Electronic Supplementary Information

Visible-light induced C_{sp3} –H functionalization of glycine derivatives by cerium catalysis

Shutao Wang,^a‡ Yanjie Ye,^a‡ Yansong Hu,^a Xu Meng,^b Zhao Liu,^b Jiyu Liu,^a Kuan Chen,^a Zhengze Zhang,^a and Yuan Zhang ^a*

^{*a*} State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.

^b First Hospital of Lanzhou University, Lanzhou University.

‡ These authors contributed equally to this work.

*E-mail: zhangyuan@lzu.edu.cn.

Table of Contents

1. Experiment Information	S2
2. Optimization of Reaction Conditions	S6
3. Mechanistic Investigation	
4. Computational Study	S13
5. Product Data	S31
6. References	S47
7. Copies of ¹ H and ¹³ C NMR Spectra	

1. Experiment Information

1.1 General information

Unless otherwise noted, all reagents were purchased from commercial sources and used as received without further purification. *N*-arylglycine derivatives^{1,2} were prepared according to literature procedures. Unless otherwise indicated, all experiments were carried out under air atmosphere. Irradiation of photochemical reactions was carried out using 18 W blue LED bulb or 5 W LED waveband light source. The silica gel (200–300 meshes) was used for column chromatography and TLC inspections were taken on silica gel GF254 plates. Liquid ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. High resolution mass spectra (HRMS) were obtained on a mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-of-flight (QTof).

1.2 General procedure for the visible-light-induced oxidative dehydrogenative coupling/aromatization tandem reaction of glycine derivatives and alkenes.

To a solution of *N*-arylglycine derivative **1** (0.2 mmol, 1 eq) and Ce(OTf)₃ (30 mol%) in dry CH₃CN (4.0 mL) was added styrene derivative (1.0 mmol, 5 eq). The solution was irradiated with 18 W blue LED under air atmosphere at room temperature. After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was separated by silica gel column chromatography (with petroleum ether/EtOAc = 8/1 to 4/1 as eluent) to afford the product.

1.3 Substrate limitation

1.4 General procedure for the visible-light-induced post-modification of oligopeptides containing glycine residues.

Glycine derived peptide 1 (0.2 mmol, 1 eq) and Ce(OTf)₃ (30 mol%) in dry CH₃CN (4.0 mL) was added styrene derivative (1.0 mmol, 5 eq). The solution was irradiated with 18 W blue LED under O₂ atmosphere at room temperature. After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was separated by silica gel column chromatography (with PE/EA = 4/1 to 2/1 as eluent) to afford the product. *Note: The reaction can also be carried out under air atmosphere, but the reaction rate is relatively slow.*

Fig. S2 Picture of photoreaction device.

1.5 Gram-scale synthesis and coupling of glycine ester with other nucleophiles

Scheme S1 Gram scale experiment.

To a solution of **1a** (1.05 g, 5.0 mmol, 1 eq) and Ce(OTf)₃ (0.88 g, 30 mol%) in dry CH₃CN (100 mL) was added **2a** (2.60 g, 25.0 mmol, 5 eq). The mixed solution was irradiated with 18 W blue LED under air atmosphere at room temperature. After

completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was separated by silica gel column chromatography (with petroleum ether/EtOAc = 8/1 to 4/1 as eluent) to afford the product **3a** (1.30 g, 85 % yield) as a white solid.

To a solution of **1n** (1.33 g, 5.0 mmol, 1 eq) and Ce(OTf)₃ (0.88 g, 30 mol%) in dry CH₃CN (100 mL) was added **2a** (2.60 g, 25.0 mmol, 5 eq). The mixed solution was irradiated with 18 W blue LED under O₂ atmosphere at room temperature. After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was separated by silica gel column chromatography (with petroleum ether/EtOAc = 4/1 to 2/1 as eluent) to afford the product **3n** (1.00 g, 55 % yield) as a white solid.

Fig. S3 Picture of set-up for the gram scale reaction.

Scheme S2 Reactions of 1 with other nucleophiles.

To a solution of *N*-arylglycine derivative 1 (0.2 mmol, 1 eq) in dry CH₃CN (4.0 mL) were added Ce(OTf)₃ (30 mol%). The mixed solution was irradiated with 18 W blue LED under air atmosphere at room temperature. After 1 completely transformed into imine **5** as monitored by TLC, other nucleophiles (2-naphthol, 1,3-dicarbonyl compound and indole) were added. After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was separated by silica gel column chromatography to afford the corresponding coupling product.

2. Optimization of Reaction Conditions

	t + Ce(OTf) ₃ , LED light CH ₃ CN, rt, air	MeO N 3a O Et
Entry	Light Source	Yield (%) <i>b</i>
1	365-375 nm	67
2	380-385 nm	85
3	390-400 nm	82
4	Blue LED	95
5	White LED	82
6	Green LED	65
7	dark	trace

Table S1. Screening of light sources a

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.5 mmol), Ce(OTf)₃ (30 mol%), CH₃CN (2.0 mL), LED light irradiation under air at room temperature. ^{*b*} Yields were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

MeO H H OEt + 1a	catalyst, blue LED CH ₃ CN, rt, air 2a	MeO N 3a O Et
Entry	Catalyst	Yield (%) ^{<i>b</i>}
1	Ho(OTf) ₃	58
2	Tm(OTf) ₃	62
3	Gd(OTf) ₃	80
4	Lu(OTf) ₃	75
5	In(OTf) ₃	37
6	Sn(OTf) ₂	NR
7	AgOTf	43
8	CeCl ₃	80
9 c	Ce(OTf) ₃	71
10 ^d	Ce(OTf) ₃	68

Table S2. Screening of catalysts ^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.5 mmol), catalyst (30 mol%), CH₃CN (2 mL), blue LED light irradiation under air at room temperature. ^{*b*} Yields were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} 15 mol% Ce(OTf)₃ was used. ^{*d*} 40 mol% Ce(OTf)₃ was used.

MeO H H O OEt + 1a	Ce(OTf) ₃ , blue LED solvent, rt, air	MeO N 3a O
Entry	Solvent	Yield (%) ^b
1	CH ₃ OH	trace
2	THF	82
3	DMF	trace
4	DMSO	trace
5	CHCl ₃	66
6	DCM	78
7	DCE	87
8	1,4-Dioxane	53
9	Toluene	61
10	Et ₂ O	trace
11	EtOAc	trace
12 c	CH ₃ CN	75
13 ^d	CH ₃ CN	86

Table S3. Screening of solvents ^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.5 mmol), Ce(OTf)₃ (30 mol%), solvent (2.0 mL), blue LED light irradiation under air at room temperature. ^{*b*} Yields were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} 1.0 mL CH₃CN was used. ^{*d*} 0.5 mL CH₃CN was used.

3. Mechanistic Investigation

3.1 UV/Vis absorption spectra

The UV/Vis absorption spectra were recorded in 1 cm path quartz cuvettes by using a Varian Cary 300 Conc UV/Vis spectrometer. The concentrations of **1a** and Ce(OTf)₃ were 0.03 M and 0.015 M, respectively. The obtained bathochromic shift in UV/vis absorption spectra (partial spectrum) were shown in **Fig. S4**.

Fig. S4. The UV-Vis spectrum of 1a, Ce(OTf)₃ and $1a + Ce(OTf)_3$ in CH₃CN.

3.2 Control experiments

Scheme S3 Control experiments.

3.3 EPR spectra

Fig. S5. EPR spectra of **1a** (0.05 mol/L), $Ce(OTf)_3$ (0.015 mol/L) and DMPO (red) or TEMP (blue) in air-saturated CH₃CN upon irradiation with blue LED for 10 min.

3.4 Quantum yield determination

To a solution of **1a** (0.2 mmol, 1 eq) and Ce(OTf)₃ (30 mol%) in dry CH₃CN (4.0 mL) were added **2a** (1.0 mmol, 5 eq). The mixed solution was irradiated with 30 W blue LED under air atmosphere at room temperature for 8 h. The yield of product **3a** was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. The quantum yield is calcd using the following equation:

$$\phi = \frac{n \text{ of } 3a}{flux * S * t}$$

Where, Φ is quantum yield, S (m²) is the irradiation area and t (s) is the photoreaction time. Experiment: the unit photon flux was 357 µmol·s⁻¹·m⁻², the irradiation area was 1.66×10⁻³ m², and the product yield was 41% after 8 h.

Quantum yield: 0.0048

3.5 Enantiomeric purity study of product 30

Scheme S4 Enantiomeric purity study of product **30**. The high ee value of product **30** indicates that our reaction maintains the enantiomeric purity of the derived alanine.

Racemic product

Chiral product

4. Computational Study

4.1 Computational methods

All calculations were carried out with the Gaussian 09 D.01programs.³ Ground state geometry were fully optimized by using density functional theory (DFT)⁴ and the B3LYP⁵ method with the 6-31G* basic set for C, H, O and N. For Ce atom, MWB28 basic set was used. Frequency calculations have been performed to verify the optimized structures as local minima and to obtain zero-point energy (ZPE) at 298 K. The 3D molecular structures were generated using the CYL-View.⁶ Using this geometry, single point time dependent density functional theory (TD-DFT) calculation was then performed with the CAM-B3LYP/(6-31G*, MWB28) level of theory. The effect of solvent is considered from Truhlar and co-workers' universal solvation model (SMD-CH₃CN).^{7,8} The first 10 excited states of the complex B is reported below.

4.2 Optimized structure and binding energy of 1a-Ce(III) complex

Fig. S6. a) Optimized structure and b) formation energy of 1a-Ce(III) complex.

The formation energy shows that only *complex B* (5*a*) with one CH_3CN molecule coordination has a favorable formation energy is -65.8 kcal/mol. For complexes with

other quantities of CH₃CN molecule coordination (0, 2, 3 and 4) have very unfavorable formation energies (608.9 kcal/mol, 483.8 kcal/mol, 439.8 kcal/mol and 403.0 kcal/mol). Therefore, we speculate that *complex B (5a)* may be the structure of **1a**-Ce(III) complex.

4.3 UV-Vis spectra predicted by TD-DFT of 1a-Ce(III) complex

Fig. S7. UV-Vis absorption spectra predicted by TD-DFT.

4.4 Mulliken spin population analysis

Fig. S8. Mulliken spin population analysis of Ce(OTf)₃: Ce=1.015.

Fig. S9. Mulliken spin population analysis of complex B: Ce=1.038.

4.5 Excited state of Complex B

Complex B

Excited State	1:	2.001-A	0.2281 eV 5436.33 nm	f=0.0000	<s**2>=0.751</s**2>
80A -> 82	2A	-0.15459			
80A -> 8	3A	0.13349			
80A -> 8	7A	-0.20460			
80A -> 8	8A	-0.29170			
80A -> 8	9A	-0.70555			
80A -> 9	0A	0.90412			
80A <- 8	7A	-0.12344			
80A <- 8	8A	-0.17105			
80A <- 8	9A	-0.41058			
80A <- 9	0A	0.53746			

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -1315.79091250

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State <\$**2>=0.751	2:	2.001-A	0.2550 eV 4862.30 nm	f=0.0000
80A -> 82A	A	0.25183		
80A -> 83A	A	0.21106		
80A -> 85A	A	0.27470		
80A -> 86A	A	0.18890		
80A -> 88A	A	-0.10495		
80A -> 89A	ł	-0.62074		
80A -> 90A	ł	-0.52942		
80A -> 91A	A	0.68683		
80A <- 82A	A	0.13692		
80A <- 83A	A	0.10110		
80A <- 85A	A	0.10492		
80A <- 86A	A	0.13002		
80A <- 89A	A	-0.33191		
80A <- 90A	A	-0.29375		
80A <- 91A	A	0.38241		

Excited State <s**2>=0.751</s**2>	3:	2.001-A	0.3345 eV 3706.41 nm	f=0.0000
80A -> 83A	L	-0.27781		
80A -> 84A	L	-0.15518		
80A -> 85A		0.14013		

80A -> 86A	0.21675
80A -> 87A	0.23960
80A -> 88A	0.66728
80A -> 89A	-0.46845
80A -> 91A	-0.35734
80A -> 93A	-0.46999
80A <- 87A	0.10721
80A <- 88A	0.33336
80A <- 89A	-0.23908
80A <- 91A	-0.18617
80A <- 93A	-0.21181

2.001-A	0.6678 eV 1856.71 nm	f=0.0000
0.36250	80A -> 85A	0.84949
-0.22799		
-0.21548		
0.11216		
0.10732		
-0.12735		
	2.001-A 0.36250 -0.22799 -0.21548 0.11216 0.10732 -0.12735	2.001-A 0.6678 eV 1856.71 nm 0.36250 80A -> 85A -0.22799 -0.21548 0.11216 0.10732 -0.12735

Excited State	5:	2.001-A	0.6840 eV 1812.55 nm	f=0.0000	
<s**2>=0.751</s**2>					
80A -> 82/	A	0.30675			
	-				
801 -> 83	٨	_0.20094			
00A - 031	1	-0.20094			

80A -> 84A	0.56264
80A -> 85A	-0.31245
80A -> 86A	0.35679
80A -> 87A	-0.50964
80A -> 88A	0.16394
80A -> 92A	0.15515

Excited State	6:	2.000-A	
<s**2>=0.750</s**2>			

80A -> 82A	-0.10017
80A -> 83A	-0.54989
80A -> 84A	-0.26387
80A -> 85A	0.19567
80A -> 86A	0.55575
80A -> 88A	-0.37142
80A -> 89A	0.21510
80A -> 90A	0.13013
80A -> 91A	0.21576
80A -> 93A	-0.13623

Excited State <s**2>=2.743</s**2>	7:	3.460-A	3.1641 eV	391.84 nm	f=0.0000
79A -> 82A	4	-0.25997			
81A -> 83A	4	0.49132			
81A -> 84A	4	0.20129			

0.7438 eV 1666.87 nm f=0.0000

81A -> 86A	0.12359
81A -> 88A	-0.23018
81A -> 91A	-0.10030
81A -> 93A	-0.20719
79B -> 81B	0.26829
80B -> 82B	-0.46811
80B -> 83B	-0.26125
80B -> 84B	0.13617
80B -> 85B	0.18829
80B -> 92B	-0.16172

Excited State	8:	3.452-A	3.2792 eV	378.09 nm	f=0.0000
<s**2>=2.730</s**2>					

81A -> 82A	0.68533
81A -> 92A	-0.14900
80B -> 81B	-0.66929

Excited State	9:	2.037-A	4.1219 eV	300.79 nm	f=0.0232	80A ->
82A (0.53062	2				

80A -> 83A	-0.10036
80A -> 84A	-0.19773
80A -> 86A	-0.15746
80A -> 90A	0.16499
80A -> 92A	0.18013
80A -> 94A	0.12216

80A -> 96A	-0.14386
80A -> 97A	0.18241
81A -> 82A	-0.47374
80B -> 81B	-0.47443

Excited State 10: <\$**2>=0.779	2.029-A	4.1964 eV	295.45 nm	f=0.0257
80A -> 82A	0.50445			
80A -> 83A	-0.15815			
80A -> 84A	-0.17913			
80A -> 86A	-0.21724			
80A -> 90A	0.12940			
80A -> 92A	0.17757			
80A -> 94A	0.11575			
80A -> 96A	-0.12681			
80A -> 97A	0.17207			
81A -> 82A	0.47589			
80B -> 81B	0.47676			

4.6 The Cartesian coordinates of 1a-Ce(III) complex

Complex A

С	3.18148100	0.63565100	0.21631600
С	3.03876400	-0.63726700	0.86330100
С	1.84601400	-0.99747300	1.47986500
С	0.72165400	-0.11767500	1.47771800
С	0.84348900	1.12530300	0.82102200
С	2.03496800	1.48652100	0.16887100
Н	3.90626200	-1.29273400	0.90346400
Н	1.78861900	-1.95778400	1.99548000
Н	0.02160500	1.83671400	0.80624500
Н	2.09781400	2.46221100	-0.30362400
Ν	-0.55856700	-0.73131400	1.69433600
Н	-0.51367800	-1.46987100	2.40055100
0	4.35658300	0.89810100	-0.27088100
С	4.71409800	2.19501800	-0.85955300
Н	5.77191900	2.10067500	-1.09633000
Н	4.13093800	2.35713300	-1.76966200
Н	4.55428000	2.98386900	-0.12073500
С	-1.80044800	0.06693700	1.84724000
Н	-1.63295600	1.01120300	2.38131500
Н	-2.51448700	-0.50558800	2.44939000
С	-2.42841400	0.34538800	0.48441500

0	-1.77745400	-0.02053200	-0.57333800	
0	-3.54079000	0.92105500	0.48885200	
С	-4.40656000	1.28980300	-0.75635500	
Н	-4.17715100	2.34944000	-0.87892500	
Н	-4.00743100	0.69516800	-1.57794100	
С	-5.83914000	1.00939700	-0.39771800	
Н	-6.16158200	1.58669800	0.47246300	
Н	-6.44716800	1.33106000	-1.25350500	
Н	-6.02802500	-0.05494300	-0.23586800	
Ce	0.16170400	-1.05366700	-0.78035300	

Complex B

С	2.67313300	-1.69360900	0.53522000	
С	2.55535600	-1.75145200	-0.88802300	
С	1.31179400	-1.87994700	-1.49863400	
С	0.11664000	-1.94564200	-0.72573500	
С	0.22430200	-1.85209300	0.67526700	
С	1.47545200	-1.70774600	1.30018900	
Н	3.46729300	-1.74732800	-1.47999500	
Н	1.26391800	-1.96565300	-2.58526500	
Н	-0.65535700	-1.90723400	1.31030900	
Н	1.51659000	-1.67488700	2.38401700	
Ν	-1.10153400	-1.65975700	-1.41525100	

Н	-1.12365700	-2.07320300	-2.34842600
0	3.89218900	-1.63734800	1.00840500
С	4.17417300	-1.72993600	2.43738800
Н	5.26031700	-1.73616800	2.50341900
Н	3.76710700	-0.85738200	2.95597400
Н	3.76491700	-2.66250000	2.83416600
С	-2.41511300	-1.77618700	-0.75100700
Н	-2.47751900	-2.63447600	-0.06918100
Н	-3.18239200	-1.93708100	-1.51574200
С	-2.75915300	-0.49715700	0.00650400
0	-1.89502800	0.44636500	0.08495300
0	-3.91102700	-0.46516500	0.52203000
С	-4.47346800	0.73029400	1.30905900
Н	-3.85505300	0.78124500	2.20713400
Н	-4.30229400	1.59767800	0.66942600
С	-5.92439300	0.43447000	1.57663600
Н	-6.05037600	-0.46863900	2.17924800
Н	-6.33195700	1.27842700	2.14599000
Н	-6.49899700	0.34600400	0.65107700
Ce	0.19438900	0.62372400	-0.75525200
С	2.63374300	4.92205600	0.48724900
Н	2.84552100	4.96313000	1.56352200
Н	3.57819400	4.96339100	-0.07078400
Н	2.01367600	5.78451200	0.20932200

С	1.93281100	3.69630600	0.17229200
Ν	1.37078500	2.70650100	-0.08204800

Complex C

С	3.03319000	1.67937000	0.55199200	
С	2.83223000	0.73029000	1.59458600	
С	1.57100300	0.53475400	2.14924300	
С	0.44632200	1.26822600	1.68260400	
С	0.63325400	2.17502500	0.62377800	
С	1.90344700	2.37921800	0.06199300	
Н	3.69884700	0.20341900	1.98415100	
Н	1.46167600	-0.15907900	2.98283300	
Н	-0.19414500	2.76336600	0.23750200	
Н	2.01358800	3.11891500	-0.72342500	
Ν	-0.84477100	0.77373400	2.05474200	
Н	-0.86124000	0.44199500	3.01840500	
0	4.27385000	1.82362500	0.13577600	
С	4.63793700	2.86341600	-0.81118000	
Н	5.71945400	2.78806100	-0.90607900	
Н	4.16142500	2.67833400	-1.77855900	
Н	4.36259600	3.84412400	-0.41380400	
С	-2.07473300	1.51080200	1.72399300	
Н	-1.95714800	2.60031900	1.78646800	

Н	-2.85192000	1.24606200	2.44825400
С	-2.57509600	1.13295500	0.33347100
0	-1.89989300	0.34248400	-0.39848900
0	-3.67811100	1.66726900	-0.00018400
С	-4.35418800	1.40639500	-1.33748100
Н	-3.64788000	1.75903900	-2.09166400
Н	-4.46796500	0.32251800	-1.39990600
С	-5.66019000	2.15821800	-1.32575300
Н	-5.50548500	3.23516600	-1.22035200
Н	-6.15832100	1.98068600	-2.28562300
Н	-6.32274400	1.80368600	-0.53191200
Ce	0.11816900	-0.69349300	-0.01316600
С	-0.49776700	-5.28957600	2.12162300
Н	-1.45059800	-5.71742400	1.78567600
Н	-0.49624000	-5.22895200	3.21704500
Н	0.32409500	-5.93932700	1.79590100
С	-0.32926700	-3.96625600	1.55608600
Ν	-0.19355300	-2.90231400	1.10224700
С	1.45379600	-2.11677700	-4.75148100
Н	1.44817400	-1.26000800	-5.43636300
Н	2.45558600	-2.56358600	-4.74070500
Н	0.73048700	-2.86279900	-5.10303700
C	1.09726700	-1.68023700	-3.41609600
Ν	0.81175000	-1.33054300	-2.34303100

Complex D

С	-3.89703700	0.33124900	-0.27455200
С	-3.28119600	-0.64107200	-1.09929200
С	-2.02786100	-0.40892600	-1.65014200
С	-1.34354600	0.80451100	-1.39176200
С	-1.93092700	1.74928300	-0.53575200
С	-3.19746900	1.52209100	0.00817600
Н	-3.83458200	-1.54517200	-1.33232800
Н	-1.62187200	-1.12681800	-2.36275600
Н	-1.44795100	2.69829400	-0.32417500
Н	-3.64356300	2.28944900	0.62993600
Ν	-0.01964700	0.95067700	-1.96985200
Н	-0.01608600	0.58725300	-2.92336900
0	-5.10926000	0.02451000	0.17269700
С	-5.90288300	1.00809400	0.87328800
Н	-6.86254700	0.52556400	1.05035000
Н	-5.43638100	1.27196800	1.82806500
Н	-6.04252800	1.89722400	0.25135800
С	0.62726700	2.27668800	-1.94526900
Н	-0.06791700	3.09992700	-2.14598800
Н	1.38908500	2.30987900	-2.73250500
С	1.32723900	2.49258500	-0.61256900

0	1.43548500	1.53744800	0.20786000
0	1.78321400	3.67053200	-0.43105200
С	2.55762500	4.04970500	0.80981200
Н	1.88052500	3.87276200	1.64801600
Н	3.40095900	3.35783000	0.85683900
С	2.96595200	5.49332800	0.65405700
Н	2.09647500	6.15095600	0.57282900
Н	3.52921600	5.78578600	1.54704400
Н	3.61270800	5.63657900	-0.21554600
Ce	0.58045700	-0.63363400	0.00262400
С	1.52762900	-4.38122000	-3.39935500
Н	2.56395300	-4.30391600	-3.74911100
Н	0.85307200	-4.33227700	-4.26242700
Н	1.38966000	-5.34286400	-2.89090300
С	1.23549700	-3.29462500	-2.48239600
Ν	0.99932200	-2.42290200	-1.74948900
С	-2.17872400	-2.31711700	3.99762700
Н	-2.29175500	-1.53209400	4.75456400
Н	-3.17070500	-2.65638200	3.67714900
Н	-1.63583100	-3.16255300	4.43638500
С	-1.44382000	-1.79944600	2.85806300
Ν	-0.85506200	-1.38545800	1.94516800
С	4.87975800	-2.26183700	2.33387900
Н	5.04870700	-1.66107800 s27	3.23523200

Н	5.73619700	-2.14581700	1.65935400
Н	4.78602100	-3.31660800	2.61760000
С	3.66674600	-1.82085000	1.66946900
Ν	2.69504200	-1.46827000	1.13795500

Complex E

С	4.06068400	-0.18174500	-0.67930100
С	3.28715800	0.78835100	-1.35501700
С	1.99623000	0.49360000	-1.77219900
С	1.43369500	-0.77991500	-1.52198600
С	2.18399300	-1.72914400	-0.81284900
С	3.48635200	-1.43880800	-0.40479200
Н	3.74513800	1.74468300	-1.58476500
Н	1.45952100	1.22041500	-2.38334300
Н	1.79390900	-2.72189900	-0.61180300
Н	4.05747600	-2.20645900	0.10398000
Ν	0.07614000	-0.99951800	-1.98407100
Н	-0.03571100	-0.61425000	-2.92194700
0	5.29782200	0.18903800	-0.35165500
С	6.23094600	-0.77794900	0.17038400
Н	7.17261000	-0.24102500	0.27300200
Н	5.90472700	-1.14456300	1.14965100
Н	6.35262700	-1.61015400	-0.52971100

С	-0.47092900	-2.36695200	-1.95111500
Н	0.25362800	-3.12961900	-2.25763200
Н	-1.30698300	-2.42440500	-2.65692100
С	-1.01692100	-2.68331400	-0.56698300
0	-1.16492700	-1.77263200	0.28480400
0	-1.31470800	-3.91828400	-0.38805900
С	-1.92516100	-4.39513000	0.89824000
Н	-1.21304700	-4.13946000	1.68582500
Н	-2.84385000	-3.81954900	1.03038000
С	-2.16013500	-5.87964600	0.75713200
Н	-1.22394500	-6.42011900	0.59365000
Н	-2.60644000	-6.24784300	1.68709700
Н	-2.85138200	-6.09991800	-0.06071700
Ce	-0.57819300	0.53314600	0.03094600
С	0.27896100	5.59250700	-0.86173500
Н	0.31840000	5.80320700	-1.93645300
Н	1.22925800	5.88945200	-0.40399700
Н	-0.53240000	6.17580300	-0.41206300
С	0.04744800	4.17396000	-0.64404400
Ν	-0.13568300	3.04007600	-0.47205900
С	-4.10361800	1.49698300	3.70188100
Н	-3.89500800	0.87225200	4.57762300
Н	-4.07140900	2.55152800	3.99794100
Н	-5.10513600	1.26106400 s29	3.32517000

С	-3.11394100	1.24358300	2.66786300	
Ν	-2.32333400	1.04167800	1.84223000	
С	-4.64650800	1.55492800	-3.04831300	
Н	-5.37784400	0.74052800	-2.99583700	
Н	-4.33394400	1.68819700	-4.09016500	
Н	-5.11596400	2.47987900	-2.69519300	
С	-3.49313200	1.23849200	-2.22101600	
Ν	-2.57109100	0.98385900	-1.56255800	
С	2.57315000	0.87285800	4.13354900	
Н	2.09346900	1.52524400	4.87172100	
Н	3.53798200	1.30667000	3.84836400	
Н	2.73976400	-0.11245100	4.58300000	
С	1.72293800	0.74440400	2.96131600	
Ν	1.04211400	0.64289800	2.02666900	

5. Product Data

Ethyl 6-methoxy-4-phenylquinoline-2-carboxylate (3a).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 9.3 Hz,1H), 8.10 (s, 1H), 7.61-7.47 (m, 5H), 7.44 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.22 (d, *J* = 2.7 Hz, 1H), 4.56 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 159.5, 148.0, 145.4, 144.3, 137.9, 132.7, 129.3, 129.2, 128.8, 128.6, 122.8, 121.8, 103.3, 62.1, 55.5, 14.4.

Ethyl 6-phenoxy-4-phenylquinoline-2-carboxylate (3b). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 9.0 Hz, 1H), 8.11 (s, 1H), 7.54-7.38 (m, 7H), 7.36-7.28 (m, 2H), 7.15-7.05 (m, 1H), 7.05-6.93 (m, 2H), 4.54 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 157.2, 156.0, 148.6, 146.5, 145.0, 137.3, 133.1, 129.9, 129.3, 128.9, 128.7, 128.7, 124.2, 123.2, 121.7, 119.4, 111.4, 62.2, 14.4. HRMS (ESI) calcd for C₂₄H₂₀NO₃ (M+H⁺) 370.1438, found 370.1434.

Ethyl 6-ethoxy-4-phenylquinoline-2-carboxylate (3c).¹⁰ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.3 Hz, 1H), 8.09 (s, 1H), 7.59-7.48 (m, 5H), 7.43 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.20 (d, *J* = 2.8 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 4.01 (q, *J* = 7.0 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H), 1.42 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 158.8, 147.9, 145.2, 144.2, 137.9, 132.6, 129.3, 129.1, 128.7, 128.5, 122.9, 121.7, 103.9, 63.7, 62.0, 14.5, 14.3.

Ethyl 6-methyl-4-phenylquinoline-2-carboxylate (3d).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.7 Hz, 1H), 8.08 (s, 1H), 7.69 (s, 1H), 7.59 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.56-7.45 (m, 5H), 4.54 (q, *J* = 7.1 Hz, 2H), 2.46 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 149.0, 147.0, 146.9, 139.0, 137.8, 132.4, 130.9, 129.6, 128.7, 128.6, 127.8, 124.4, 121.5, 62.2, 22.1, 14.5.

Ethyl 6-isopropyl-4-phenylquinoline-2-carboxylate (3e). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.7 Hz, 1H), 8.12 (s, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.71 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.58-7.46 (m, 5H), 4.56 (q, *J* = 7.1 Hz, 2H), 3.04 (p, *J* = 6.9 Hz, 1H), 1.48 (t, *J* = 7.1 Hz, 3H), 1.28 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.44, 149.34, 149.01, 147.00, 146.79, 137.61, 130.95, 129.46, 129.36, 128.48, 128.44, 127.59, 121.67, 121.21, 61.97, 34.29, 23.53, 14.23. HRMS (ESI) calcd for C₂₁H₂₂NO₂ (M+H⁺) 320.1645, found 320.1643.

Ethyl 6-butyl-4-phenylquinoline-2-carboxylate (3f). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.7 Hz, 1H), 8.10 (s, 1H), 7.70 (d, *J* = 1.9 Hz, 1H), 7.64 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.58-7.49 (m, 5H), 4.56 (q, *J* = 7.1 Hz, 2H), 2.80–2.68 (m, 2H), 1.67–1.58 (m, 2H), 1.48 (t, *J* = 7.1 Hz, 3H), 1.40-1.31 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 149.2, 147.2, 147.0, 144.0, 138.0, 131.7, 131.1, 129.7, 128.8, 128.7, 127.9, 123.9, 121.5, 62.3, 36.1, 33.4, 22.5, 14.5, 14.0. HRMS (ESI) calcd for C₂₂H₂₄NO₂ (M+H⁺) 334.1802, found 334.1801.

Ethyl 6-(tert-butyl)-4-phenylquinoline-2-carboxylate (3g). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.9 Hz, 1H), 8.11 (s, 1H), 7.94–7.85 (m, 2H), 7.60–7.48 (m, 5H), 4.56 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 151.8, 149.6, 147.2, 146.9, 137.9, 130.8, 129.7, 129.1, 128.8, 127.5, 121.5, 120.6, 62.3, 35.4, 31.1, 14.5. HRMS (ESI) calcd for C₂₂H₂₄NO₂ (M+H⁺) 334.1802, found 334.1800.

Benzyl 6-methoxy-4-phenylquinoline-2-carboxylate (3h).¹¹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid,

97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 9.2 Hz, 1H), 8.07 (s, 1H), 7.58 – 7.47 (m, 5H), 7.43 (ddd, *J* = 9.3, 2.9, 1.3 Hz, 1H), 7.21 (d, *J* = 2.7 Hz, 1H), 4.48 (t, *J* = 6.9 Hz, 2H), 3.79 (s, 3H), 1.90-1.77 (m, 2H), 1.56-1.42 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 159.4, 147.9, 145.2, 144.2, 137.8, 132.6, 129.2, 129.0, 128.7, 128.5, 122.7, 121.6, 103.1, 65.8, 55.4, 30.6, 19.1, 13.7.

Cycloheptyl 6-methoxy-4-phenylquinoline-2-carboxylate (3i). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Colorless oily liquid, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.3 Hz, 1H), 8.02 (s, 1H), 7.58-7.47 (m, 5H), 7.41 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.18 (d, *J* = 2.8 Hz, 1H), 5.33-5.27 (m, 1H), 3.79 (s, 3H), 2.15-2.07 (m, 2H), 1.94-1.85 (m, 2H), 1.79-1.69 (m, 2H), 1.66-1.46 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 159.5, 148.0, 146.0, 144.5, 138.2, 133.0, 129.4, 129.1, 128.9, 128.7, 122.7, 121.8, 103.3, 77.2, 55.6, 33.9, 28.3, 23.1. HRMS (ESI) calcd for C₂₄H₂₆NO₃ (M+H⁺) 376.1907, found 376.1907.

N-cyclohexyl-6-methoxy-4-phenylquinoline-2-carboxamide (3j). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 8.07 (d, *J* = 9.2 Hz, 1H), 7.58-7.45 (m, 5H), 7.41 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 4.14-3.95 (m, 1H), 3.80 (s, 3H), 2.13-2.03 (m, 2H), 1.84-1.78 (m, 2H), 1.74-1.64 (m, 1H), 1.54-1.34 (m, 4H), 1.33-1.24 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 159.0, 148.4, 147.6, 143.3, 138.3, 131.7, 129.5, 129.0, 128.8, 128.6,

122.7, 119.7, 103.7, 55.6, 48.4, 33.3, 25.8, 25.1. HRMS (ESI) calcd for $C_{23}H_{25}N_2O_2$ (M+H⁺) 361.1911, found 361.1907.

N-((3s,5s,7s)-adamantan-1-yl)-6-methoxy-4-phenylquinoline-2-carboxamide (3k). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.09 (s, 1H), 8.05 (d, *J* = 9.2 Hz, 1H), 7.55-7.46 (m, 5H), 7.40 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 3.80 (s, 3H), 2.23 (d, *J* = 2.8 Hz, 6H), 2.18-2.14 (m, 3H), 1.83-1.67 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 159.0, 148.4, 148.3, 143.1, 138.4, 131.6, 129.5, 128.9, 128.8, 128.6, 122.6, 119.3, 103.7, 55.6, 51.8, 41.7, 36.6, 29.7. HRMS (ESI) calcd for C₂₇H₂₉N₂O₂ (M+H⁺) 413.2224, found 413.2222.

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5' -d]pyran-3a-yl)methyl 6-methoxy-4-phenylquinoline-2-carboxylate (3l). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 9.3 Hz, 1H), 8.09 (s, 1H), 7.56-7.47 (m, 5H), 7.41 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.20 (d, *J* = 2.8 Hz, 1H), 4.78 (d, *J* = 11.7 Hz, 1H), 4.67-4.57 (m, 2H), 4.43 (d, *J* = 11.7 Hz, 1H), 4.27-4.25 (m, 1H), 3.98-3.95 (m, 1H), 3.83-3.77 (m, 4H), 1.55 (d, *J* = 2.9 Hz, 6H), 1.44 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 159.7, 148.0, 144.9, 144.5, 137.9, 132.8, 129.4, 129.3, 128.9, 128.8, 123.0, 121.9, 109.3, 109.2, 103.3, 101.9, 71.0, 70.5, 70.2, 65.9, 61.5, 55.6, 26.7, 26.0, 25.6, 24.2. HRMS (ESI) calcd for C₂₉H₃₂NO₈ (M+H⁺) 522.2122, found 522.2123.

(*E*)-3,7-dimethylocta-2,6-dien-1-yl 6-methoxy-4-phenylquinoline-2-carboxylate (3m). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 9.3 Hz, 1H), 8.09 (s, 1H), 7.58-7.48 (m, 5H), 7.43 (dd, J = 9.2, 2.8 Hz, 1H), 7.21 (d, J = 2.8 Hz, 1H), 5.57-5.53 (m, 1H), 5.11-5.07 (m, 1H), 5.01 (d, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.15-2.03 (m, 4H), 1.79 (d, J = 1.3 Hz, 3H), 1.66 (d, J = 1.4 Hz, 3H), 1.59 (d, J = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 159.6, 148.1, 145.6, 144.5, 142.6, 138.1, 132.9, 132.0, 129.5, 129.3, 128.9, 128.8, 123.9, 122.9, 122.0, 118.4, 103.4, 63.2, 55.7, 39.8, 26.4, 25.8, 17.8, 16.8. HRMS (ESI) calcd for C₂₇H₂₉NO₃H (M+H⁺) 416.2220, found 416.2214.

Ethyl (6-methoxy-4-phenylquinoline-2-carbonyl)glycinate (3n).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (t, *J* = 5.7 Hz, 1H), 8.18 (s, 1H), 8.06 (d, *J* = 9.2 Hz, 1H), 7.55-7.45 (m, 5H), 7.39 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.21 (d, *J* = 2.8 Hz, 1H), 4.32 (d, *J* = 5.7 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 165.2, 159.2, 148.3, 146.5, 143.3, 138.1, 131.8, 129.4, 129.1, 128.8, 128.6, 122.8, 119.5, 103.5, 61.6, 55.6, 41.6, 14.3.

Methyl (6-methoxy-4-phenylquinoline-2-carbonyl)-L-alaninate (30). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.0 Hz, 1H), 8.19 (s, 1H), 8.11 (d, *J* = 9.3 Hz, 1H), 7.57 – 7.48 (m, 5H), 7.43 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.24 (d, *J* = 2.8 Hz, 1H), 4.88 (p, *J* = 7.3 Hz, 1H), 3.81 (s, 6H), 1.62 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.57, 164.55, 159.20, 148.42, 146.61, 143.37, 138.18, 131.89, 129.48, 129.22, 128.85, 128.68, 122.85, 119.64, 103.58, 55.66, 52.67, 48.32, 18.70. HRMS (ESI) calcd for C₂₁H₂₁N₂O₄ (M+H⁺) 365.1496, found 365.1495.

Methyl (6-methoxy-4-phenylquinoline-2-carbonyl)-L-valinate (**3**p). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 9.3 Hz, 1H), 8.19 (s, 1H), 8.12 (d, *J* = 9.2 Hz, 1H), 7.55–7.46 (m, 5H), 7.42 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 4.81 (dd, *J* = 9.3, 5.3 Hz, 1H), 3.79 (s, 6H), 2.40-2.33 (m, 1H), 1.07 (dd, *J* = 6.9, 2.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 164.8, 159.2, 148.4, 146.7, 143.3, 138.2, 132.0, 129.4, 129.2, 128.8, 128.6, 122.7, 119.7, 103.5, 57.5, 55.6, 52.3, 31.7, 19.3, 18.1. HRMS (ESI) calcd for C₂₃H₂₄N₂O₄ (M+H⁺) 393.1809, found 393.1806.

Methyl (6-methoxy-4-phenylquinoline-2-carbonyl)-L-leucinate (3q). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.8 Hz, 1H), 8.19 (s, 1H), 8.11 (d, *J* = 9.2 Hz, 1H), 7.56–7.45 (m, 5H), 7.42 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 4.94-4.89 (m, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 1.88–1.76 (m, 3H), 1.05–0.97 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 164.7, 159.2, 148.4,

146.6, 143.3, 138.2, 131.9, 129.4, 129.2, 128.8, 128.6, 122.8, 119.7, 103.6, 55.6, 52.4, 51.0, 41.9, 25.1, 23.1, 22.0. HRMS (ESI) calcd for $C_{24}H_{27}N_2O_4$ (M+H⁺) 407.1965, found 407.1963.

Ethyl (*S*)-6-(2-((*tert-butoxycarbonyl*)*amino*)-3-*methoxy*-3-*oxopropyl*)-4*phenylquinoline-2-carboxylate* (3r). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.7 Hz, 1H), 8.10 (s, 1H), 7.67 (d, *J* = 2.0 Hz, 1H), 7.61–7.47 (m, 6H), 4.98 (d, *J* = 8.2 Hz, 1H), 4.65-4.60 (m, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 3.60 (s, 3H), 3.03-3.14 (m, 2H), 1.47 (t, *J* = 7.1 Hz, 3H), 1.33 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 165.6, 155.0, 149.4, 147.7, 147.5, 137.6, 137.1, 131.9, 131.4, 129.6, 128.9, 127.7, 125.8, 121.7, 80.1, 62.4, 54.3, 52.4, 38.7, 28.3, 14.5. HRMS (ESI) calcd for C₂₇H₃₁N₂O₆ (M+H⁺) 479.2177, found 479.2176.

Methyl (6-methoxy-4-phenylquinoline-2-carbonyl)-L-phenylalanyl-L-leucinate (3s). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Pale yellow solid, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 8.6 Hz, 1H), 8.12 (s, 1H), 8.04 (d, *J* = 9.2 Hz, 1H), 7.55-7.44 (m, 5H), 7.39 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.34-7.29 (m, 2H), 7.27 (s, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.19 (q, *J* = 2.4 Hz, 2H), 6.92 (d, *J* = 9.3 Hz, 1H), 5.07-5.06 m, 1H), 4.59-4.57 (m, 1H), 3.77 (s, 3H), 3.65 (s, 3H), 3.37-3.22 (m, 2H), 1.61-1.41 (m, 3H), 0.81 (dd, *J* = 10.2, 5.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 170.8, 164.9, 159.2, 148.3, 146.3, 143.2, 138.0, 136.7, 131.8, 129.6, 129.4, 129.1, 128.7, 128.60, 128.57, 126.9, 122.8, 119.4, 103.5, 55.5, 54.5, 52.2, 51.0, 41.3, 38.3, 24.8, 22.7, 22.0; HRMS (ESI) calcd for $C_{33}H_{36}N_3O_5(M+H^+)$ 554.2650, found 554.2650.

Ethyl 6-((*S*)-2-((*S*)-2-((*tert-butoxycarbonyl*)*amino*)*propanamido*)-3-*methoxy*-3*oxopropyl*)-4-*phenylquinoline*-2-*carboxylate* (3t). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). White solid, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.6 Hz, 1H), 8.07 (s, 1H), 7.61 (d, *J* = 1.9 Hz, 1H), 7.56–7.45 (m, 6H), 6.78 (d, *J* = 7.2 Hz, 1H), 4.85-4.80 (m, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 4.08-4.03 (m, 1H), 3.55 (s, 3H), 3.31 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.18 (dd, *J* = 14.0, 5.9 Hz, 1H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.29 (s, 9H), 1.16 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 171.4, 165.4, 155.4, 149.4, 147.6, 147.4, 137.5, 137.0, 131.9, 131.3, 129.6, 128.9, 127.6, 125.6, 121.6, 80.2, 62.3, 53.1, 52.4, 50.1, 37.9, 28.2, 18.0, 14.4. HRMS (ESI) calcd for C₃₀H₃₅N₃O₇Na (M+Na⁺) 572.2367, found 572.2372.

Ethyl (*S*)-6-(12-(*methoxycarbonyl*)-2,2-*dimethyl*-4,7,10-*trioxo*-3-*oxa*-5,8,11*triazatridecan*-13-yl)-4-phenylquinoline-2-carboxylate (3u). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). White solid, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (t, *J* = 5.7 Hz, 1H), 8.21 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 1H), 7.63 (d, *J* = 1.8 Hz, 1H), 7.58-7.46 (m, 6H), 6.59 (d, *J* = 7.5 Hz, 1H), 4.96 (s, 1H), 4.92-4.88 (m, 1H), 4.35-4.24 (m, 4H), 3.76-3.64 (m, 2H), 3.58 (s, 3H), 3.38-3.16 (m, 2H), 1.37 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 169.9, 169.2, 164.9, 156.0, 149.7, 148.7, 146.5, 137.7, 136.2, 131.8, 130.7, 129.7, 128.9, 127.8, 125.9, 119.4, 80.5, 61.7, 53.2, 52.5, 44.4, 41.7, 38.0, 28.3, 14.3. HRMS (ESI) calcd for C₃₁H₃₆N₄O₈Na (M+Na⁺) 615.2425, found 615.2424.

Ethyl 2-(2-hydroxynaphthalen-1-yl)-2-((4-methoxyphenyl)amino)acetate (3v).¹² Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 16/1 to 8/1 as eluent). Pale red oil, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 1H), 7.83 (d, *J* = 7.8Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.59-7.53 (m, 1H), 7.43-7.37 (m, 1H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.80-6.56 (m, 4H), 5.82 (s, 1H), 4.35-4.20 (m, 1H), 4.15-4.00 (m, 1H), 3.67 (s, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3 156.2, 154.9, 138.9, 132.6, 130.7, 129.3, 129.1, 127.0, 123.1, 122.0, 119.9, 117.9, 114.9, 111.4, 62.6, 58.2, 55.6, 14.0.

*Ethyl 1-(2-ethoxy-1-(4-methoxyphenylamino)-2-oxoethyl)-2*oxocyclopentanecarboxylatepale (3w).¹³ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 16/1 to 8/1 as eluent). Colourless oil, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.81-6.67 (m, 4H), 4.69 (d, *J* = 30.7 Hz, 1H), 4.22-4.06 (m, 4H), 3.73 (d, *J* = 1.7 Hz, 3H), 2.62-2.36 (m, 2H), 2.33-2.04 (m, 2H), 2.03-1.87 (m, 2H), 1.27-1.15 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 212.5, 171.8, 169.0, 153.7, 141.0, 117.0, 116.1, 114.8, 114.7, 62.6 (62.64, 62.61), 61.9, 61.6, 55.7, 38.9, 30.0, 19.9, 14.2, 14.1.

Methyl 2,2-bis(6-bromo-1H-indol-3-yl)acetate (3x).¹⁴ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 as eluent). Yellow solid, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 2H), 7.51 (d, *J* = 1.7 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.19 (dd, *J* = 8.7, 1.8 Hz, 2H), 7.11 (d, *J* = 2.7 Hz, 2H), 5.43 (s, 1H), 3.75

(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 137.3, 125.6, 124.0, 123.2, 120.7, 116.1, 114.3, 113.7, 52.5, 40.5.

Ethyl 4-phenylquinoline-2-carboxylate (**3**y).¹⁶ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Colorless oily liquid, 18% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.5 Hz, 1H), 8.14 (s, 1H), 7.98 (dd, J = 8.5, 1.4 Hz, 1H), 7.79 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.60 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.56-7.50 (m, 5H), 4.57 (q, J = 7.1 Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 150.0, 148.3, 147.9, 137.7, 131.4, 130.1, 129.7, 128.9, 128.8, 128.7, 127.9, 125.9, 121.4, 62.5, 14.6.

Ethyl 6-methoxy-4-(p-tolyl)quinoline-2-carboxylate (4a).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 9.3 Hz, 1H), 8.06 (s, 1H), 7.51-7.45 (m, 2H), 7.40 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.24 (d, *J* = 2.8 Hz, 1H), 7.09-7.04 (m, 2H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.80 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 160.0, 159.5, 147.8, 145.5, 144.4, 132.8, 130.7, 130.2, 129.4, 122.8, 121.8, 114.3, 103.4, 62.1, 55.6, 55.5, 14.5.

Ethyl 4-(4-(tert-butyl)phenyl)-6-methoxyquinoline-2-carboxylate (4b).¹⁵ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 9.3 Hz, 1H), 8.08 (s, 1H), 7.59-7.52 (m, 2H), 7.51-7.46 (m, 2H), 7.40 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.29 (d, *J* = 2.9 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 159.5, 151.8, 148.1, 145.4, 144.4, 135.0, 132.7, 129.3, 129.1, 125.8, 122.6, 121.9, 103.6, 62.1, 55.6, 34.8, 31.4, 14.5.

Ethyl 4-([1,1'-biphenyl]-4-yl)-6-methoxyquinoline-2-carboxylate (4c).¹⁵ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 9.3 Hz, 1H), 8.08 (s, 1H), 7.47-7.40 (m, 3H), 7.37-7.34 (m, 2H), 7.25 (d, *J* = 2.8 Hz, 1H), 4.54 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.47 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 159.6, 148.3, 145.5, 144.5, 138.7, 135.1, 132.8, 129.6, 129.4, 122.9, 121.9, 103.5, 62.2, 55.7, 21.5, 14.6.

Ethyl 4-(4-fluorophenyl)-6-methoxyquinoline-2-carboxylate (4d).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Brown solid, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.3 Hz, 1H), 8.06 (s, 1H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.70-7.63 (m, 2H), 7.44 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.07 (d, *J* = 2.8 Hz, 1H), 4.54 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 159.9, 146.4, 145.4, 144.4, 141.7 (d, *J* = 1.4 Hz), 133.0, 130.8 (q, *J* = 32.5 Hz), 129.8, 128.8, 126.2 (q, *J* = 2.5 Hz), 125.8 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 272.3 Hz), 123.1, 121.9, 102.9, 62.3, 55.7, 14.5.

Ethyl 4-(2,4-dimethoxyphenyl)-6-methoxyquinoline-2-carboxylate (4e).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Pale yellow solid, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 9.2 Hz, 1H), 8.05 (s, 1H), 7.38 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.24-7.17 (m, 1H), 6.91 (d, *J* = 2.8 Hz, 1H), 6.67-6.61 (m, 2H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 3H), 3.77 (s, 3H), 3.70 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 161.6, 159.2, 157.9, 145.5, 145.4, 144.2, 132.6, 131.9, 130.4, 123.0, 122.7, 119.4, 104.9, 103.9, 99.0, 62.1, 55.6, 55.5, 14.5.

Ethyl 6-methoxy-4-(m-tolyl)quinoline-2-carboxylate (4f).¹⁵ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). White solid, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 9.3 Hz, 1H), 8.08 (s, 1H), 7.46-7.40 (m, 2H), 7.37-7.29 (m, 3H), 7.23 (d, *J* = 2.8 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 2.46 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 159.6, 148.3, 145.5, 144.5, 138.7, 138.0, 132.8, 130.1, 129.5, 129.4, 128.7, 126.5, 122.8, 121.9, 103.5, 62.2, 55.6, 21.6, 14.5.

Ethyl 4-(3-chlorophenyl)-6-methoxyquinoline-2-carboxylate (4g).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Yellow solid, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.3 Hz, 1H), 8.06 (s, 1H), 7.59-7.56 (m, 1H), 7.48-7.40 (m, 3H), 7.38-7.35 (m, 1H), 6.75 (d, *J* = 2.8 Hz, 1H), 4.57-4.51 (m, 2H), 3.76 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 159.7, 145.5, 145.4, 144.2, 136.6, 133.3, 132.8, 131.4, 130.2, 130.1, 129.4, 127.2, 123.1, 122.4, 103.4, 62.2, 55.7, 14.5.

Ethyl (E)-6-methoxy-4-(prop-1-en-1-yl)quinoline-2-carboxylate (4h).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent).

White solid, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21-8.16 (m, 2H), 7.40 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.29 (d, *J* = 2.8 Hz, 1H), 7.03-6.96 (m, 1H), 6.64-6.55 (m, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 2.06 (dd, *J* = 6.7, 1.8 Hz, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 159.3, 145.6, 144.2, 143.3, 133.8, 132.8, 128.5, 125.7, 122.7, 117.8, 101.3, 62.1, 55.7, 19.3, 14.5.

Ethyl 6-methoxy-4-(naphthalen-1-yl)quinoline-2-carboxylate (4i).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Pale yellow solid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 9.3 Hz, 1H), 8.19 (s, 1H), 8.04-7.96 (m, 2H), 7.88-7.94 (m, 2H), 7.63 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.60-7.52 (m, 2H), 7.43 (dd, *J* = 9.3, 2.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 159.6, 148.0, 145.4, 144.4, 135.4, 133.4, 133.1, 132.8, 129.3, 128.7, 128.4, 128.3, 127.9, 127.0, 126.9, 126.8, 122.9, 122.1, 103.3, 62.1, 55.5, 14.5.

Ethyl 2-methoxy-7,8-dihydrobenzo[k]phenanthridine-6-carboxylate (4j).⁹ Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 8/1 to 4/1 as eluent). Pale yellow solid, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 9.2 Hz, 1H), 7.99-7.92 (m, 1H), 7.77 (d, *J* = 2.8 Hz, 1H), 7.44-7.33 (m, 4H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 3H), 2.97-2.94 (m, 2H), 2.86–2.76 (m, 2H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 159.3, 146.7, 143.5, 140.4, 140.3, 132.4, 132.1, 130.6, 129.0, 128.5, 128.2, 126.42, 126.40, 121.6, 103.5, 62.0, 55.6, 28.9, 25.8, 14.4.

Ethyl (4-(2-chlorophenyl)-6-methoxyquinoline-2-carbonyl)glycinate (4k). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Yellow solid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (t, *J* = 5.5 Hz, 1H), 8.15 (s, 1H), 8.09 (d, *J* = 9.2 Hz, 1H), 7.57 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.49-7.38 (m, 3H), 7.35 (dd, *J* = 7.1, 2.2 Hz, 1H), 6.76 (d, *J* = 2.8 Hz, 1H), 4.38-4.19 (m, 4H), 3.77 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 165.1, 159.4, 146.5, 145.9, 143.1, 136.8, 133.3, 131.9, 131.4, 130.1, 130.0, 129.4, 127.1, 123.1, 120.2, 103.6, 61.7, 55.7, 41.7, 14.4. HRMS (ESI) calcd for C₂₁H₁₉ClN₂O₄Na (M+Na⁺) 421.0926, found 421.0928.

Methyl (4-(2-chlorophenyl)-6-methoxyquinoline-2-carbonyl)-L-alaninate (41). Purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 4/1 to 2/1 as eluent). Yellow solid, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.1 Hz, 1H), 8.18-8.08 (m, 2H), 7.56 (dd, *J* = 7.3, 2.0 Hz, 1H), 7.49-7.37 (m, 3H), 7.37-7.33 (m, 1H), 6.76 (t, *J* = 2.3 Hz, 1H), 4.95-4.81 (m, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 1.61 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 164.4, 159.3, 146.6, 145.9, 143.0, 136.8, 131.9, 131.4, 130.10, 130.03, 130.00, 129.4, 127.1, 123.1, 120.2, 103.6, 55.7, 52.6, 48.3, 18.7. HRMS (ESI) calcd for C₂₁H₁₉ClN₂O₄K (M+K⁺) 437.0665, found 437.0670.

6. References

- 1. J. Xie and Z.-Z. Huang, Angew. Chem., Int. Ed., 2010, 49, 10181-10185.
- R. Martín-Rapún, S. Sayalero and M. A. Pericàs, *Green Chem.*, 2013, 15, 3295-3301.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, D.01, Gaussian, Inc., Wallingford CT, 2009.
- 4. Parr, R. G.; Yang, W. *Density-functional Theory of Atoms and Molecules*; Oxford University Press: New York, 1989.
- a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; b) C. Lee, W. Yang, R. G. Parr Phys. Rev. B, 1988, 37, 785–789.
- C. Y. Legault, CYLVIEW, 1.0b, Université de Sherbrooke, 2009; http://www.cylview.org.
- 7. Y. Zhao, D. G. Truhlar, J. Phys. Chem. Lett., 2008, 112, 1095-1099.
- D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, D. Truhlar, J. Chem. Theory Comput., 2010, 6, 2071-2085.
- 9. X. Yang, L. Li, Y. Li and Y. Zhang, J. Org. Chem., 2016, 81, 12433–12442.
- J. Wang, L. Li, Y. Guo, S. Li, S. Wang, Y. Li and Y. Zhang, Org. Biomol. Chem., 2020, 18, 8179-8185.
- W. Jiang, Y. Wang, P. Niu, Z. Quan, Y. Su and C. Huo, Org. Lett., 2018, 20, 4649-4653.
- S. Li, X. Yang, Y. Wang, H. Zhou, B. Zhang, G. Huang, Y. Zhang and Y. Li, *Adv. Synth. & Catal.*, 2018, 360, 4452-4456.

- X. W. Gao, Q. Y. Meng, J. X. Li, J. J. Zhong, T. Lei, X. B. Li, C. H. Tung and L. Z. Wu, *Acs Catal.*, 2015, 5, 2391-2396.
- T. Abe, R. Nakajima, T. Yamashiro and D. Sawada, J. Nat. Prod., 2022, 85, 2122-2125.
- 15. H. Huang, H. Jiang, K. Chen and H. Liu, J. Org. Chem., 2009, 74, 5476-5480.
- 16. X. Jia, F. Peng, C. Qing, C. Huo and X. Wang, Org. Lett., 2012, 14, 4030-4033.

7. Copies of ¹H and ¹³C NMR Spectra

R8.2950 R8.2720 R8.2720 R5527 7.5568 7.5568 7.5551 7.5521 7.5521 7.55115 7.75115 7

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ò

S57

26.7073 25.9613 25.5455 24.1501

8.2838 8.2806 8.82606 8.82606 8.82606 8.82606 8.82606 7.55543 7.75543 7.75543 7.75543 7.75543 7.75565 7.75533 7.75565 7.75533 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75593 7.75949 7.75953 7.75954

S71

S73

S75

S85