Cu/Cu₂O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products

Yisen Yang,^{a,b} Zhonghao Tan,^{a,b} Sha Wang,^{a,b} Yanyue Wang,^{a,b} Jingyang Hu,^{a,b} Zhuizhui Su,^{a,b} Yingzhe Zhao,^{a,b} Jing Tai,^a and Jianling Zhang^{*a,b}

b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (P. R. China)

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) E-mail: zhangjl@iccas.ac.cn

Experimental Sections

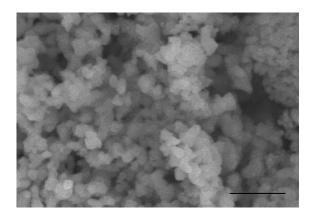
Materials: Potassium sulfate (K_2SO_4 , 99%), potassium phosphate (K_2HPO_4 , 98%), potassium bicarbonate (KHCO₃, 99.5%), copper chloride dihydrate (CuCl₂·2H₂O, \geq 99%), commercial cuprous oxide (Cu₂O), Cu foil, dimethylamine borane (DMAB, 98%), deuterated water (D₂O, 99.9%) and dimethyl sulfoxide (DMSO, 99.0%) were purchased from Beijing InnoChem Science & Technology Co., Ltd. Carbon dioxide (CO₂, 99.999%), Argon (Ar, 99.999%) and deionized (DI) water were supplied by Beijing Analysis Instrument Factory. Methanol (CH₃OH) was provided by Beijing Chemical works. Nafion D-521 dispersion (5% w/w in water and 1-propanol, \geq 0.92 meq g⁻¹ exchange capacity), Nafion N-117 membrane and Toray carbon paper (TGP-H-060) were purchased from Alfa Aesar China Co., Ltd. All reagents were used directly without further treatment.

Synthesis of Cu/Cu₂O nanocrystals: Cu/Cu₂O nanocrystals were synthesized by a wet-chemical method. First, 4 mL of 1 M CuCl₂·2H₂O aqueous solution was added to 10 mL of DI water. Then, 4 mL of 1 M DMAB aqueous solution was added dropwise to above solution. After 3 h reaction at 25 °C and air atmosphere, the product was separated by suction filtration, washed several times by copious deionized water and dried in vacuum at 60 °C overnight.

Characterizations: X-ray diffraction (XRD) was determined by a Rigaku D/max-2500 X-ray diffractometer (Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation at 40 kV and 200 mA. The morphologies were characterized by scanning electron microscopy (SEM, Hitachi S-4800) equipped with energy dispersive X-ray elemental (EDX) mapping, transmission electron microscopy (TEM, JEOL-1011) and high-resolution TEM (HRTEM, JEOL-2100F). Fourier transform infrared (FT-IR) spectroscopy was performed by a Bruker Tensor 27 spectrometer. X-ray photoelectron spectroscopy (XPS) was determined by a Thermo Fisher Scientific ESCALAB 250Xi (Thermo Fisher Scientific, Waltham, MA, USA) using 200 W AI Kα radiation. X-ray absorption fine structure (XAFS) data were collected at 1W2B station at Beijing Synchrotron Radiation Facility (BSRF, Beijing, China).

Electrochemical tests: All electrochemical tests were carried out in H-cell by using a CHI660E electrochemical workstation. Before each electrochemical experiment, electrolyte was saturated with CO₂ for at least 40 min. The hydrophobic carbon paper ($1 \times 0.5 \text{ cm}^{-2}$) coated with catalyst was used as working electrode. Ag/AgCl electrode and Pt net ($1 \times 1 \text{ cm}^{-2}$) were used as reference electrode and counter electrode, respectively. For the preparation of working electrode, 10 mg of catalyst, 40 µL of Nafion D-521 dispersion and 760 µL of CH₃OH were mixed to form the catalyst ink. The ink was then dropcasted onto carbon paper to ensure the loading of 0.75 mg cm⁻². The flow rate of CO₂ was adjusted to be 20 mL min⁻¹ by gas flow meter.

Because K_2SO_4 aqueous solution does not have buffering capacity, the pH value changes dynamically with time during electrolysis. Therefore, Ag/AgCl scale instead of reversible hydrogen electrode scale was used for all potentials in this article.


Product analysis: For gaseous products, 2 mL of gas extracted from gas bag was injected to gas chromatography (GC, Agilent 8890; Agilent Technologies Inc., CA, USA) with a thermal conductivity detector (TCD) detector using high purity Ar as carrier gas. For liquid products, 200 μ L of electrolyte, 200 μ L of D₂O and 100 μ L of 6 mM DMSO solution were mixed and then detected by ¹H nuclear magnetic resonance (¹H NMR, Bruker AVANCE III 400 HD; Bruker, Germany). The Faradaic efficiency (FE) was calculated by the following formulation:

 $\mathsf{FE} = \frac{Moles\ of\ product * n * F}{Q} * 100\%$

(Q: charge (C); n: the number of electrons required to generate the product; F: Faraday constant (96485 C/mol)).

In situ Raman spectroscopy: In situ Raman spectroscopy was carried out by using a Horiba LabRAM HR Evolution Raman microscope (HORIBA Scientific, Paris, France). The laser wavelength was controlled at 785 nm. 0.10 M K₂SO₄ aqueous solution was used as electrolyte. The gas diffusion layer (YLS-30T) coated with catalyst, Ag/AgCl electrode and carbon rod were used as working electrode, reference electrode and counter electrode, respectively. The in situ Raman electrolytic cell was purchased from Gaoss Union (Tianjin) Photoelectric Technology Company (Tianjin, China).

Results and Discussion

Fig. S1 (a) SEM image of Cu/Cu₂O nanocrystals. (b) Size histogram (>100 particles) of Cu/Cu₂O nanocrystals by analysing SEM image (Fig. 1b) statistically. Scale bar: 500 nm in a.

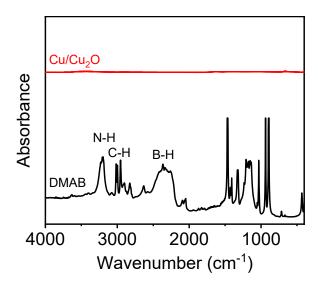


Fig. S2 FT-IR spectra of Cu/Cu_2O nanocrystals and DMAB. The characteristic vibrations of DMAB were not detected in Cu/Cu_2O nanocrystals,¹ indicating its complete removement.

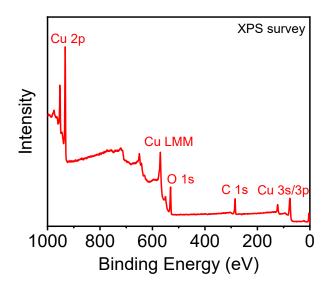
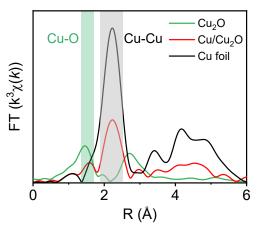



Fig. S3 XPS survey of Cu/Cu_2O nanocrystals.

 $\label{eq:rescaled} \begin{array}{c} R\ (\mbox{\rambda}) \\ \mbox{Fig. S4} The k^3-weighted Fourier-transformed extended X-ray absorption fine structure spectra of Cu/Cu_2O} \\ nanocrystals, Cu foil and commercial Cu_2O. \end{array}$

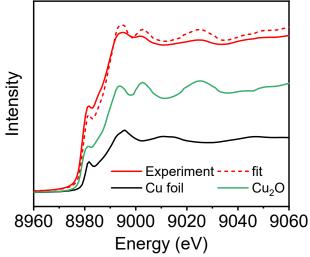


Fig. S5 Cu K-edge X-ray absorption near-edge structure linear combination fitting of Cu/Cu₂O nanocrystals.

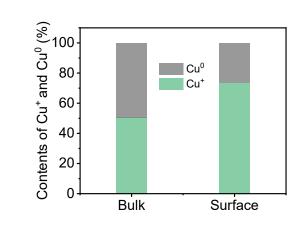


Fig. S6 Contents of Cu^{+} and Cu^{0} in bulk and surface.

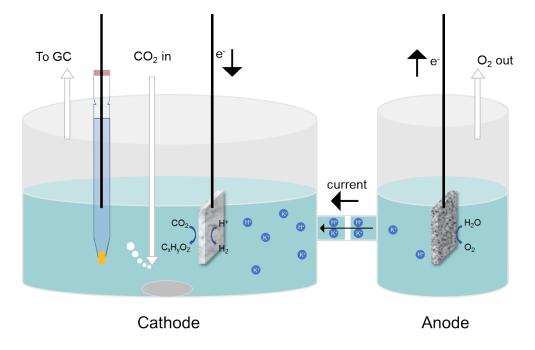


Fig. S7 Illustration of H-cell used in electrocatalytic CO₂ reduction reaction (ECO₂RR).

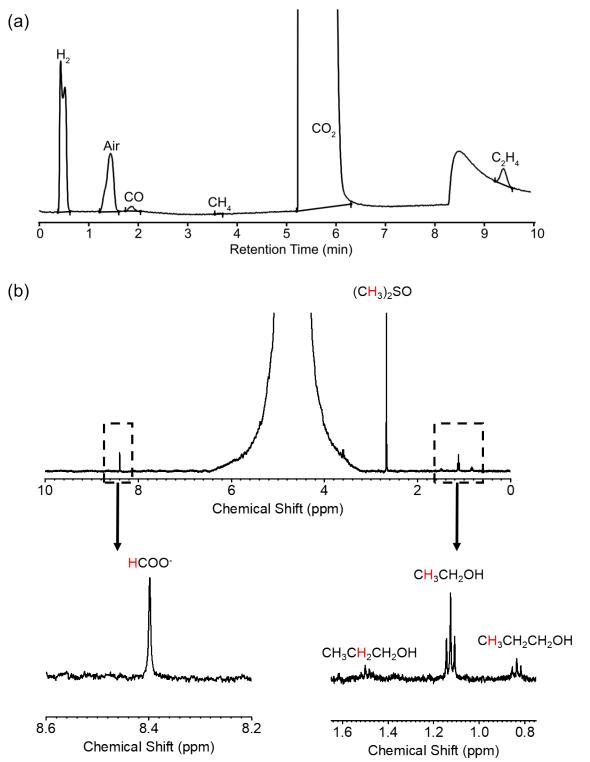


Fig. S8 A typical (a) GC spectrum and (b) ¹H NMR spectrum of the products after electrolysis using Cu/Cu₂O nanocrystals.

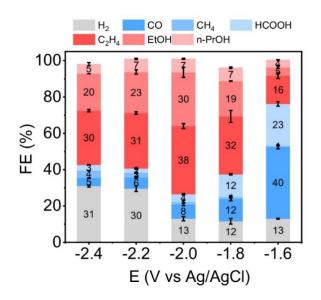


Fig. S9 FE values of all detectable products at potentials ranging from -1.6 to -2.4 V in 0.10 M K_2SO_4 .

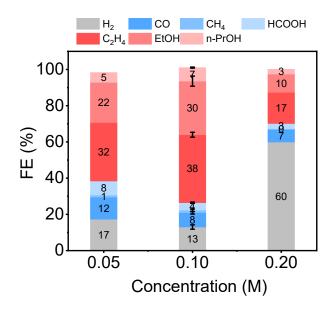


Fig. S10 FE values of all detectable products on Cu/Cu₂O nanocrystals at -2.0 V in 0.05, 0.10 and 0.20 M K₂SO₄.

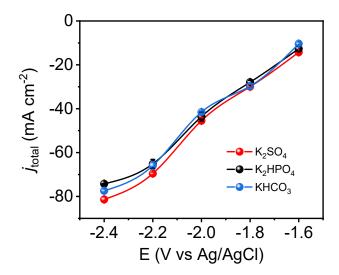


Fig. S11 The total current densities at potentials ranging from -1.6 V to -2.4 V in different electrolytes.

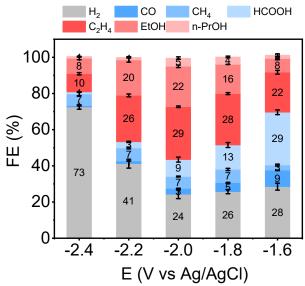
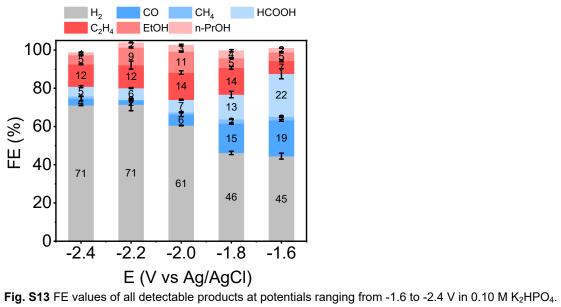
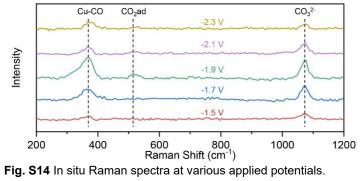




Fig. S12 FE values of all detectable products at potentials ranging from -1.6 to -2.4 V in 0.20 M KHCO3.

Catalysts	FE (%)	Partial current density	Electrolyte	Reference	Year
,		(mA cm ⁻²)	,		
Cu/Cu ₂ O nanocrystals	75.0	34.4	0.1 M K ₂ SO ₄	This work	
Cu/Cu ₂ O-CV	73.4	~ 4	0.1 M KHCO ₃	ACS Catal.2	2022
Cu/Cu ₂ O aerogel networks	80.8	66.4	0.1 M KCI	Adv. Funct. Mater. ³	2021
Cu/Cu ₂ O@N- doped graphene	56.0	19.0	0.2 M KI	J. CO ₂ Util. ⁴	2021
Cu@Cu ₂ O	50	~ 9	0.1 M KHCO ₃	J. Colloid Interface Sci. ⁵	2019
IL@Cu	77.2	26.4	0.1 M KHCO ₃	Angew. Chem. Int. Ed. ⁶	2022
Dense vertical Iamellate Cu	80.5	~ 45	0.5 M KCI	Nat. Commun. ⁷	2022
Cu-PTFE- nanoneedles	86	53.78	0.1 M KHCO ₃	J. Am. Chem. Soc. ⁸	2022
e-CuOHFCI nanosheet	54	~ 10	0.1 M KHCO ₃	Angew. Chem. Int. Ed. ⁹	2021
Cu-Kl	72.6	29	0.1 M KHCO ₃	Nat. Commun. ¹⁰	2020
Oxygen-bearing Cu micropore nanowires	45	44.7	0.5 M KHCO3	J. Am. Chem. Soc. ¹¹	2020
Nanodefective Cu nanosheet	83.2	48.9	0.1 M K ₂ SO ₄	J. Am. Chem. Soc. ¹²	2020
lodine-modified Cu	80	31.2	0.1 M KHCO ₃	Angew. Chem. Int. Ed. ¹³	2019
Cu₃N Nanocubes	60	~ 18	0.1 M KHCO ₃	Nano Lett. ¹⁴	2019
Cu-on-Cu₃N	64	25	0.1 M KHCO ₃	Nat. Commun. ¹⁵	2018
100-cycle Cu	60.5	41	0.25 M KHCO ₃	Nat. Catal. ¹⁶	2018

Table S1. The comparison of multi-carbon products in ECO₂RR on various Cu-based catalysts in H-cell.

Table S2. The electrical conductivities of 0.10 M K ₂ SO ₄ , 0.20 M KHCO ₃ and	0.10 M K ₂ HPO ₄ .
---	--

Electrolyte type and concentration	Electrical conductivity (mS cm ⁻¹)		
0.10 M K ₂ SO ₄	18.93		
0.20 M KHCO ₃	17.46		
0.10 M K ₂ HPO ₄	16.79		

Electrolyte type and concentration	Pristine	CO ₂ -saturated	100 C-electrolysis
0.10 M K ₂ SO ₄	6.0	4.7	6.3
0.20 M KHCO ₃	8.6	7.1	7.2
0.10 M K ₂ HPO ₄	9.0	6.5	6.7

Table S3. Bulk pH values of electrolytes (catholyte): pristine, CO₂-saturated and 100 C-electrolysed at -2.0 V.

Supplementary References

- 1 U. Sanyal and B. R. Jagirdar, Inorg. Chem., 2012, 51, 13023-13033.
- 2 Y. Yang, A. He, H. Li, Q. Zou, Z. Liu, C. Tao and J. Du, ACS Catal., 2022, 12, 12942-12953.
- 3 C. Kim, K. M. Cho, K. Park, J. Y. Kim, G.-T. Yun, F. M. Toma, I. Gereige and H.-T. Jung, *Adv. Funct. Mater.*, 2021, **31**, 2102142.
- 4 W. Y. Zhi, Y. T. Liu, S. L. Shan, C. J. Jiang, H. Wang and J. X. Lu, *J. CO*₂ *Util.*, 2021, **50**, 101594.
- 5 L. Shang, X. Lv, H. Shen, Z. Shao and G. Zheng, J. Colloid Interface Sci., 2019, 552, 426-431.
- 6 Y. Sha, J. Zhang, X. Cheng, M. Xu, Z. Su, Y. Wang, J. Hu, B. Han and L. Zheng, *Angew. Chem. Int. Ed.*, 2022, **61**, e202200039.
- 7 W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou and Y. Gong, *Nat. Commun.*, 2022, **13**, 1877.
- 8 B. Yang, K. Liu, H. Li, C. Liu, J. Fu, H. Li, J. E. Huang, P. Ou, T. Alkayyali, C. Cai, Y. Duan, H. Liu, P. An, N. Zhang, W. Li, X. Qiu, C. Jia, J. Hu, L. Chai, Z. Lin, Y. Gao, M. Miyauchi, E. Cortes, S. A. Maier and M. Liu, *J. Am. Chem. Soc.*, 2022, **144**, 3039-3049.
- 9 M. Li, Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang and J. Yang, *Angew. Chem. Int. Ed.*, 2021, 60, 11487-11493.
- 10 T. Kim and G. T. R. Palmore, Nat. Commun., 2020, 11, 3622.
- 11 W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren and Y. Yu, *J. Am. Chem. Soc.*, 2020, **142**, 11417-11427.
- 12 B. Zhang, J. Zhang, M. Hua, Q. Wan, Z. Su, X. Tan, L. Liu, F. Zhang, G. Chen, D. Tan, X. Cheng, B. Han, L. Zheng and G. Mo, *J. Am. Chem. Soc.*, 2020, **142**, 13606-13613.
- 13 D. Gao, I. Sinev, F. Scholten, R. M. Aran-Ais, N. J. Divins, K. Kvashnina, J. Timoshenko and B. Roldan Cuenya, *Angew. Chem. Int. Ed.*, 2019, **58**, 17047-17053.
- 14 Z. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin, G. Lu, D. Su and S. Sun, *Nano Lett.*, 2019, **19**, 8658-8663.
- 15 Z. Q. Liang, T. T. Zhuang, A. Seifitokaldani, J. Li, C. W. Huang, C. S. Tan, Y. Li, P. De Luna, C. T. Dinh, Y. Hu, Q. Xiao, P. L. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S. C. Lo, L. J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton and E. H. Sargent, *Nat. Commun.*, 2018, **9**, 3828.
- 16 K. Jiang, R. B. Sandberg, A. J. Akey, X. Y. Liu, D. C. Bell, J. K. Norskov, K. R. Chan and H. T. Wang, *Nat. Catal.*, 2018, **1**, 111-119.