **m.p.** = 127 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.72-7.65 (m, 2H), 7.30-7.15 (m, 7H), 5.50 (ddd, *J* = 14.0, 8.4, 5.2 Hz, 1H), 5.08-5.03 (m, 1H), 4.95-4.88 (m, 1H), 3.69-3.62 (m, 1H), 3.61-3.50 (m, 2H), 3.36 (dd, *J* = 8.8, 7.6 Hz, 1H), 3.05-2.97 (m, 1H), 2.36 (s, 3H), 2.06-1.97(m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 140.6, 134.1, 131.0, 129.7, 128.5, 127.7, 127.6, 125.2, 120.1, 81.1, 62.0, 52.6, 50.3, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₁NNaO₃S⁺: 366.1134; *found*: 366.1143.

4a-2, **minior**: yellow solid, **m.p.** = 118 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81-7.75 (m, 2H), 7.37-7.33 (m, 2H), 7.33-7.24 (m, 5H), 5.11 (ddd, *J* = 14.0, 8.4, 6.4 Hz, 1H), 4.93 (dt, *J* = 13.6, 1.2 Hz, 1H), 4.89 (ddd, *J* = 8.0, 1.2, 0.8 Hz, 1H), 3.7 (d, *J* = 8.4 Hz 1H), 3.73 (dd, *J* = 8.0, 5.6 Hz, 1H), 3.54 (dd, *J* = 8.8, 0.8 Hz, 1H), 3.40 (dd, *J* = 7.6, 3.6 Hz, 1H), 2.93-2.87 (m, 1H), 2.44 (s, 3H), 1.99-1.92 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.7, 140.1, 134.6, 134.2, 129.8, 128.5, 128.3, 127.6, 126.2, 118.0, 82.1, 57.5, 53.5, 51.3, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₁NNaO₃S⁺: 366.1134; *found*: 366.1137.

3-(p-tolyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4b)

According to **GP6** from **3b** (71.0 mg, 200 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2 mol%) and **HEH-1** (63.6 mg, 250 μmol, 1.25 equiv.) in DMSO (6 mL) within 50 h. Flash chromatography on silica gel (3:1 *n*-pentane/EtOAc) provided the title compound (59.2 mg, 83%). **R**_f (4:1 *n*-pentane/EtOAc) = 0.4. **4b-1**, **major**: white solid, **m.p.** = 103 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.74 (m, 2H), 7.37-7.32 (m, 2H), 7.25-7.20(m, 2H), 7.16-7.11 (m, 2H), 5.58 (ddd, J = 17.2, 10.8, 6.8 Hz, 1H), 5.15 (dt, J = 10.8, 1.2 Hz, 1H), 5.01 (dt, J = 17.6, 1.2 Hz, 1H), 3.73 (dd, J = 9.6, 8.0 Hz, 1H), 3.66-3.62 (m, 1H), 3.60-3.56 (m, 1H), 3.44(dd, J = 10.8, 9.6 Hz, 1H), 3.13-3.05(m, 1H), 2.45 (s, 3H), 2.32 (s, 3H), 1.86 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 137.7, 137.6, 134.4, 131.2, 129.8, 129.3, 127.7, 125.1, 120.1, 81.1, 62.1, 52.5, 50.3, 21.6, 21.0. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₄NO₃S⁺: 358.1471; *found:* 358.1471.

4b-2, **minior**: yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.75 (m, 2H), 7.36-7.32 (m, 2H), 7.17-7.13 (m, 2H), 7.13-7.08 (m, 2H), 5.12 (ddd, *J* = 14.0, 8.4, 6.4 Hz, 1H), 4.93 (dt, *J* = 13.6, 1.2 Hz, 1H), 4.90-4.86 (m, 1H), 3.96-3.92 (m, 1H), 3.72 (dd, *J* = 7.6, 5.2 Hz, 1H), 3.55-3.51 (m, 1H), 3.41-3.36 (m, 1H), 2.91-2.85 (m, 1H), 2.44 (s, 3H), 2.31 (s, 3H), 2.01-1.93 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 138.0, 137.2, 134.8, 134.2, 129.8, 129.2, 127.6, 126.1, 117.8, 81.9, 57.5, 53.3, 51.3, 21.6, 21.1. HR-MS (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₄NO₃S⁺: 358.1471; *found:* 358.1470.

3-(4-methoxyphenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4c)

According to **GP6** from **3c** (74.3 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 72 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (33.6 mg, 45%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4c-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.37-7.32 (m, 2H), 7.29-7.26(m, 1H), 7.26-7.24 (m, 1H), 6.88-6.83 (m, 2H), 5.59 (ddd, *J* = 17.2, 10.8, 6.8 Hz, 1H), 5.16 (dt, *J* = 10.4, 1.6 Hz, 1H), 5.02 (dt, *J* = 17.2, 1.6 Hz, 1H), 3.79 (s, 3H), 3.73 (dd, *J* = 9.2, 7.6 Hz, 1H), 3.65-3.60 (m, 1H), 3.59-3.55 (m, 1H), 3.43 (dd, *J* = 10.8, 9.2 Hz, 1H), 3.13-3.04 (m, 1H), 2.45 (s, 3H), 1.77 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.2, 143.6, 134.4, 132.7, 131.3, 129.8, 127.7, 126.5, 120.2, 114.0, 81.0, 62.0, 55.4, 52.4, 50.3, 21.7. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₄NO₄S⁺: 374.1421; *found*: 374.1421.

4c-2, **minior**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.76 (m, 2H), 7.37-7.32 (m, 2H), 7.22-7.17 (m, 2H), 6.85-6.80 (m, 2H), 5.13 (ddd, *J* = 17.2, 10.4, 8.0 Hz, 1H), 4.97-4.87 (m, 2H), 3.93 (d, *J* = 10.4 Hz, 1H), 3.79 (s, 3H), 3.72 (dd, *J* = 10.0, 6.8 Hz, 1H), 3.52 (dd, *J* = 10.4, 0.8 Hz, 1H), 3.39 (dd, *J* = 9.6, 4.4 Hz, 1H), 2.91-2.83 (m, 1H), 2.44 (s, 3H), 1.87 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.4, 143.7, 134.9, 134.4, 132.3, 129.8, 127.6, 127.5, 117.8, 113.8, 81.8, 57.6, 55.3, 53.5, 51.4, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₃NNaO₄S⁺: 396.1240; *found*: 396.1245.

3-([1,1'-biphenyl]-4-yl)-1-tosyl-4-vinylpyrrolidin-3-ol (4d)

According to **GP6** from **3d** (83.5 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (63.1 mg, 75%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4d-1**, **major**: white solid, **m.p.** = 133 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.60-7.54 (m, 4H), 7.47-7.40 (m, 4H), 7.38-7.32 (m, 3H), 5.63 (ddd, *J* = 17.6, 10.8, 6.8 Hz, 1H), 5.17 (dt, *J* = 10.4, 1.2 Hz, 1H), 5.04 (dt, *J* = 17.6, 1.2 Hz, 1H), 3.77 (dd, *J* = 9.6, 8.0 Hz, 1H), 3.74-3.69 (m, 1H), 3.68-3.63 (m,

1H), 3.48 (dd, *J* = 10.8, 9.6 Hz, 1H), 3.18-3.09 (m, 1H), 2.45 (s, 3H), 2.14 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 140.6, 140.3, 139.7, 134.3, 131.1, 129.8, 128.8, 127.6, 127.5, 127.1, 127.0, 125.7, 120.1, 81.1, 62.0, 52.7, 50.4, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₅NNaO₃S⁺: 442.1447; *found*: 442.1445.

3-(4-fluorophenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4e)

According to **GP6** from **3c** (71.9 mg, 200 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2 mol%) and **HEH-1** (63.6 mg, 250 μmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (52.8 mg, 73%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4e-1**, **major**: yellow solid, **m.p.** = 112 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.76-7.72 (m, 2H), 7.35-7.28 (m, 4H), 7.02-6.95 (m, 2H), 5.56 (ddd, *J* = 17.5, 10.5, 6.5 Hz, 1H), 5.13 (dt, *J* = 10.5, 1.5 Hz, 1H), 4.98 (dt, *J* = 17.5, 1.0 Hz, 1H), 3.70 (dd, *J* = 14.5, 7.5 Hz, 1H), 3.63-3.56 (m, 2H), 3.41 (dd, *J* = 11.0, 9.5 Hz, 1H), 3.06-2.99 (m, 1H), 2.43 (s, 3H), 2.17 (brs, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.2 (d, *J*c-F = 247.8 Hz), 143.7, 136.5 (d, *J*c-F = 3.3 Hz), 134.0, 130.9, 129.8, 127.6, 127.1 (d, *J*c-F = 8.7 Hz), 120.3, 115.3 (d, *J*c-F = 20.8 Hz), 80.8, 61.9, 52.8, 50.3, 21.6; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -114.7 (m). **HR-MS** (- p ESI) *m/z*: [M-H]⁻ Calcd for C₁₉H₁₉FNO₃S⁻: 360.1075; *found*: 360.1073.

4e-2, **minior**: yellow solid, **m.p.** = 107 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.37-7.33 (m, 2H), 7.28-7.23 (m, 2H), 7.01-6.95 (m, 2H), 5.09 (ddd, J = 17.5, 10.5, 8.0 Hz, 1H), 4.5-4.88 (m, 2H), 3.2 (d, J = 10.5 Hz, 1H), 3.72 (dd, J = 10.0, 7.0 Hz, 1H), 3.52 (dd, J = 10.5, 1.0 Hz, 1H), 3.36 (dd, J = 9.5, 4.5 Hz, 1H), 2.89-2.83 (m, 1H), 2.45 (s, 3H), 2.07-1.99 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.4 (d, $J_{C-F} = 249.0$ Hz), 143.8, 136.0 (d, $J_{C-F} = 4.0$ Hz), 134.4, 134.1, 129.9, 128.1 (d, $J_{C-F} = 7.6$ Hz), 127.6, 118.3, 115.3 (d, $J_{C-F} = 21.9$ Hz), 81.6, 57.7, 53.6, 51.2, 21.7; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.6 (m). **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₀FNNaO₃S⁺: 384.1040; *found*: 3841042.

3-(4-bromophenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4f)

According to **GP6** from **3c** (84.1 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (67.6 mg, 80%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4f-1**, **major**: white solid, **m.p.** = 116 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.77-7.71 (m, 2H), 7.46-7.40 (m, 2H), 7.36-7.31 (m, 2H), 7.24-7.19 (m, 2H), 5.55 (ddd, *J* = 17.6, 10.4, 6.8 Hz, 1H), 5.13 (dt, *J* = 10.8, 1.2 Hz, 1H), 4.98 (dt, *J* = 17.6, 1.2 Hz, 1H), 3.70 (dd, *J* = 9.6, 8.0 Hz, 1H), 3.63-3.55 (m, 2H), 3.41 (dd, *J* = 10.8, 9.6 Hz, 1H), 3.06-2.97 (m, 1H), 2.44 (s, 3H), 2.13 (brs, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 139.8, 134.1, 131.6, 130.8, 129.8, 127.6, 127.1, 121.9, 120.4, 80.9, 61.8, 52.9, 50.3, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₁BrNO₃S⁺: 422.0420; found: 422.0426.

1-tosyl-3-(4-(trifluoromethyl)phenyl)-4-vinylpyrrolidin-3-ol (4g)

According to **GP6** from **3c** (81.9 mg, 200 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2 mol%) and **HEH-1** (63.6 mg, 250 μmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (65.9 mg, 80%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4g-1**, **major**: yellow solid, **m.p.** = 106 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.59-7.55 (m, 2H), 7.49-6.45 (m, 2H), 7.36-7.32 (m, 2H), 5.55 (ddd, J = 17.5, 10.5, 6.5 Hz, 1H), 5.13 (ddd, J = 10.5, 2.5, 1.5 Hz, 1H), 4.97 (ddd, J = 17.5, 2.5, 1.5 Hz, 1H), 3.2 (dd, J = 9.0, 8.0 Hz, 1H), 3.67-3.60 (m, 2H), 3.44 (dd, J = 11.0, 9.5 Hz, 1H), 3.10-3.03 (m, 1H), 2.44 (s, 3H), 2.36-2.31(m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 143.9, 133.9, 130.5, 130.0 (q, $J_{C-F} = 32.5$ Hz), 129.9, 127.6, 125.8, 125.4 (q, $J_{C-F} = 3.7$ Hz), 124.0 (q, $J_{C-F} = 272.5$ Hz), 120.6, 81.0, 61.9, 53.1, 50.3, 21.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.6 (s). **HR-MS** (- p ESI) *m/z*: [M-H]⁻ Calcd for C₂₀H₁₉F₃NO₃S⁻: 410.1043; *found*: 410.1034.

4g-2, **minior**: white solid, **m.p.** = 136 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.80-7.76 (m, 2H), 7.57-7.53 (m, 2H), 7.43-7.39 (m, 2H), 7.38-7.34 (m, 2H), 5.06 (ddd, *J* = 17.0, 10.0, 8.0 Hz, 1H), 4.96-4.90 (m, 2H), 3.9 (d, *J* = 11.0 Hz, 1H), 3.74 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.36 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.36 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.36 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.56 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.55 (dd, J = 10.5, 1.0 Hz, 1H), 3.55 (dd, J = 10.0, 7.0 Hz, 1H), 3.55 (dd, J = 10.0, 7.0 Hz, 1H), 3.55 (dd, J = 10.5, 1.0 Hz, 1H), 3.55 (dd, J = 10.0, 7.0 Hz, 1H), 3.55 (dd, J = 10.5, 1.0 Hz, 1H), 3.55 (dd, J = 10.0, 7.0 Hz, 1H), 3.55 (dd, J = 10.5, 1.0 Hz), 3.55 (dd,

5.0 Hz, 1H), 2.93-2.87 (m, 1H), 2.46 (s, 3H), 2.20-2.15 (m, 1H); ¹³**C** NMR (126 MHz, CDCl₃) δ 144.2, 144.0, 133.9, 133.9, 130.4 (q, $J_{C-F} = 32.4$ Hz), 130.0, 127.6, 126.7, 125.4 (q, $J_{C-F} = 3.9$ Hz), 124.0 (q, $J_{C-F} = 272.5$ Hz), 118.7, 81.7, 57.8, 53.9, 51.1, 21.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -62. (s). HR-MS (+ p APCl) m/z: [M+H]⁺ Calcd for C₂₀H₂₁F₃NO₃S⁺: 412.1189; *found*: 412.1191.

3-(4-chlorophenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4h)

According to **GP6** from **3c** (75.2 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 48 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (68.4 mg, 90%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4h-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.36-7.31 (m, 2H), 7.29-7.27 (m, 4H), 5.55 (ddd, *J* = 17.6, 10.8, 6.8 Hz, 1H), 5.14 (dt, *J* = 10.8, 1.2 Hz, 1H), 4.98 (dt, *J* = 17.6, 1.2 Hz, 1H), 3.71 (dd, *J* = 9.2, 7.6 Hz, 1H), 3.64-3.56 (m, 2H), 3.42 (dd, *J* = 10.8, 9.6 Hz, 1H), 3.07-2.99 (m, 1H), 2.44 (s, 3H), 2.13-2.07 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.8, 139.3, 134.2, 133.7, 130.8, 129.8, 128.7, 127.6, 126.8, 120.4, 80.9, 61.9, 52.9, 50.3, 21.6. **HR-MS** (- p ESI) *m/z*: [M-H]⁻ Calcd for C₁₉H₁₉CINO₃S⁻: 376.0780; *found*: 376.0779.

4h-2, **minior**: white solid, **m.p.** = 85 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.77-7.73 (m, 2H), 7.37-7.33 (m, 2H), 7.27-7.23 (m, 2H), 7.23-7.18 (m, 2H), 5.07 (ddd, *J* = 17.0, 10.0, 8.0 Hz, 1H), 4.94- 4.88 (m, 2H), 3.89 (d, *J* = 10.5 Hz, 1H), 3.70 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.51 (dd, *J* = 10.5, 1.0 Hz, 1H), 3.33 (dd, *J* = 9.5, 5.0 Hz, 1H), 2.88-2.82 (m, 1H), 2.44 (s, 3H), 2.26-2.19 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.9, 138.8, 134.2, 134.1, 134.0, 129.9, 128.6, 127.7, 127.6, 118.4, 81.5, 57.7, 53.6, 51.2, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₁CINO₃S⁺: 378.0925; *found*: 378.0927.

3-(2-chlorophenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4i)

4i

According to **GP6** from **3c** (75.2 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (54.7 mg, 72%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4i-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.74 (m, 2H), 7.38-7.32 (m, 3H), 7.28-7.19 (m, 3H), 5.55 (ddd, *J* = 17.6, 10.8, 6.8 Hz, 1H), 5.17 (ddd, *J* = 10.8, 2.4, 1.2 Hz, 1H), 5.01 (ddd, *J* = 17.6, 2.4, 1.2 Hz, 1H), 3.74 (dd, *J* = 9.6, 8.0 Hz, 1H)), 3.65-3.56 (m, 2H), 3.43 (dd, *J* = 11.2, 9.6 Hz, 1H), 3.11-3.01 (m, 1H), 2.45 (s, 3H), 2.00-1.91 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.8, 143.0, 134.7, 134.2, 130.6, 129.9, 128.1, 127.7, 125.8, 123.4, 120.7, 80.9, 62.0, 52.8, 50.2, 21.7. **HR-MS** (- p ESI) *m/z*: [M-H]⁻ Calcd for C₁₉H₁₉CINO₃S⁻: 376.0780; *found*: 376.077.

3-(3-chlorophenyl)-1-tosyl-4-vinylpyrrolidin-3-ol (4j)

According to **GP6** from **3c** (75.2 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (67.3 mg, 89%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4j-1**, **major**: white solid, **m.p.** = 116 °C.¹**H NMR** (400 MHz, CDCI₃) δ 7.80-7.75 (m, 2H), 7.58-7.53 (m, 1H), 7.37-7.32 (m, 3H), 7.25-7.21 (m, 2H), 5.68-5.58 (m, 1H), 5.22-5.18 (m, 1H), 5.11 (dt, *J* = 17.2, 1.2 Hz, 1H), 4.03-3.98 (m, 1H), 3.76- 3.67 (m, 3H), 3.44-3.36 (m, 1H), 2.45 (s, 3H), 2.44 (brs, 1H); ¹³**C NMR** (101 MHz, CDCI₃) δ 143.7, 137.4, 134.3, 131.8, 131.7, 131.6, 129.8, 129.5, 128.5, 127.7, 127.2, 120.3, 80.8, 59.0, 50.4, 49.2, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₁CINO₃S⁺: 378.0925; *found*: 378.0925.

4j-2, **minior**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.37-7.33 (m, 1H), 7.33-7.29 (m, 2H), 7.25-7.15 (m, 3H), 5.24 (ddd, J = 17.2, 10.4, 8.0 Hz, 1H), 5.03 (dt, J = 17.2, 1.2 Hz, 1H), 4.82 (ddd, J = 10.4, 1.6, 0.8 Hz, 1H), 4.08 (dd, J = 10.8, 1.6 Hz, 1H), 3.78-3.75 (m, 1H), 3.74 (dd, J = 3.6, 2.4 Hz, 1H), 3.72-3.66 (m, 1H), 3.54 (dd, J = 9.2, 0.8 Hz, 1H), 2.76-2.73 (m, 1H), 2.41 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.5, 136.8, 135.0, 134.4, 132.7, 131.5, 129.7, 129.6, 128.3, 127.7, 127.2, 117.3, 83.0, 56.1, 51.3, 51.0, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₀CINNaO₃S⁺: 400.0745; *found*: 400.0746.

3-(naphthalen-2-yl)-1-tosyl-4-vinylpyrrolidin-3-ol (4k)

According to **GP6** from **3b** (78.3 mg, 200 μmol) with 4-CzIPN (3.2 mg, 4.0 μmol, 2 mol%) and **HEH-1** (63.6 mg, 250 μmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (3:1 *n*-pentane/EtOAc) provided the title compound as (65.8 mg, 83%). **R**_f (4:1 *n*-pentane/ EtOAc). **4k-1**, **major**: white solid, **m.p.** = 132 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, J = 2.0 Hz 1H), 7.83-7.77 (m, 5H), 7.51-7.46 (m, 2H), 7.39-7.33 (m, 3H), 5.59 (ddd, J = 17.5, 10.5, 6.5 Hz, 1H), 5.13 (dt, J = 10.5, 1.5 Hz, 1H), 5.00 (dt, J = 17.5, 1.5 Hz, 1H), 3.81- 3.76 (m, 2H), 3.67-3.64 (m, 1H), 3.49 (dd, J = 11.0, 9.5 Hz, 1H), 3.25-3.17 (m, 1H), 2.46 (s, 3H), 2.14-2.10 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.7, 138.0, 134.2, 133.0, 132.7, 131.0, 129.8, 128.4, 128.2, 127.6, 127.6, 126.5, 126.4, 124.6, 123.0, 120.3, 81.4, 62.0, 52.6, 50.3, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₃H₂₃NNaO₃S⁺: 416.1291; *found*: 416.1293.

3-(thiophen-2-yl)-1-tosyl-4-vinylpyrrolidin-3-ol (4l)

According to **GP6** from **3c** (69.5 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 24 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (45.6 mg, 65%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4I-1**, **major**: yellow solid, **m.p.** = 122 °C.¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.74 (m, 2H), 7.36-7.31 (m, 2H), 7.22 (dd, *J* = 4.8, 1.2 Hz, 1H), 6.95 (dd, *J* = 5.2, 3.6 Hz, 1H), 6.92 (dd, *J* = 3.6, 1.2 Hz, 1H), 5.69 (ddd, *J* = 17.2, 10.8, 7.2 Hz, 1H), 5.22 (dt, *J* = 10.4, 1.2 Hz, 1H), 5.09 (dt, *J* = 17.6, 1.2 Hz, 1H), 3.74-3.65 (m, 3H), 3.42 (dd, *J* = 10.8, 9.6 Hz, 1H), 3.08-2.99 (m, 1H), 2.44 (s, 3H), 2.13 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.5, 143.7, 134.3, 130.9, 129.8, 127.6, 127.2, 125.2, 123.8, 120.8, 80.0, 62.2, 53.6, 50.3, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₉NNaO₃S₂⁺: 372.0699; *found*: 372.0701. **4I-2**, **minior**: brown solid, **m.p.** = 107 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.74 (m, 2H), 7.36-7.32 (m, 2H), 7.23 (dd, *J* = 5.2, 1.2 Hz, 1H), 6.92 (dd, *J* = 4.8, 3.6 Hz, 1H), 6.84 (dd, *J* = 3.6, 1.2 Hz, 1H), 5.32-
5.22 (m, 1H), 5.02- 4.94 (m, 2H), 3.88 (d, J = 10.8 Hz, 1H), 3.70 (dd, J = 9.6, 6.8 Hz, 1H), 3.53 (dd, J = 10.4, 0.8 Hz, 1H), 3.43 (dd, J = 9.6, 4.4 Hz, 1H), 2.88-2.81 (m, 1H), 2.44 (s, 3H), 2.29 (brs, 1H); ¹³**C NMR** (101 MHz, CDCI₃) δ 144.4, 143.8, 134.3, 134.2, 129.8, 127.6, 126.9, 125.6, 124.4, 118.3, 80.9, 58.7, 54.3, 51.2, 21.6. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₉NNaO₃S₂⁺: 372.0699; *found*: 372.0704.

1-(4-methoxyphenyl)-3-phenyl-4-vinylpyrrolidin-3-ol (4m)

According to **GP6** from **3c** (58.7 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 72 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (37.5 mg, 63%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4m-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.58- 7.53 (m, 2H), 7.43-7.37 (m, 2H), 7.34-7.28 (m, 1H), 6.90-6.84 (m, 2H), 6.59-6.50 (m, 2H), 5.84 (ddd, *J* = 17.2, 10.8, 7.2 Hz, 1H), 5.23 (dt, *J* = 10.4, 1.2 Hz, 1H), 5.16 (dt, *J* = 17.6, 1.6 Hz, 1H), 3.77 (s, 3H), 3.76-3.71 (m, 1H), 3.66-3.54 (m, 3H), 3.43-3.33 (m, 1H), 2.22 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 151.4, 142.5, 142.2, 133.0, 128.5, 127.5, 125.5, 119.4, 115.3, 112.5, 81.5, 63.7, 56.1, 52.8, 51.3. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₂NO₂⁺: 296.1645; *found*: 296.1652.

4m-2, **minior**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.26 (m, 5H), 6.94- 6.88 (m, 2H), 6.67-6.56 (m, 2H), 5.35-5.22 (m, 1H), 5.10-5.02 (m, 1H), 4.99-4.94 (m, 1H), 3.97-3.91 (m, 1H), 3.79 (s, 3H), 3.77-3.70 (m, 1H), 3.67-3.63 (m, 1H), 3.29-3.18 (m, 2H), 2.50-2.34 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 151.6, 141.8, 141.8, 135.8, 128.4, 127.8, 126.2, 117.5, 115.3, 112.6, 81.8, 60.2, 56.1, 54.4, 52.3. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₂NO₂⁺: 296.1645; *found*: 296.1648.

1-benzyl-3-phenyl-4-vinylpyrrolidin-3-ol (4n)

According to **GP6** from **3c** (55.5 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 48 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (22.8 mg, 41%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4n-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.48 (m, 2H), 7.39-7.30 (m, 6H), 7.29-7.21 (m, 2H), 5.85 (ddd, *J* = 17.6, 10.4, 7.2 Hz, 1H), 5.11 (ddd, *J* = 10.4, 1.6, 1.2 Hz, 1H), 4.96 (ddd, *J* = 17.6, 1.6, 1.2 Hz, 1H), 3.85-3.75 (m, 2H), 3.20-3.12 (m, 1H), 3.10-3.04 (m, 1H), 2.99-2.92 (m, 3H), 2.67 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.5, 138.8, 134.7, 128.8, 128.4, 128.2, 127.2, 127.1, 125.3, 117.9, 81.6, 68.7, 60.2, 56.9, 54.1. **HR-MS** (+ p ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₂NO⁺: 280.1696; *found*: 280.1703.

3-hydroxy-3-phenyl-4-vinylcyclopentane-1,1-dicarboxylate (40)

According to **GP6** from **3c** (60.4 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 72 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (37.4 mg, 61%). \mathbf{R}_{f} (3:1 *n*-pentane/EtOAc) = 0.4. **4o-1**, **major**: yellow solid, **m.p.** = 127 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50-7.46 (m, 2H), 7.38-7.32 (m,

2H), 7.28-7.22 (m, 1H), 5.67 (ddd, J = 17.2, 10.8, 6.4 Hz, 1H), 5.13 (dt, J = 10.8, 1.6 Hz, 1H), 5.07 (dt, J = 17.6, 1.6 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.16-3.08 (m, 1H), 2.82-2.57 (m, 4H), 2.28 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.4, 173.2, 143.5, 134.2, 128.3, 127.2, 125.3, 118.6, 83.3, 57.6, 53.9, 53.1, 53.1, 50.2, 36.9. **HR-MS** (+ p ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₀NaO₅⁺: 327.1203; *found*: 327.1207.

40-2, **minior**: yellow solid, **m.p.** = 110 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.69-7.64 (m, 2H), 7.62-7.57 (m, 1H), 5.69-5.61 (m, 1H), 5.21 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.13 (ddd, *J* = 10.5, 2.0, 1.0 Hz, 1H), 4.14 (s, 3H), 4.12 (s, 3H), 3.37-3.28 (m, 3H), 3.16-3.11 (m, 1H), 2.80-2.77 (m, 1H), 2.77-2.72 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.8, 172.7, 142.6, 138.0, 128.2, 127.6, 126.4, 116.0, 85.1, 58.4, 55.5, 53.3, 53.1, 45.0, 38.0. **HR-MS** (+ p APCl) *m/z*: [M-OH]⁺ Calcd for C₁₇H₁₉O₄: 287.1278; *found*: 287.1284.

3-phenyl-4-vinyltetrahydrofuran-3-ol (4p)

According to **GP6** from **3c** (37.6 mg, 200 µmol) with 4-CzIPN (3.2 mg, 4.0 µmol, 2 mol%) and **HEH-1** (63.6 mg, 250 µmol, 1.25 equiv.) in DMSO (6 mL) within 48 h. Flash chromatography on silica gel (2:1 *n*-pentane/EtOAc) provided the title compound (28.7 mg, 75%). **R**_f (3:1 *n*-pentane/EtOAc) = 0.4. **4p-1**, **major**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.52-7.47 (m, 2H), 7.40-7.34 (m, 2H), 7.31-7.26 (m, 1H), 5.79 (ddd, *J* = 17.6, 10.4, 7.2 Hz, 1H), 5.21 (dt, *J* = 10.4, 1.6 Hz, 1H), 5.09 (dt, *J* = 17.6, 1.2 Hz, 1H), 4.22 (t, *J* = 8.4 Hz, 1H), 4.10-4.01 (m, 3H), 3.32-3.24 (m, 1H), 2.33 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.4, 131.8, 128.5, 127.5, 125.4, 119.8, 82.4, 81.5, 71.4, 54.5. **HR-MS** (+ p APCl) *m/z*: [M+H]+ Calcd for C₁₂H₁₅O₂+: 191.1067; *found*: 191.1064.

4p-2, **minior**: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43-7.39 (m, 2H), 7.39-7.33 (m, 2H), 7.32-7.27 (m, 1H), 5.25 (ddd, J = 17.2, 10.4, 8.8 Hz, 1H), 5.02 (ddd, J = 16.8, 2.0, 1.2 Hz, 1H), 4.92 (ddd, J = 10.0, 1.6, 0.8 Hz, 1H), 4.38-4.30 (m, 2H), 4.04 (dd, J = 8.8, 0.4 Hz, 1H), 3.83 (dd, J = 8.8, 6.0 Hz, 1H), 3.16-3.08 (m, 1H), 2.27 (brs, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 140.6, 135.7, 128.4, 127.9, 126.5, 117.3, 83.4, 77.5, 72.4, 55.7. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₅O₂⁺: 191.1067; *found*: 191.1064.

Unsuccessful results

According to **GP6** from **3a** (1.07 g, 3 mmol) with 4-CzIPN (48 mg, 0.6 mmol, 2 mol%) and **HEH-1** (954 mg, 3. mmol, 1.25 equiv.) in DMSO (60 mL) within 24 h. Flash chromatography on silica gel (3:1 n-pentane/EtOAc) provided the title compound (752.1 mg, 73%, dr = 3:1).

Transformations

4a (34.3 mg, 0.1 mmol, 1 eq.) was dissolved in CH₂Cl₂ (1 ml) and 1-Octene (94 µl, 0.6 mmol, 6 eq.) and Hoveyda-Grubbs catalyst 2nd generation (6.2 mg, 10 µmol, 10 mol %) were added in sequence at room temperature. After reaction mixture was stirred for 24 h under 40 °C, saturated NaHCO₃ (aq) was added and was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ and transferred into a separation funnel. The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The crude product was purified by flash column silica gel chromatography (5:1 *n*-pentane/EtOAc) provided **5a** as colorless oil (29.0 mg, 70%). **R**_f (5:1 *n*-pentane/ EtOAc) = 0.4.

4-((E)-oct-1-en-1-yl)-3-phenyl-1-tosylpyrrolidin-3-ol

¹**H NMR** (500 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.37-7.30 (m, 6H), 5.40 (dtd, J = 15.5, 6.5, 1.5 Hz, 1H), 5.13 (ddt, J = 15.5, 6.5, 1.5 Hz, 1H), 3.72 (dd, J = 9.5, 7.5 Hz, 1H), 3.65 (dd, J = 11.5, 1.5 Hz, 1H), 3.60-3.56 (m, 1H), 3.38 (dd, J = 11.0, 9.5 Hz, 1H), 3.11-3.04 (m, 1H), 2.45 (s, 3H), 1.96-1.84 (m, 2H), 1.84-1.79 (m, 1H), 1.63-1.58 (m, 1H), 1.30-1.09 (m, 8H), 0.85 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.6, 141.0, 137.2, 134.3, 129.8, 128.5, 127.7, 125.3, 121.9, 81.2, 61.9, 51.8, 50.7, 32.8, 31.6, 29.1, 28.7, 22.6, 21.7, 14.1. **HR-MS** (+ p APCl) *m/z*: [M+H]⁺ Calcd for C₂₅H₃₄NO₃S⁺: 428.2254; *found*: 428.2251.

4a (34.3 mg, 0.1 mmol) was dissolved in CH_2Cl_2 (2 mL) and cooled to -78 °C. Ozone was bubbled then directly in the solution. After the reaction showed a blue color, the vial was degassed with N₂ until disappearance of the blue color occurred. After reductive work up with Me₂S (1 mL), the mixture was allowed to warm to room

temperature and the volatiles removed under reduced pressure. The crude product was purified by flash column silica gel chromatography (2:1 *n*-pentane/EtOAc) provided **5b** as colorless oil (25.9 mg, 75%). \mathbf{R}_{f} (3:1 *n*-pentane/EtOAc) = 0.3.

4-hydroxy-4-phenyl-1-tosylpyrrolidine-3-carbaldehyde

¹**H NMR** (500 MHz, C₆D₆) δ 9.10 (d, *J* = 0.5 Hz, 1H), 7.76-7.71 (m, 2H), 7.13-7.05 (m, 4H), 7.04-7.00 (m, 1H), 6.89-6.85 (m, 2H), 3.91 (t, *J* = 9.5 Hz, 1H), 3.53 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.49 (d, *J* = 11.5 Hz, 1H), 3.41 (d, *J* = 11.0 Hz, 1H), 2.85 (br, 1H), 2.70-2.65 (m, 1H), 1.92 (brs, 3H); ¹³**C NMR** (126 MHz, C₆D₆) δ 197.8, 143.6, 140.6, 134.6, 129.9, 128.8, 128.3, 128.1, 125.5, 81.4, 63.1, 60.2, 46.7, 21.1. **HR-MS** (+ p APCI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₉NNaO₄S⁺: 368.0927; *found*: 368.0932.

4a (34.3 mg, 0.1 mmol) was dissolved in CH₂Cl₂ (2 mL) and cooled to -78 °C. Ozone was bubbled then directly in the solution. After the reaction showed a blue color, the vial was degassed with N₂ until disappearance of the blue color occurred. To the reaction mixture was further added methanol (2 mL) and NaBH₄ (22.7 mg, 0.6 mmol, 6 equiv.) at 0 °C, warmed to room temperature, stirred for 2 h and quenched by 1M HCl. The aqueous phase was extracted with Et₂O (3 x 5 mL) and the combined organic phases were dried over Na₂SO₄ and concentrated under reducer pressure. The crude product was purified by flash column silica gel chromatography (1:1 *n*-pentane/EtOAc) provided **5c** as white solid (22.7 mg, 65%). **R**_f (1:1 *n*-pentane/ EtOAc) = 0.3. **m.p.** = 93 °C.

4-(hydroxymethyl)-3-phenyl-1-tosylpyrrolidin-3-ol

¹**H NMR** (500 MHz, C₆D₆) δ 7.89-7.85 (m, 2H), 7.23-7.18 (m, 2H), 7.12-7.07 (m, 2H), 7.05-7.00 (m, 1H), 6.92-6.87 (m, 2H), 4.34-4.24 (m, 1H), 3.87-3.80 (m, 1H), 3.76-3.70 (m, 1H), 3.64 (dd, J = 11.0, 1.5 Hz, 1H), 3.54 (d, J = 11.0 Hz, 1H), 3.35-3.20 (m, 2H), 2.60-2.33 (m, 1H), 2.03-1.95 (m, 1H), 1.90 (s, 3H); ¹³**C NMR** (126 MHz, C₆D₆) δ 143.2, 141.7, 134.9, 129.8, 128.5, 128.1, 127.5, 125.7, 82.5, 63.4, 58.7, 49.7, 48.8, 21.2. **HR-MS** (- p ESI) *m/z*: [M-H]⁻ Calcd for C₁₈H₂₀NO₄S⁻: 346.1119; *found*: 346.1117.

To a solution of **5c** (17.4 mg, 0.05 mmol) in DCM (2 mL) were added 2,2- dimethoxypropane (32 μ L, 0.25 mmol) and PPTS (1.2 mg, 10 % mmol) at 0 °C, and the mixture was stirred at room temperature for 2.5 h. To the mixture was added saturated NH₄Cl solution at 0 °C, and the aqueous layer was extracted with EtOAc. The organic layer was washed with brine (10 mL). The combined organic layer was dried over MgSO₄ and concentrated. The crude product was purified by flash column silica gel chromatography (5:1 *n*-pentane/EtOAc) provided **5d** as colorless oil(17.0 mg, 88%). **R**_f (10:1 *n*-pentane/EtOAc) = 0.3.

7a-phenyl-6-tosylhexahydro-[1,3]dioxino[4,5-c]pyrrole

¹**H NMR** (500 MHz, C₆D₆) δ 7.91-7.87 (m, 2H), 7.06-7.00 (m, 3H), 6.95-6.90 (m, 2H), 6.87-6.83 (m, 2H), 3.87 (dd, *J* = 10.5, 9.0 Hz, 1H), 3.81 (d, *J* = 11.5 Hz, 1H), 3.63-3.54 (m, 2H), 3.18 (d, *J* = 11.5 Hz, 1H), 3.17-3.12 (m, 1H), 2.16-2.08 (m, 1H), 1.91 (s, 3H), 0.92 (s, 3H), 0.61 (s, 3H).¹³**C NMR** (126 MHz, C₆D₆)

δ 142.6, 141.4, 135.9, 129.5, 128.7, 128.3, 128.3, 125.6, 98.9, 80.0, 64.7, 56.0, 49.1, 36.5, 30.2, 22.9, 21.0. **HR-MS** (+ p ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₅NNaO₄S⁺: 410.1397; *found*: 410.1399.

Mechanistic studies

On/Off studies

Following the general procedure **GP6**. To an oven-dried Schlenk-tube equipped with magnetic stirring was charged with **3a** (68.3 mg, 0.2 mmol, 1.0 equiv.), Hantzsch-ester **HEH-1** (63mg, 0.25 mmol, 1.25 equiv.), 4-CzIPN (3.2 mg, 2 mol %) and 1,3,5-trimethoxybenzene (11.2 mg, 0.06 mmol, 33 mol %). The Schlenk tube was put on vacuum and backfilled with argon three times. DMSO- d_6 (6 mL) was added by syringe under a flow of argon. After stirring for a minute, the resulting pale-yellow solution (0.6 ml) was transferred to NMR tube by syringe under a flow of argon. The NMR tube was sealed by a screw cap and the resulting mixture was placed approximately 2.5 cm away from one 34 W blue LEDs and irradiated and stirred at room temperature. For each indicated time the yield of product (**4a**) was monitored by ¹H NMR.

Figure S2. Monitor the formation of 4a with light on/off.

Figure S3. Monitor the formation of 4a under continuous irradiation

The acid and base doping experiments

Following the general procedure **GP5**. To an oven-dried Schlenk-tube equipped with magnetic stirring was charged with **2a** (65.4 mg, 0.2 mmol, 1.0 equiv.), Hantzsch-ester **HEH-1** (63.6 mg, 0.25 mmol, 1.25 equiv.), 4-CzIPN (3.4 mg, 2 mol %), diphenyl phosphate (25.0 mg, 0.10 mmol, 0.5 equiv.) or pyridinium 4-toluenesulfonate (PPTS) (25.1 mg, 0.10 mmol, 0.5 equiv.) or sodium acetate (NaOAc) (8.2 mg, 0.10 mmol, 0.5 equiv.), and 1,3,5-trimethoxybenzene (11.2 mg, 0.06 mmol, 33 mol %). The Schlenk tube was put on vacuum and backfilled with argon three times. DMF- d_7 (4 mL) was added by syringe under a flow of argon. After stirring for a minute, the resulting pale-yellow solution (0.6 mL) was transferred to NMR tube by syringe under a flow of argon. The NMR tube was sealed by a screw cap and the resulting mixture was placed approximately 2.5 cm away from one 34 W blue LEDs and irradiated and stirred at room temperature. For each indicated time the yield of product (**2a**) was monitored by ¹H NMR.

Figure S4. Monitor the formation of 2a with HE or HE/diphenyl phosphate or HE/NaOAc

Figure S5. Monitor the formation of 2a with HE or HE/PPTS or HE/NaOAc

Quantum yield measurements

Determination of the light intensity of the blue LEDs

The photon flux of blue LEDs was determined by standard ferrioxalate actinometry.^[11]

photo flux (Einstein
$$\cdot$$
 s-1) = 1.03 × 10⁻⁶

Measurement of quantum yield:

To an oven-dried Schlenk-tube equipped with magnetic stirring was charged with **3** (0.2 mmol), Hantzsch-ester **HEH-1** (63mg, 0.25 mmol, 1.25 equiv.) and 4-CzIPN (3.2 mg, 2 mol %). The Schlenk tube was put on vacuum and backfilled with argon three times. DMSO (6 mL) was added and The Schlenk tube was sealed by a screw cap and the resulting mixture was placed approximately 2.5 cm away from one 34 W blue LEDs and irradiated and stirred for 30 min at room temperature. Then poured into water (40 mL), The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with brine (3 x 40 mL) and then dried over Na₂SO₄. The solvent was removed under reduced pressure and residue was purified with column chromatography on silica gel afford the corresponding product after drying in vacuo. The product (**4a**) was obtained with 17.8 mg (52.0 µmol). The quantum yield calculation is then as following:

$$\Phi = \frac{\text{moles of produt}}{\text{moles of absorbed photons}} = \frac{\text{moles of produt}}{\text{flux} \cdot t \cdot f}$$

Where flux is the photon flux determined by ferrioxalate actinometry ($1.03 \times 10-6$ Einstein/s), t is the time (1800 s), and f is the fraction of light absorbed by 4-CzIPN at 450 nm. A 1×10^{-3} M solution of [**PC1**] in DMSO was prepared, and the absorbance of the solutionat 450 nm was 2.080. The fraction of light absorbed at 450 nm was calculated: $f = 1.0000 - 10^{-4} = 1.0000 - 10^{-2.080} = 0.99$.

$$\Phi = \frac{\text{moles of produt}}{\text{moles of absorbed photons}} = \frac{\text{moles of produt}}{\text{flux} \cdot \text{t} \cdot \text{f}} = \frac{52.0 \times 10^{-5}}{1.03 \times 10^{-6} \cdot 1800 \cdot 0.99} = 0.28$$

X-Ray crystal structure of 2I

The compund was crystallized from DCM/pentane by solvent layering The data for Breit_RZ188FA_afinalcif.cif were collected from a shock-cooled single crystal at 100(2) K on a Bruker D8 VENTURE dual wavelength Mo/Cu three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker PHOTON III detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used Cu K_{α} radiation, $\lambda = 1.54184$ Å. All data were integrated with SAINT and a multi-scan absorption correction using SADABS-2016/2 was applied. The structure were solved by direct methods using SHELXT 2014/5 (Sheldrick, 2014) and refined by fullmatrix least-squares methods against F^2 by SHELXL-2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{Iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1957120 contain the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

CCDC number	1957120
Empirical formula	$C_{24}H_{23}NO_3S$
Formula weight	405.49
Temperature [K]	100(2)
Crystal system	monoclinic
Space group (number)	P2 ₁ /c (14)
<i>a</i> [Å]	14.9992(11)
b [Å]	6.4237(5)
c [Å]	21.1674(18)
α [Å]	90
β [Å]	95.605(4)
γ [Å]	90
Volume [Å ³]	2029.7(3)
Ζ	4

Table S3. Crystal data and structure refinement for Breit_RZ188FA_a-finalcif.cif

$ ho_{ m calc}$ [g/cm ³]	1.327
μ [mm ⁻¹]	1.621
<i>F</i> (000)	856
Crystal size [mm ³]	0.150×0.050×0.030
Crystal colour	colourless
Crystal shape	needle
Radiation	Cu <i>K</i> _α (λ=1.54184)
2⊖ range [°]	6.92 to 144.98
Index ranges	-18 ≤ h ≤ 18
	-7 ≤ k ≤ 7
	-25 ≤ l ≤ 26
Reflections collected	117377
Independent reflections	4007
	$R_{\rm int} = 0.0465$
	<i>R</i> _{sigma} = 0.0104
Completeness to θ = 67.684°	100.00
Data / Restraints /	4007/0/266
Parameters	
Goodness-of-fit on <i>F</i> ²	1.036
Final <i>R</i> indexes	$R_1 = 0.0295$
[<i>l</i> ≥2σ(<i>l</i>)]	w <i>R</i> ₂ = 0.0778
Final <i>R</i> indexes	$R_1 = 0.0326$
[all data]	w <i>R</i> ₂ = 0.0802
Largest peak/hole [eÅ ³]	0.41/-0.42
Extinction coefficient	0.00052(11)

X-Ray crystal structure of 4a-1

Crystals were obtained at room temperature by slow diffusion of pentane into a solution of the compound dissolved in dichloromethane by the aid of layering. The data for Breit_TN_343_a were collected from a shock-cooled single crystal at 100(2) K on a Bruker D8 VENTURE dual wavelength Mo/Cu three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker PHOTON III detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used Mo K_{α} radiation ($\lambda = 0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied.^[20,21] The structure were solved by direct methods using SHELXT and refined by full-matrix least-squares methods against F^2 by SHELXL-2018/3.^[22,23] All non-hydrogen atoms were refined with an isotropic displacement parameters. The hydrogen atoms were refined with an isotropic displacement parameters. The hydrogen atoms were refined to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms.

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre.^[24] CCDC 2167993 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. This report and the CIF file were generated using FinalCif.^[25]

Table S4. Cr	ystal data	and structure	refinement	for Breit	_TN_343_	a
--------------	------------	---------------	------------	-----------	----------	---

CCDC number	2167993
Empirical formula	$C_{19}H_{21}NO_3S$
Formula weight	343.43
Temperature [K]	100(2)
Crystal system	orthorhombic
Space group (number)	<i>Pca</i> 2 ₁ (29)
<i>a</i> [Å]	20.050(4)
b [Å]	16.600(3)
<i>c</i> [Å]	10.280(2)
α [°]	90
β [°]	90
γ [°]	90
Volume [Å ³]	3421.4(11)
Ζ	8
$ ho_{ m calc}$ [gcm ⁻³]	1.333
µ [mm ⁻¹]	0.206
<i>F</i> (000)	1456
Crystal size [mm ³]	0.338×0.301×0.054
Crystal colour	colourless
Crystal shape	plate
Radiation	Mo <i>K</i> α (λ=0.71073 Å)
20 range [°]	3.19 to 61.10 (0.70 Å)
Index ranges	-28 ≤ h ≤ 28
	-23 ≤ k ≤ 23

		-14 ≤ ≤ 14		
Reflections of	228692			
Independent	10470			
		$R_{\rm int} = 0.0627$		
		<i>R</i> _{sigma} = 0.0199		
Completenes	100.0 %			
θ = 25.242°				
Data / Re	estraints /	10470/1/439		
Parameters				
Goodness-of	1.046			
Final <i>R</i> indexes		$R_1 = 0.0342$		
[<i>l</i> ≥2σ(<i>l</i>)]	$wR_2 = 0.0860$			
Final <i>R</i> index	$R_1 = 0.0378$			
[all data]		$wR_2 = 0.0889$		
Largest	peak/hole	0.45/-0.28		
[eÅ ⁻³]				
Flack X para	0.297(11)			

Reference

- [1] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234-238.
- [2] G.-W. Wang, J.-J. Xia, C.-B. Miao, X.-L. Wu, Bull. Chem. Soc. Jpn. 2006, 79, 454-459.
- [3] A. Trowbridge, D. Reich, M. J. Gaunt, Nature 2018, 561, 522-527.
- [4] J. Zheng, N. Tang, H. Xie, B. Breit, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202200105.
- [5] K. Shen, X. Han, X. Lu, Org. Lett. 2013, 15, 1732-1735.
- [6] T. Go, A. Morimatsu, H. Wasada, G. Tanabe, O. Muraoka, Y. Sawada, M. Yoshimatsu, *Beilstein J. Org. Chem.* 2018, 14, 2722-2729.
- [7] C. P. Grugel, B. Breit, Org. Lett. 2019, 21, 9672-9676.
- [8] Claraz, F. Serpier, S. Darses, ACS Catal. 2017, 7, 3410-3413.
- [9] R. Sanza, T. Nguyen, N. Iqbal, S. Argent, W. Lewis, H. Lam, Chem. Sci., 2020, 11, 2401-2406.
- [10] S. S. K. Boominathan, W.-P. Hu, G. C. Senadi, J.-J. Wang, Adv. Synth. Catal. 2013, 355, 3570-3574.
- [11]G. M. Talybov, Russ. J. Org. Chem. 2017, 53, 296-298.
- [12] H. Ishizaki, Miyuki; Satoh, Hiroshi; Hoshino, Osamu; Nishitani, Kiyoshi; Hara, *Heterocycles* 2004, 63, 827–844.
- [13] D. Padín, F. Cambeiro, M. Fañanás-Mastral, J. A. Varela, C. Saá, ACS Catal. 2017, 7, 992-996.
- [14] D. Cassú, T. Parella, M. Solà, A. Pla-Quintana, A. Roglans, Chem. A Eur. J. 2017, 23, 14889-14899.
- [15] C. Blaszykowski, A.-L. Dhimane, L. Fensterbank, M. Malacria, Org. Lett. 2003, 5, 1341-1344.
- [16] D. Qian, J. Zhang, Beilstein J. Org. Chem. 2011, 7, 808-812.
- [17] W. Song, J. C. Lynch, X. Shu, W. Tang, Adv. Synth. Catal. 2016, 358, 2007-2011.
- [18] D. J. Lippincott, R. T. H. Linstadt, M. R. Maser, B. H. Lipshutz, Angew. Chem. Int. Ed. 2017, 56, 847-850.
- [19] J. Zheng, B. Breit, Angew. Chem., Int. Ed. 2019, 58, 3392-3397.
- [20] Bruker, SAINT, V8.40B, Bruker AXS Inc., Madison, Wisconsin, USA.
- [21] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.
- [22]G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- [23] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- [24] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Cryst. 2016, B72, 171-179.
- [25] D. Kratzert, FinalCif, V104, https://dkratzert.de/finalcif.html.

¹H, ¹³C, ¹⁹F NMR spectra

55

20 10 0 _10 _20 _30 _40 _50 _60 _70 _80 _90 _100 _110 _120 _130 _140 _150 _160 _170 _180 _190 _200 _210 _22

?0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 (ppm)

