Supplementary Information

Polyacrylamide gel as a new embedding media for the enhancement of metabolite MALDI imaging

Chenyu Yang,^{‡ab} Ran Wu,^{‡ab} Haiqiang Liu,^{‡ab} Liang Qin,^{ab} Lulu Chen,^{ab} Liang Qin,^{ab} Hualei Xu,^{ab} Hao Hu,^{ab} Jinrong Li,^{ab} Hua Guo,^{ab} Yiyang Shi,^{ab} Dongxu Jiang,^{ab} Qichen Hao,^{ab} Jinchao Feng,^b Yijun Zhou,^b Xiangyi Liu,^{*c} Gaopeng Li,^{*d} and Xiaodong Wang^{*ab}

^a Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.

^bCentre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.

[°] Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

^d General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China.

‡C. Y., R. W., and H. L. contributed equally to this manuscript.

*Corresponding Authors:

Xiaodong Wang – Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission; Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China #27 Zhongguancun South Avenue, Beijing 100081, China

Email: Xiaodong@muc.edu.cn

Gaopeng Li – General Surgery Department, Shanxi Bethune Hospital #99 Longcheng Street, Taiyuan 030032, China Email: malone2001@163.com

Xiangyi Liu – Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University #8 Chongwenmen Inner St, Beijing 100730, China. Email: liuxiangyi@ccmu.edu.cn

Contents

Supplementary InformationEXPERIMENTAL SECTION
Supplementary Information Figure S1. Comparison of mass spectra of two matrices (2-MBT for
positive ion mode, MEK for negative ion mode) with and without PAAG by (+/-)MALDI-TOF MS
Supplementary Information Figure S2. Comparison of the morphological maintenance effects of five
embedding media (i.e., OCT, ice, agarose, gelatin, and PAAG) on rat liver tissue sectioning. The section
thickness is $10 \mu\text{m}$
Supplementary Information Figure S3. Comparison of the minimum thickness of intact tissue
sections of Atlantic salmon eyeballs embedded with gelatin, agarose, OCT, and PAAG, respectively.
Supplementary Information Figure S4. Comparison of metabolites detected in rat liver tissues by
MALDI-TOF MS in the positive and negative ion modes. Two compounds of 2-MBT and MEK were
used as the positive and negative matrices, respectively. The targeted samples of rat liver tissues were
embedded with four media, including ice, agarose, gelatin, and PAAG. (A-C) and (D-F) means the mass
spectra acquired from three biological replicates
Supplementary Information Figure S5. Comparison of metabolites detected from Atlantic salmon
eyeball tissue sections by (+/–)MALDI-TOF MS using 2-MBT and MEK as the positive and negative
matrices, respectively. Before tissue sectioning, the Atlantic salmon eyeballs were embedded with
different media, including OCT, agarose, gelatin, and PAAG, respectively, the data showed in (C) and
(D) were the average signal intensities statistically calculated from three biological replicates S-11
Supplementary Information Figure S6. Comparison of the numbers of metabolite ion signals detected
in the serial tissue sections of rat liver without embedding, and embedded with ice, agarose, gelatin, and
PAAG, respectively. The data showed in (A) and (B) were the average signal numbers statistically
calculated from three biological replicates
Supplementary Information Figure S7. (A) and (B) Comparison of metabolites detected from
Atlantic salmon eyeball tissue sections via (+/-) MALDI-TOF MS using 2-MBT and MEK as the
positive and negative matrices, respectively. Before tissue sectioning, the eyeballs were embedded with
different media, including OCT, agarose, gelatin, and PAAG, respectively. (C) and (D) Data derived
from (A) and (B), respectively, showing the average signal intensities statistically calculated from three
biological replicates
Supplementary Information Figure S8. Comparison of the number of metabolite ion signals detected
in the serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and
PAAG, respectively. The data showed in (A) and (B) were the average signal numbers statistically
calculated from three biological replicates
Supplementary Information Figure S9. The heat map of the ion signal intensities of metabolites

detected in serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG media, respectively, by (+)MALDI-TOF MS using 2-MBT as the matrix (n=3×3).....S-15 Supplementary Information Figure S10. The heat map of the ion signal intensities of metabolites detected in serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG media, respectively, by (-)MALDI-TOF MS using MEK as the matrix $(n=3\times3)$S-16 Supplementary Information Table S1. Properties of PAAG embedding for MALDI-MSI, compared Supplementary Information Table S2. Comparison of metabolite ion signals detected in the tissue sections of rat liver embedded with or without ice, agarose, gelatin, and PAAG, by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix (n=3×3).S-18 Supplementary Information Table S3. Comparison of metabolite ion signals detected in the tissue sections of rat livers embedded with or without ice, agarose, gelatin, and PAAG, by (-)MALDI-TOF/TOF MS using MEK as the matrix (n=3×3).S-23 Supplementary Information Table S4. Comparison of metabolite ion signals detected in the tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG, respectively, by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix (n=3×3).....S-30 Supplementary Information Table S5. Comparison of metabolite ion signals detected in the tissue sections of Atlantic salmon eveballs embedded with OCT, agarose, gelatin, and PAAG, respectively, by (-)MALDI-TOF/TOF MS using MEK as the matrix (n=3×3).....S-38 Supplementary Information Table S6. Metabolites detected and assigned in PAAG embedded Atlantic salmon eyeball tissue sections by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix. S-48 Supplementary Information Table S7. Metabolites detected and assigned in PAAG embedded

Author Contribution Statement

X. W., X. L., and G. L. conceived the ideas; C. Y., R. W., H. L., and Q. H. carried out the MALDI-MSI experiments; C. Y., R. W., and H. L. performed the MS data analysis with the help of L. Q., L. C., H. X., H. H., and J. L.; C. Y., R. W., and H. L. wrote the initial manuscript with help of H. G., Y. S., D. J., and Q. H.; J F., Y. Z., G. L., X. L., and X. W. participated in the scientific discussion and manuscript revision; X. W., X. L., and G. L. supervised the work of C. Y., R. W., H. L., L. Q., L. C., H. X., H. H., J. L., H. G., Y. S., D. J., and Q. H.:

Supplementary Information--EXPERIMENTAL SECTION

Reagents and Materials. Acrylamide (AM) and bis-acrylamide (BIS) were purchased from Amersco Inc. (OH, USA). Gelatin and agarose were purchased from Sigma-Aldrich (St. Louis, MO, USA). OCT compound was purchased from Leica Biosystems (Nussloch, Germany). Two matrices of 2-Mercaptobenzothiazole (2-MBT) and Michler's ethylketone (MEK, 4,4'-bis(diethylamino)benzophenone) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water was obtained from a Milli-Q system (Millipore USA). All other chemicals (reagent grade or suitable chemical purity) not mentioned were obtained from Merck (Darmstadt, Germany). The rat livers were obtained from 8-week-old adult male Sprague–Dawley rats (Shanghai Super-B&K Laboratory Animal Corp. Ltd., Shanghai, China). The eyeballs were obtained from Atlantic salmon (*Salmo salar*) (Sidaokou aquatic product wholesale market, Beijing, China). All tissue samples were flash-frozen by slowly immersing them in liquid nitrogen to avoid shattering. The use of animal organs for this study was approved by the Ethics Committee of the College of Life and Environmental Sciences, Minzu University of China.

Optimization of PAAG Solution Composition. The concentration of PAAG was prepared at 2%, 4%, 8%, and 12% (AM:BIS = 20:1). Rat livers were embedded in PAAG with different concentrations and then sectioned for the maintenance effect evaluation of PAAG.

Embedding Media Preparation. Four embedding media were prepared in this study, including 4% PAAG, 10% gelatin, 1% agarose, and OCT. For PAAG embedding media preparation, the 500-mL 4% PAAG (AM:BIS=20:1) stock solution was prepared as follows: 19.05 g AM and 0.95 g BIS were dissolved in ultrapure water and diluted to 500 mL at room temperature, then the stock solution should be transferred to a brown bottle for dark storage at 4 °C. The whole preparation process does not require heating. N,N,N',N'-tetramethyl ethylenediamine and ammonium persulfate were added into the PAAG solution with the final concentrations of 0.0001% and 0.2%, respectively, before being used as an embedding medium. Gelatin and agarose were prepared by pouring the solids into a 50-mL beaker and adding ultrapure water. The beakers were then heated in a standard microwave oven without boiling over, with stirring, until the solids were completely dissolved, agarose need to be cooled to about 40 °C and gelatin to about 30 °C before being used as embedding media.

Sample Preparation. Suitable containers were prepared and filled with the media at the bottom before tissues were added. The tissues were placed on the surfaces of the solidified media, and the solution was poured into the container along the wall. After the media solidified, flash-frozen was carried out. The temperatures of agarose and gelatin were strictly controlled during the entire process.

Tissue Sectioning and Matrix Coating. According to previous studies, all the samples were sectioned at the chamber temperature of -20 °C.^{1,2} All the selected fresh frozen tissue samples were sectioned into $12 \mu m$ (rat liver) and 20 μm (Atlantic salmon eyeballs) thickness slices in a Leica CM1860 cryostat (Leica Microsystems Inc., Wetzlar, Germany) After sectioning, all these tissue slices were immediately thaw-mounted on the indium tin oxide (ITO)-coated microscope glass slides purchased from Bruker Daltonics (Bremen, Germany). These tissue sections were coated with 2-MBT and MEK, respectively, by a GET-Sprayer (I) (HIT Co., Ltd, Beijing, China). 2-MBT was prepared at a concentration of 12 mg/mL in a mixed MeOH: water: formic acid (FA) (80: 20: 0.2, v/v/v) solution. MEK was prepared at a concentration of 12 mg/mL in 90:10 MeOH/water containing 1% NH₃·H₂O. The matrix solutions were sprayed ten cycles (5 s spray, and 45 s drying time) on the surfaces of the

rat liver and Atlantic salmon eyeball tissue sections to pre-seed a thin layer of matrix. After air-drying in a vented fume hood, the matrix solutions were evenly sprayed with fifty more cycles on the same tissue sections.

MALDI-MS. All the MS analysis was performed on an Autoflex Speed MALDI time-of-flight (TOF)/TOF mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with a solid-state Smartbeam Nd: YAG UV laser (355 nm, Azura Laser AG). The laser impulse energy was approximately 180 mJ, and the laser repetition rate was 2000 Hz. For metabolites *in situ* detection and imaging, mass spectra were acquired over the mass range from 100 to 2000 Da in the positive ion mode and negative ion mode. Two matrices of 2-MBT and MEK were used for the *in-situ* detection and imaging of metabolites from rat livers and Atlantic salmon eyeballs. To obtain MALDI-MS profiling data, mass spectra were recorded from an accumulation of 50 laser scans, each scan was in different regions and accumulated from 500 laser shots for both positive and negative ion modes. For MALDI-MSI, 250 μm laser grating step sizes were used to *in-situ* detect metabolites in Atlantic salmon eyeball tissue sections, and each scan (pixel) was accumulated from 500 laser shots.

Compounds extraction and LC-MS/MS. Lipid extraction were conducted according to a previous work³. Briefly, 20 mg eyeball tissue was homogenized in 200 μ L of water with the aid of two 5-mm stainless steel balls for 30 s x 2 at a vibration frequency of 30 Hz by Retsch MM400 mixer (Retsch GmbH, Haan, Germany). Then, 800 μ L of a mixed chloroform-methanol (1:3, v/v) solvent was added, followed by another 30-s homogenization step. After homogenization, the tube was centrifuged at 4,000 x g and 4°C for 20 minutes (Beckman Coulter Allegra X-22R centrifuge Brea, CA). The supernatants were collected and mixed with 250 μ L of chloroform and 100 μ L of water. After vortex mixing and centrifugation at 10,600 x g for 5 min, the lower organic phase in each tube was carefully transferred to a new tube and then dried in a Savant SPD1010 speed-vacuum concentrator (Thermo Electron Corporation, Waltham, MA) and stored at -80°C until used.

Expect for lipids, other metabolites were extracted as described by Nam *et al.*⁴. One mL of methanol/water (8:2, v/v) was added to 100 mg of eyeball tissue (liquid nitrogen grinding). The mixture was extracted in an ice water bath for 15 min and centrifuged at 20,000 x g for 10 min at 4°C. Take the supernatant and stored at -80°C until used.

Structural confirmation of the most detected mass-matched compounds was conducted using a Waters ACQUITY UPLC system coupled to a Waters Synapt HDMS quadrupole-time-of-flight (Q-TOF) mass spectrometer (Beverly, MA). The dried extract residues were dissolved in 100 μ L of chloroform and 8 μ L were injected onto a Waters Atlantis® Atlantis C¹⁸ reverse phase column (150 mm × 4.6 mm, 5 μ m) for different compounds separations. LC/MS data were collected in both positive and negative ESI modes, with respective injections. MS/MS experiments were conducted using collision-induced dissociation (CID) at 10, 20, and 40V collision energies. Waters. *MassLynx software* (version 4.1) suite were used to process UPLC-MS data.

Data Analysis. For MS profiling data analysis, the Bruker *FlexAnalysis 3.4* software was used for the preliminary mass spectral viewing and processing, The peak lists generation were derived by setting the signal-to-noise(S/N) ratio of 3. The processed MS data were uploaded to *MetaboAnalyst* for further statistical analysis, after removing matrix peak interference. The ion maps were reconstructed by *FlexImaging 4.1* software (Bruker). With the aid of three databases, LIPID MAPS (https://www.lipidmaps.org/), HMBD (https://hmdb.ca/), and METLIN (http://metlin.scripps.edu), metabolite matching were indicated on the ion signal peak lists within the allowable

mass error range of ± 10 ppm. Three ion adduct forms of $[M+H]^+$, $[M+Na]^+$, and $[M+K]^+$ for positive ion mode, and one ion adduct form of $[M-H]^-$ for negative ion mode, were taken into consideration for the metabolite identification.

Hematoxylin and Eosin (H&E) Staining. H&E staining was performed according to a previous study to obtain standard histological optical images⁵.

Supplementary Information—FIGURES

Fig. S1 Comparison of mass spectra of two matrices (2-MBT for positive ion mode, MEK for negative ion mode) with and without PAAG by (+/-)MALDI-TOF MS.

Fig. S2 Comparison of the morphological maintenance effects of five embedding media (*i.e.*, OCT, ice, agarose, gelatin, and PAAG) on rat liver tissue sectioning. The section thickness is $10 \mu m$.

Fig. S3 Comparison of the minimum thickness of intact tissue sections of Atlantic salmon eyeballs embedded with gelatin, agarose, OCT, and PAAG, respectively.

Fig. S4 Comparison of metabolites detected in rat liver tissues by MALDI-TOF MS in the positive and negative ion modes. Two compounds of 2-MBT and MEK were used as the positive and negative matrices, respectively. The targeted samples of rat liver tissues were embedded with four media, including ice, agarose, gelatin, and PAAG. (A-C) and (D-F) means the mass spectra acquired from three biological replicates.

Fig. S5 Comparison of metabolites detected from rat liver tissue sections by (+/-)MALDI-TOF MS using 2-MBT and MEK as the positive and negative matrices, respectively. Before tissue sectioning, the rat liver tissues were embedded with different media, including ice, agarose, gelatin, and PAAG. One rat liver tissue without embedded medium was used as the control, the data showed in (C) and (D) were the average signal intensities statistically calculated from three biological replicates.

Fig. S6 Comparison of the numbers of metabolite ion signals detected in the serial tissue sections of rat liver without embedding, and embedded with ice, agarose, gelatin, and PAAG, respectively. The data showed in (A) and (B) were the average signal numbers statistically calculated from three biological replicates.

Fig. S7 (A) and (B) Comparison of metabolites detected from Atlantic salmon eyeball tissue sections *via* (+/-) MALDI-TOF MS using 2-MBT and MEK as the positive and negative matrices, respectively. Before tissue sectioning, the eyeballs were embedded with different media, including OCT, agarose, gelatin, and PAAG, respectively. (C) and (D) Data derived from (A) and (B), respectively, showing the average signal intensities statistically calculated from three biological replicates.

Fig. S8 Comparison of the numbers of metabolite ion signals detected in the serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG, respectively. The data showed in (A) and (B) were the average signal numbers statistically calculated from three biological replicates.

Fig. S9 The heat map of the ion signal intensities of metabolites detected in serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG media, respectively, by (+)MALDI-TOF MS using 2-MBT as the matrix (n=3×3).

Fig. S10 The heat map of the ion signal intensities of metabolites detected in serial tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG media, respectively, by (-)MALDI-TOF MS using MEK as the matrix (n=3×3).

Supplementary Information---Tables

Embedding medium	Preparation	Physical support features	Adhesivity	Limitations	Acceptability
Ice (Pure ddH2O)	Ready to use	Hard	Poor	Not evaluated	Poor
OCT	Ready to use	Pliable	Good	PEG/PVA introduce polymer peaks into spectra, smearing causing ion suppression	Poor
1% Agarose	Fast preparation	Hard	Poor	May cause molecular degradation during heated embedding process	Acceptable
10% Gelatin	Fast preparation	Hard	Poor	May cause molecular degradation during heated embedding process	Acceptable
PAAG	Ready to use	Pliable	Good	Not observed	Good

Table S1. Properties of PAAG embedding for MALDI-MSI, compared with four kinds of commonly-used media.

Detected	ed Rat liver tissue sections				
metabolite ion signals ^{a)} (m/z)	Control (No embedding)	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
104.277		\checkmark	\checkmark	\checkmark	\checkmark
109.132					\checkmark
110.200					\checkmark
112.206					\checkmark
114.409	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
115.254					\checkmark
117.267					\checkmark
118.202	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
120.168					\checkmark
124.091					\checkmark
125.069	\checkmark	\checkmark	\checkmark		\checkmark
133.199					\checkmark
136.063	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
138.053					\checkmark
140.876	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
146.143		\checkmark	\checkmark	\checkmark	
147.002	\checkmark				\checkmark
156.065	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
162.109	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
162.962	\checkmark				\checkmark
166.028	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
166.943	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
167.995	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
168.997	\checkmark	\checkmark	\checkmark		\checkmark
170.000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
170.597		\checkmark			\checkmark
181.980					\checkmark
184.056	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
189.962		\checkmark	\checkmark	\checkmark	\checkmark
193.989	\checkmark				\checkmark
198 062	\checkmark	\checkmark	\checkmark		\checkmark

Table S2. Comparison of metabolite ion signals detected in the tissue sections of rat liver embedded with or
without ice, agarose, gelatin, and PAAG, by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix (n=3×3).

Detected	Rat liver tissue sections				
metabolite ion	Control (No				
signals ^{a)}	embedding)	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
(m/z)	embedding)				
198.925					
199.943		\checkmark	\checkmark		\checkmark
201.937		\checkmark	\checkmark	\checkmark	\checkmark
205.952	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
222.005	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
224.051					\checkmark
224.995					\checkmark
227.019					\checkmark
229.869	\checkmark		\checkmark		\checkmark
231.874					\checkmark
241.964					\checkmark
243.966	\checkmark		\checkmark	\checkmark	\checkmark
256.982					\checkmark
258.086	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
259.013	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
268.997	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
270.006	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
271.002	\checkmark				
273.921					\checkmark
275.957	\checkmark				\checkmark
290.988	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
296.055	\checkmark	\checkmark	\checkmark	\checkmark	
300.979	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
302.986	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
325.214	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
332.963	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
334.982	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
336.968	\checkmark	\checkmark			\checkmark
364.948	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
366.944	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
390.027	\checkmark	\checkmark			\checkmark
392.047	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
396.923		\checkmark	\checkmark		

Detected	Rat liver tissue sections				
metabolite ion	Constant (No				
signals ^{a)}	embedding)	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
(m/z)	interesting)				
398.931					
400.927	\checkmark			\checkmark	
424.023					\checkmark
440.892	\checkmark	\checkmark	\checkmark		\checkmark
442.893	\checkmark	\checkmark	\checkmark		\checkmark
465.977		\checkmark			\checkmark
478.348					\checkmark
496.378	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
497.334	\checkmark	\checkmark	\checkmark		
498.218	\checkmark	\checkmark		\checkmark	\checkmark
499.944	\checkmark	\checkmark	\checkmark		\checkmark
513.279	\checkmark				\checkmark
520.354		\checkmark		\checkmark	\checkmark
522.376		\checkmark	\checkmark	\checkmark	\checkmark
524.406	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
529.913		\checkmark			\checkmark
534.298			\checkmark	\checkmark	\checkmark
544.243	\checkmark	\checkmark	\checkmark		\checkmark
557.216	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
572.097	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
588.999					\checkmark
614.203	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
616.225	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
630.204					\checkmark
631.207	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
632.217	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
646.173					\checkmark
648.180	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
750.145			\checkmark	\checkmark	\checkmark
751.951	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
753.911		\checkmark	\checkmark	\checkmark	\checkmark
756.511	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
758.570	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Detected	Rat liver tissue sections				
metabolite ion	Control (No embedding)	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
760.593			\checkmark		\checkmark
772.499	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
775.894	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
781.147	\checkmark	\checkmark	\checkmark		\checkmark
782.505	\checkmark	\checkmark		\checkmark	\checkmark
784.588	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
786.612	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
796.489	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
797.153			\checkmark		\checkmark
798.522	\checkmark	\checkmark	\checkmark	\checkmark	
799.054			\checkmark		\checkmark
800.111				\checkmark	\checkmark
804.543	\checkmark	\checkmark			\checkmark
806.577	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
808.581		\checkmark	\checkmark	\checkmark	\checkmark
810.614	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
812.734	\checkmark	\checkmark			\checkmark
815.130		\checkmark		\checkmark	\checkmark
818.511		\checkmark	\checkmark	\checkmark	\checkmark
820.502	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
822.520	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
824.467	\checkmark	\checkmark		\checkmark	\checkmark
828.533	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
830.535	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
831.040		\checkmark			\checkmark
832.524	\checkmark	\checkmark			\checkmark
834.579	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
838.553	\checkmark				
842.986		\checkmark	\checkmark		\checkmark
844.458	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
846.519	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
847.018		\checkmark			\checkmark
848.521	\checkmark	\checkmark		\checkmark	\checkmark

Detected		Rat liver tissue sections			
metabolite ion signals ^{a)} (m/z)	Control (No embedding)	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
850.532			\checkmark	\checkmark	
851.482	\checkmark				
852.444	\checkmark			\checkmark	\checkmark
868.425	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
870.447					\checkmark
872.478	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
874.482	\checkmark				
925.463	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
946.157	\checkmark	\checkmark	\checkmark		\checkmark
948.106	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
950.116	\checkmark		\checkmark	\checkmark	\checkmark
953.510		\checkmark			\checkmark
973.474	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
980.008	\checkmark		\checkmark	\checkmark	\checkmark
1374.009			\checkmark		
1401.770	\checkmark				
1569.135	\checkmark				
Total number of					
detected	104	100	93	85	135
compounds					

a) Detected metabolite ion signal data were duplicate values obtained from three parallel detection of each group (n=3*3).

Detected metabolite ion	Rat liver tissue sections					
signals ^{a)} (<i>m/z</i>)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
100.248			\checkmark			
101.247	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
104.239					\checkmark	
109.201					\checkmark	
110.164		\checkmark	\checkmark	\checkmark	\checkmark	
111.171	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
113.166	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
115.176			\checkmark		\checkmark	
116.190		\checkmark	\checkmark		\checkmark	
119.189	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
120.167		\checkmark	\checkmark			
121.133			\checkmark			
122.131	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
123.115	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
124.139	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
125.131		\checkmark	\checkmark	\checkmark	\checkmark	
126.137	\checkmark		\checkmark		\checkmark	
127.183				\checkmark	\checkmark	
128.153					\checkmark	
129.177					\checkmark	
133.127	\checkmark	\checkmark	\checkmark		\checkmark	
134.118	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
135.111	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
137.095	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
140.094	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
142.127			\checkmark	\checkmark	\checkmark	
143.126			\checkmark		\checkmark	
145.146		\checkmark	\checkmark		\checkmark	
146.126	\checkmark		\checkmark		\checkmark	
148.152	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
150.089	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
151.086	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Table S3. Comparison of metabolite ion signals detected in the tissue sections of rat livers embedded with or without ice, agarose, gelatin, and PAAG, by (–)MALDI-TOF/TOF MS using MEK as the matrix ($n=3\times3$).

Detected metabolite ion	Rat liver tissue sections				
signals a) (m/7)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
152.068		√	√	√	√
153.057			\checkmark		
158.062					
159.073					
161.089	·		\checkmark	\checkmark	
163.066		\checkmark	\checkmark		\checkmark
164.143					
166.025			\checkmark		
168.050		\checkmark			
171.043			\checkmark		
178.043				·	
179.037		\checkmark		\checkmark	
180.054		۰. م			√
191.042			·	·	
192.118				\checkmark	
193.049				·	\checkmark
194 041	·				√
195.050			\checkmark	\checkmark	√
196.038		\checkmark			√
198.880	·		·	·	
207.060			\checkmark		
208.048			·		۰. ا
209.074				N	1
213.038			\checkmark	v	J
213.038	J			N	٦ ٦
221.030	Ŷ	N		v	٦ ٦
223.050	J	N		N	N
223.030	1	J	بر ما	N	1
235.036	v	Ŷ	م ا	v	J
237.058	N	N	1	N	N
227.030	¥	Ŷ	r V	v V	2
240.090	1	2	v V	N V	N N
240.272	¥	v	v V	v	× ~/
247.029		2	N N	2	N 2
249.045		N	N	N	N

Detected metabolite ion	Rat liver tissue sections				
signals ^{a)} (<i>m</i> / <i>z</i>)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
251.068		ν			√
252.083	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
253.130		\checkmark	\checkmark		\checkmark
255.191	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
258.985	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
262.891	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
265.083	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
266.106	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
267.106	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
273.786	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
274.545		\checkmark	\checkmark	\checkmark	\checkmark
277.122			\checkmark		\checkmark
279.168	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
281.180	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
283.205	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
291.033	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
293.047	\checkmark	\checkmark	\checkmark		\checkmark
295.090		\checkmark	\checkmark	\checkmark	\checkmark
296.225	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
299.111	\checkmark	\checkmark			\checkmark
301.851					\checkmark
302.800					\checkmark
303.253	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
303.681		\checkmark			\checkmark
305.274	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
307.245	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
309.252	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
311.229			\checkmark		\checkmark
314.997		\checkmark			
315.064	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
321.209	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
322.736					\checkmark
323.212	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
323.754					

Detected motabolita ion	ed Rat liver tissue sections				
signals ^{a)}	Control (No	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
(m/z)	embedding	-			-
325.239	\checkmark				
327.239	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
329.261			\checkmark		\checkmark
331.275			\checkmark		\checkmark
339.200	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
349.208			\checkmark		\checkmark
353.262	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
355.070	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
362.239	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
370.201			\checkmark		\checkmark
371.203	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
384.225			\checkmark		\checkmark
386.242	\checkmark		\checkmark		\checkmark
388.256	\checkmark		\checkmark	\checkmark	\checkmark
391.234	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
399.226				\checkmark	\checkmark
409.254	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
414.268	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
417.248	\checkmark			\checkmark	\checkmark
419.264	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
428.281			\checkmark	\checkmark	\checkmark
430.194					\checkmark
433.246				\checkmark	\checkmark
435.263	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
437.258	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
442.283	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
447.274	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
452.284	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
457.229	\checkmark				
459.255	\checkmark				
462.299	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
463.266	\checkmark		\checkmark	\checkmark	\checkmark
465.298	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
470.288	\checkmark	\checkmark		\checkmark	\checkmark

Detected metabolite ion	Rat liver tissue sections					
signals a) (m/z)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
472.283	√		√		√	
473.264						
474.242			\checkmark		\checkmark	
475.266	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
478.298		\checkmark	\checkmark	\checkmark	\checkmark	
480.318	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
485.981			\checkmark		\checkmark	
488.251	\checkmark		\checkmark		\checkmark	
498.312	\checkmark		\checkmark	\checkmark	\checkmark	
500.296	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
502.279	\checkmark		\checkmark	\checkmark	\checkmark	
504.273	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
506.323	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
508.325	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
514.312	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
518.318	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
524.292	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
532.330	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
546.342	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
559.359			\checkmark	\checkmark	\checkmark	
561.342			\checkmark		\checkmark	
571.300	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
574.380			\checkmark	\checkmark	\checkmark	
576.368	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
581.319	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
583.340	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
587.362	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
589.386	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
591.405			\checkmark	\checkmark	\checkmark	
599.338	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
603.366		\checkmark	\checkmark	\checkmark	\checkmark	
615.400	\checkmark	\checkmark	\checkmark		\checkmark	
617.420	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
619.394			\checkmark			

Detected motabalita ion	Rat liver tissue sections					
signals ^{a)} (m/z)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
642.505	√		\checkmark	\checkmark		
645.431	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
647.432	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
656.528				\checkmark	\checkmark	
671.449		\checkmark	\checkmark		\checkmark	
673.482	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
687.552	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
695.442			\checkmark		\checkmark	
697.477	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
699.500	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
701.519	\checkmark		\checkmark	\checkmark	\checkmark	
714.505	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
716.513	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
719.463	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
721.469	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
722.518			\checkmark			
723.503	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
725.518	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
726.563	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
728.583			\checkmark	\checkmark	\checkmark	
738.502	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
740.524	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
742.540	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
744.541	\checkmark		\checkmark		\checkmark	
745.533	\checkmark		\checkmark	\checkmark	\checkmark	
747.507	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
749.519	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
750.513			\checkmark		\checkmark	
752.581			\checkmark	\checkmark	\checkmark	
762.507	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
764.540	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
766.556	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
770.586	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
771.633				\checkmark	\checkmark	

Detected metabolite ion	Rat liver tissue sections						
signals ^{a)} (m/z)	Control (No embedding	Ice-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
788.538	√		\checkmark	\checkmark	\checkmark		
790.555	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
792.595	\checkmark		\checkmark	\checkmark	\checkmark		
794.604	\checkmark		\checkmark	\checkmark	\checkmark		
797.694	\checkmark		\checkmark	\checkmark	\checkmark		
818.549				\checkmark			
833.554	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
835.565				\checkmark	\checkmark		
857.545	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
859.570	\checkmark		\checkmark	\checkmark	\checkmark		
861.585	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
871.548			\checkmark	\checkmark	\checkmark		
883.525		\checkmark	\checkmark	\checkmark	\checkmark		
885.586	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
887.669	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
909.639	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
911.658	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
913.671		\checkmark	\checkmark	\checkmark	\checkmark		
1207.926	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
1209.922	\checkmark	\checkmark		\checkmark	\checkmark		
1470.302				\checkmark	\checkmark		
1472.409					\checkmark		
1485.748	\checkmark	\checkmark					
Total number of							
detected	152	143	188	166	211		
compounds							

a) Detected metabolite ion signal data were duplicate values obtained from three parallel detection of each group $(n=3\times3)$.

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
104.345		\checkmark	\checkmark	\checkmark	
105.162			\checkmark		
132.182			\checkmark	\checkmark	
136.104	\checkmark	\checkmark	\checkmark	\checkmark	
147.038				\checkmark	
156.107				\checkmark	
166.066				\checkmark	
166.977	\checkmark	\checkmark		\checkmark	
167.993	\checkmark	\checkmark	\checkmark	\checkmark	
169.018	\checkmark	\checkmark		\checkmark	
170.008	\checkmark	\checkmark	\checkmark	\checkmark	
184.057	\checkmark	\checkmark	\checkmark	\checkmark	
189.979	\checkmark	\checkmark	\checkmark	\checkmark	
191.972				\checkmark	
198.067				\checkmark	
199.944				\checkmark	
205.947	\checkmark		\checkmark	\checkmark	
211.945				\checkmark	
227.913				\checkmark	
238.995				\checkmark	
243.889			\checkmark	\checkmark	
253.038				\checkmark	
256.987				\checkmark	
258.080		\checkmark		\checkmark	
259.015	\checkmark	\checkmark	\checkmark	\checkmark	
269.003	\checkmark	\checkmark	\checkmark	\checkmark	
270.010	\checkmark	\checkmark	\checkmark	\checkmark	
275.967				\checkmark	
279.080				\checkmark	
280.079			\checkmark	\checkmark	
291.000	\checkmark	\checkmark		\checkmark	
296.063			\checkmark	\checkmark	

Table S4. Comparison of metabolite ion signals detected in the tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG, respectively, by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix ($n=3\times3$).

Detected metabolite	Atlantic salmon eyeball tissue sections					
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
300.986	\checkmark	\checkmark		\checkmark		
302.996	\checkmark	\checkmark		\checkmark		
312.364				\checkmark		
322.976			\checkmark	\checkmark		
332.962	\checkmark	\checkmark	\checkmark	\checkmark		
334.004		\checkmark		\checkmark		
334.980	\checkmark	\checkmark	\checkmark	\checkmark		
336.976		\checkmark		\checkmark		
346.995		\checkmark		\checkmark		
354.981	\checkmark	\checkmark		\checkmark		
356.982			\checkmark	\checkmark		
364.941				\checkmark		
366.939	\checkmark			\checkmark		
370.943			\checkmark	\checkmark		
386.955	\checkmark		\checkmark	\checkmark		
390.047		\checkmark	\checkmark	\checkmark		
392.066	\checkmark	\checkmark	\checkmark	\checkmark		
396.910	\checkmark	\checkmark	\checkmark	\checkmark		
398.909	\checkmark	\checkmark	\checkmark	\checkmark		
400.402				\checkmark		
400.904				\checkmark		
404.043				\checkmark		
406.075				\checkmark		
424.038	\checkmark	\checkmark	\checkmark	\checkmark		
426.412	\checkmark			\checkmark		
428.455	\checkmark			\checkmark		
436.040	\checkmark					
440.913	\checkmark	\checkmark	\checkmark	\checkmark		
442.889	\checkmark	\checkmark	\checkmark	\checkmark		
456.026	\checkmark	\checkmark	\checkmark	\checkmark		
466.022	\checkmark	\checkmark	\checkmark	\checkmark		
468.013	\checkmark	\checkmark	\checkmark	\checkmark		
468.420	\checkmark		\checkmark	\checkmark		
478.419				\checkmark		
482.415	\checkmark			\checkmark		

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
494.328				\checkmark	
496.375	\checkmark	\checkmark	\checkmark	\checkmark	
497.992		\checkmark	\checkmark	\checkmark	
499.983				\checkmark	
504.435				\checkmark	
508.482	\checkmark	\checkmark	\checkmark	\checkmark	
515.113		\checkmark		\checkmark	
518.379	\checkmark		\checkmark	\checkmark	
522.396	\checkmark	\checkmark	\checkmark	\checkmark	
524.408	\checkmark	\checkmark	\checkmark	\checkmark	
525.117	\checkmark	\checkmark	\checkmark	\checkmark	
529.960	\checkmark	\checkmark	\checkmark	\checkmark	
531.924	\checkmark	\checkmark		\checkmark	
534.360	\checkmark		\checkmark	\checkmark	
540.991	\checkmark	\checkmark	\checkmark	\checkmark	
544.380	\checkmark	\checkmark	\checkmark	\checkmark	
546.366			\checkmark		
550.385		\checkmark			
557.088	\checkmark	\checkmark	\checkmark	\checkmark	
558.974		\checkmark			
560.316			\checkmark		
561.911	\checkmark	\checkmark	\checkmark	\checkmark	
563.868	\checkmark		\checkmark		
568.374	\checkmark	\checkmark	\checkmark	\checkmark	
573.926	\checkmark	\checkmark	\checkmark	\checkmark	
589.041	\checkmark	\checkmark	\checkmark	\checkmark	
590.362	\checkmark	\checkmark	\checkmark	\checkmark	
606.349		\checkmark	\checkmark	\checkmark	
614.266	\checkmark	\checkmark	\checkmark	\checkmark	
615.253		\checkmark		\checkmark	
616.275	\checkmark	\checkmark	\checkmark	\checkmark	
617.329	\checkmark	\checkmark	\checkmark	\checkmark	
630.278		\checkmark	\checkmark	\checkmark	
631.265	\checkmark	\checkmark	\checkmark	\checkmark	
632.270	\checkmark	\checkmark			

Detected metabolite	Atlantic salmon eyeball tissue sections			
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
638.259	\checkmark	\checkmark	\checkmark	\checkmark
639.247	\checkmark		\checkmark	\checkmark
646.279		\checkmark		\checkmark
647.240	\checkmark			
648.260	\checkmark	\checkmark	\checkmark	\checkmark
655.066			\checkmark	\checkmark
675.524		\checkmark	\checkmark	\checkmark
676.593	\checkmark	\checkmark	\checkmark	\checkmark
678.615	\checkmark	\checkmark	\checkmark	\checkmark
683.972	\checkmark		\checkmark	\checkmark
690.525	\checkmark			
697.504		\checkmark	\checkmark	\checkmark
698.561	\checkmark		\checkmark	\checkmark
700.601	\checkmark	\checkmark	\checkmark	\checkmark
702.577			\checkmark	
704.623	\checkmark	\checkmark	\checkmark	\checkmark
706.644	\checkmark	\checkmark	\checkmark	\checkmark
711.924	\checkmark		\checkmark	\checkmark
713.498			\checkmark	
714.558	\checkmark			\checkmark
716.587	\checkmark	\checkmark	\checkmark	\checkmark
718.630	\checkmark	\checkmark	\checkmark	\checkmark
721.980		\checkmark	\checkmark	
724.576	\checkmark			\checkmark
725.569			\checkmark	
726.612	\checkmark	\checkmark	\checkmark	\checkmark
728.620	\checkmark	\checkmark	\checkmark	\checkmark
730.580	\checkmark	\checkmark	\checkmark	\checkmark
732.625	\checkmark	\checkmark	\checkmark	\checkmark
739.998	\checkmark	\checkmark	\checkmark	\checkmark
742.568	\checkmark	\checkmark	\checkmark	\checkmark
744.592	\checkmark	\checkmark	\checkmark	\checkmark
746.575	\checkmark	\checkmark	\checkmark	\checkmark
752.588	\checkmark	\checkmark	\checkmark	\checkmark
754.618	\checkmark	\checkmark	\checkmark	\checkmark

Detected metabolite	olite Atlantic salmon eyeball tissue sections			
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding
756.574		\checkmark	\checkmark	\checkmark
758.574	\checkmark	\checkmark	\checkmark	\checkmark
760.583	\checkmark	\checkmark	\checkmark	\checkmark
766.570	\checkmark	\checkmark	\checkmark	\checkmark
768.588	\checkmark	\checkmark	\checkmark	\checkmark
770.598	\checkmark	\checkmark	\checkmark	\checkmark
772.616	\checkmark	\checkmark	\checkmark	\checkmark
774.620		\checkmark	\checkmark	\checkmark
778.540	\checkmark	\checkmark	\checkmark	
780.547	\checkmark	\checkmark	\checkmark	\checkmark
782.596	\checkmark	\checkmark	\checkmark	\checkmark
786.618	\checkmark	\checkmark	\checkmark	\checkmark
788.635	\checkmark	\checkmark	\checkmark	\checkmark
792.573		\checkmark	\checkmark	\checkmark
794.608	\checkmark	\checkmark	\checkmark	\checkmark
798.582	\checkmark	\checkmark	\checkmark	\checkmark
802.569		\checkmark		
804.382		\checkmark		\checkmark
806.538	\checkmark	\checkmark	\checkmark	\checkmark
808.581	\checkmark	\checkmark	\checkmark	\checkmark
810.627	\checkmark	\checkmark	\checkmark	\checkmark
813.667	\checkmark	\checkmark	\checkmark	\checkmark
814.619		\checkmark		
818.537	\checkmark	\checkmark	\checkmark	\checkmark
820.586		\checkmark		
824.592	\checkmark	\checkmark	\checkmark	\checkmark
826.646	\checkmark	\checkmark	\checkmark	\checkmark
828.542	\checkmark	\checkmark	\checkmark	\checkmark
830.540				\checkmark
832.565	\checkmark	\checkmark	\checkmark	\checkmark
834.555	\checkmark	\checkmark	\checkmark	\checkmark
835.626	\checkmark	\checkmark		\checkmark
842.549		\checkmark		\checkmark
844.514	\checkmark	\checkmark	\checkmark	\checkmark
846.542			\checkmark	\checkmark

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
852.608		\checkmark			
854.568	\checkmark	\checkmark		\checkmark	
856.520	\checkmark	\checkmark	\checkmark	\checkmark	
863.558	\checkmark	\checkmark	\checkmark	\checkmark	
870.620		\checkmark			
872.571		\checkmark	\checkmark	\checkmark	
876.588		\checkmark			
878.427	\checkmark	\checkmark	\checkmark	\checkmark	
900.477	\checkmark	\checkmark	\checkmark		
909.559	\checkmark				
916.631		\checkmark	\checkmark		
925.515		\checkmark	\checkmark	\checkmark	
927.482		\checkmark	\checkmark	\checkmark	
947.988	\checkmark	\checkmark	\checkmark	\checkmark	
950.158		\checkmark			
973.418		\checkmark	\checkmark	\checkmark	
993.581	\checkmark				
995.565	\checkmark				
1001.637		\checkmark			
1018.806		\checkmark	\checkmark		
1040.781		\checkmark	\checkmark		
1043.687		\checkmark			
1045.658		\checkmark	\checkmark		
1183.809		\checkmark			
1185.904		\checkmark			
1231.072		\checkmark	\checkmark	\checkmark	
1255.978			\checkmark		
1279.668			\checkmark	\checkmark	
1281.670			\checkmark	\checkmark	
1328.272		\checkmark	\checkmark		
1347.332			\checkmark	\checkmark	
1373.335	\checkmark	\checkmark		\checkmark	
1375.430	\checkmark	\checkmark	\checkmark	\checkmark	
1382.321	\checkmark				
1396.208		\checkmark		\checkmark	

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
1402.442				\checkmark	
1404.163			\checkmark		
1409.663	\checkmark			\checkmark	
1421.390	\checkmark	\checkmark	\checkmark	\checkmark	
1433.733				\checkmark	
1435.665			\checkmark	\checkmark	
1437.873	\checkmark			\checkmark	
1449.931			\checkmark		
1450.450		\checkmark			
1457.688				\checkmark	
1461.148	\checkmark			\checkmark	
1462.524	\checkmark				
1463.820	\checkmark	\checkmark		\checkmark	
1465.895		\checkmark		\checkmark	
1490.626	\checkmark				
1491.854	\checkmark			\checkmark	
1493.766		\checkmark	\checkmark		
1511.662	\checkmark				
1512.704			\checkmark		
1513.777	\checkmark		\checkmark	\checkmark	
1515.816				\checkmark	
1517.757		\checkmark	\checkmark	\checkmark	
1518.697	\checkmark				
1519.876		\checkmark	\checkmark	\checkmark	
1538.903		\checkmark			
1540.835	\checkmark	\checkmark	\checkmark	\checkmark	
1546.881	\checkmark	\checkmark	\checkmark	\checkmark	
1562.233				\checkmark	
1563.379			\checkmark		
1565.841	\checkmark	\checkmark	\checkmark	\checkmark	
1571.983				\checkmark	
1573.041			\checkmark		
1586.826				\checkmark	
1588.886	\checkmark		\checkmark		
1592.098	\checkmark	\checkmark		\checkmark	

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
1594.593					
1597.955		\checkmark			
1613.495	\checkmark	\checkmark			
1615.614			\checkmark	\checkmark	
1621.258		\checkmark			
1637.710				\checkmark	
1639.442		\checkmark	\checkmark		
1639.615		\checkmark	\checkmark		
1685.375		\checkmark			
Total number of detected compounds	138	161	158	195	

a) Detected metabolite ion signal data were duplicate values obtained from three parallel detection of each group $(n=3\times3)$.

Detected metabolite	Atlantic salmon eyeball tissue sections				
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding	
104.078					
111.027	\checkmark		\checkmark	\checkmark	
113.024	\checkmark	\checkmark	\checkmark	\checkmark	
119.981	\checkmark			\checkmark	
122.019	\checkmark			\checkmark	
123.022	\checkmark			\checkmark	
124.041	\checkmark	\checkmark	\checkmark	\checkmark	
125.044	\checkmark			\checkmark	
130.123					
132.076	\checkmark			\checkmark	
132.910	\checkmark			\checkmark	
134.058	\checkmark		\checkmark	\checkmark	
135.045	\checkmark		\checkmark	\checkmark	
137.065		\checkmark			
138.057	\checkmark	\checkmark		\checkmark	
140.047	\checkmark			\checkmark	
145.109	\checkmark	\checkmark		\checkmark	
146.097	\checkmark	\checkmark	\checkmark	\checkmark	
147.006	\checkmark			\checkmark	
148.126	\checkmark	\checkmark	\checkmark	\checkmark	
150.071	\checkmark	\checkmark	\checkmark	\checkmark	
152.049	\checkmark	\checkmark	\checkmark	\checkmark	
153.049	\checkmark	\checkmark	\checkmark	\checkmark	
154.081	\checkmark	\checkmark	\checkmark	\checkmark	
155.024		\checkmark			
158.048	\checkmark		\checkmark	\checkmark	
159.060	\checkmark		\checkmark	\checkmark	
164.129					
166.025	\checkmark	\checkmark	\checkmark	\checkmark	
168.042	\checkmark	\checkmark	\checkmark	\checkmark	
170.978		\checkmark			
174.092	\checkmark			\checkmark	

Table S5. Comparison of metabolite ion signals detected in the tissue sections of Atlantic salmon eyeballs embedded with OCT, agarose, gelatin, and PAAG, respectively, by (-)MALDI-TOF/TOF MS using MEK as the matrix ($n=3\times3$).

Detected metabolite	Atlantic salmon eyeball tissue sections						
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding			
179.066	\checkmark						
180.073	\checkmark	\checkmark		\checkmark			
182.006	\checkmark	\checkmark	\checkmark	\checkmark			
184.017	\checkmark	\checkmark		\checkmark			
191.057	\checkmark	\checkmark		\checkmark			
192.125	\checkmark			\checkmark			
193.035	\checkmark	\checkmark		\checkmark			
196.071	\checkmark	\checkmark	\checkmark	\checkmark			
197.057		\checkmark	\checkmark				
198.023	\checkmark		\checkmark	\checkmark			
207.088	\checkmark			\checkmark			
209.006	\checkmark			\checkmark			
211.039	\checkmark	\checkmark		\checkmark			
212.055	\checkmark	\checkmark	\checkmark	\checkmark			
213.074	\checkmark	\checkmark	\checkmark	\checkmark			
214.044		\checkmark					
215.109			\checkmark				
223.082	\checkmark	\checkmark		\checkmark			
224.098	\checkmark	\checkmark	\checkmark	\checkmark			
236.051	\checkmark	\checkmark		\checkmark			
241.047		\checkmark	\checkmark				
245.037			\checkmark				
249.069	\checkmark	\checkmark		\checkmark			
251.089	\checkmark	\checkmark	\checkmark	\checkmark			
252.124	\checkmark	\checkmark	\checkmark	\checkmark			
253.194	\checkmark	\checkmark	\checkmark	\checkmark			
255.211	\checkmark	\checkmark	\checkmark	\checkmark			
259.928		\checkmark					
263.069	\checkmark			\checkmark			
264.089	\checkmark			\checkmark			
265.099	\checkmark	\checkmark	\checkmark	\checkmark			
266.116	\checkmark	\checkmark	\checkmark	\checkmark			
267.119	\checkmark	\checkmark	\checkmark	\checkmark			
268.125	\checkmark		\checkmark	\checkmark			
279.112	\checkmark	\checkmark	\checkmark	\checkmark			

Detected metabolite	Atlantic salmon eyeball tissue sections					
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
281.190	\checkmark	\checkmark	\checkmark	\checkmark		
283.208	\checkmark	\checkmark	\checkmark	\checkmark		
291.015	\checkmark	\checkmark	\checkmark	\checkmark		
292.996	\checkmark	\checkmark	\checkmark	\checkmark		
295.107	\checkmark	\checkmark	\checkmark	\checkmark		
296.244	\checkmark	\checkmark	\checkmark	\checkmark		
301.262	\checkmark	\checkmark	\checkmark	\checkmark		
303.263	\checkmark	\checkmark	\checkmark	\checkmark		
307.214	\checkmark	\checkmark		\checkmark		
309.208	\checkmark	\checkmark	\checkmark	\checkmark		
311.189	\checkmark		\checkmark	\checkmark		
321.189	\checkmark	\checkmark	\checkmark	\checkmark		
323.210	\checkmark	\checkmark	\checkmark	\checkmark		
325.236	\checkmark	\checkmark	\checkmark	\checkmark		
327.232	\checkmark	\checkmark	\checkmark	\checkmark		
329.251	\checkmark	\checkmark	\checkmark	\checkmark		
330.203	\checkmark			\checkmark		
330.931	\checkmark			\checkmark		
331.684	\checkmark			\checkmark		
337.205	\checkmark		\checkmark	\checkmark		
339.211	\checkmark	\checkmark	\checkmark	\checkmark		
349.227	\checkmark	\checkmark		\checkmark		
351.215	\checkmark			\checkmark		
353.256	\checkmark	\checkmark	\checkmark	\checkmark		
354.926			\checkmark			
355.192	\checkmark	\checkmark	\checkmark	\checkmark		
357.114						
369.169	\checkmark	\checkmark		\checkmark		
371.187	\checkmark		\checkmark	\checkmark		
375.164	\checkmark			\checkmark		
381.197						
383.174	\checkmark		\checkmark	\checkmark		
385.192	\checkmark	\checkmark	\checkmark	\checkmark		
387.180	\checkmark		\checkmark	\checkmark		
391.215	\checkmark	\checkmark	\checkmark	\checkmark		

Detected metabolite		Atlantic salmon	ic salmon eyeball tissue sections			
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
393.070	\checkmark		\checkmark	\checkmark		
394.111		\checkmark				
395.059	\checkmark	\checkmark	\checkmark	\checkmark		
397.181						
399.186	\checkmark		\checkmark	\checkmark		
409.227	\checkmark	\checkmark		\checkmark		
414.241	\checkmark	\checkmark	\checkmark	\checkmark		
417.193	\checkmark	\checkmark	\checkmark	\checkmark		
419.240	\checkmark	\checkmark	\checkmark	\checkmark		
425.176	\checkmark		\checkmark	\checkmark		
428.247	\checkmark			\checkmark		
429.229	\checkmark			\checkmark		
431.218	\checkmark	\checkmark	\checkmark	\checkmark		
435.239	\checkmark		\checkmark	\checkmark		
437.250	\checkmark	\checkmark	\checkmark	\checkmark		
441.220						
442.258	\checkmark	\checkmark	\checkmark	\checkmark		
447.239	\checkmark	\checkmark		\checkmark		
452.260	\checkmark		\checkmark	\checkmark		
457.237	\checkmark		\checkmark	\checkmark		
459.168		\checkmark				
460.162						
461.161		\checkmark				
462.273	\checkmark		\checkmark	\checkmark		
463.221	\checkmark	\checkmark	\checkmark	\checkmark		
464.277	\checkmark		\checkmark	\checkmark		
465.217	\checkmark			\checkmark		
467.352	\checkmark	\checkmark	\checkmark	\checkmark		
470.272	\checkmark	\checkmark	\checkmark	\checkmark		
472.281	\checkmark	\checkmark	\checkmark	\checkmark		
474.234	\checkmark	\checkmark	\checkmark	\checkmark		
475.213	\checkmark		\checkmark	\checkmark		
478.275	\checkmark	\checkmark	\checkmark	\checkmark		
480.280	\checkmark	\checkmark	\checkmark	\checkmark		
481.208	\checkmark	\checkmark	\checkmark	\checkmark		

Detected metabolite	Atlantic salmon eyeball tissue sections							
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding				
483.228	\checkmark			\checkmark				
485.250								
490.269	\checkmark		\checkmark	\checkmark				
498.282	\checkmark		\checkmark	\checkmark				
500.267	\checkmark		\checkmark	\checkmark				
502.248	\checkmark	\checkmark		\checkmark				
503.163		\checkmark						
504.234	\checkmark		\checkmark	\checkmark				
505.172		\checkmark	\checkmark					
506.262	\checkmark		\checkmark	\checkmark				
507.211	\checkmark	\checkmark	\checkmark	\checkmark				
509.213		\checkmark						
514.265	\checkmark		\checkmark	\checkmark				
518.285	\checkmark	\checkmark	\checkmark	\checkmark				
519.224		\checkmark						
521.241		\checkmark						
524.274	\checkmark	\checkmark	\checkmark	\checkmark				
529.242								
531.235		\checkmark						
533.291	\checkmark	\checkmark	\checkmark	\checkmark				
535.214	\checkmark	\checkmark	\checkmark	\checkmark				
537.218	\checkmark	\checkmark		\checkmark				
546.312	\checkmark	\checkmark	\checkmark	\checkmark				
548.334	\checkmark		\checkmark	\checkmark				
552.273	\checkmark		\checkmark	\checkmark				
553.182	\checkmark		\checkmark	\checkmark				
568.218	\checkmark		\checkmark	\checkmark				
574.320	\checkmark		\checkmark	\checkmark				
576.347	\checkmark	\checkmark	\checkmark	\checkmark				
582.268	\checkmark		\checkmark	\checkmark				
587.353	\checkmark		\checkmark	\checkmark				
589.357	\checkmark	\checkmark	\checkmark	\checkmark				
590.276	\checkmark		\checkmark	\checkmark				
595.201	\checkmark	\checkmark	\checkmark	\checkmark				
603.367	\checkmark		\checkmark	\checkmark				

Detected metabolite	Atlantic salmon eyeball tissue sections						
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding			
605.384	\checkmark		\checkmark	\checkmark			
613.353	\checkmark	\checkmark	\checkmark	\checkmark			
615.389	\checkmark	\checkmark	\checkmark	\checkmark			
617.403	\checkmark	\checkmark	\checkmark	\checkmark			
619.417	\checkmark	\checkmark	\checkmark	\checkmark			
622.371	\checkmark			\checkmark			
631.417		\checkmark					
643.403	\checkmark	\checkmark	\checkmark	\checkmark			
645.425	\checkmark	\checkmark	\checkmark	\checkmark			
647.435	\checkmark	\checkmark	\checkmark	\checkmark			
649.429	\checkmark	\checkmark	\checkmark	\checkmark			
650.967		\checkmark					
651.443	\checkmark	\checkmark		\checkmark			
653.462		\checkmark					
659.492	\checkmark		\checkmark	\checkmark			
671.459	\checkmark		\checkmark	\checkmark			
673.483	\checkmark	\checkmark	\checkmark	\checkmark			
675.973		\checkmark					
677.468		\checkmark					
686.465							
688.482							
693.447	\checkmark		\checkmark	\checkmark			
698.507	\checkmark			\checkmark			
699.509	\checkmark	\checkmark	\checkmark	\checkmark			
700.529	\checkmark			\checkmark			
701.489	\checkmark		\checkmark	\checkmark			
702.533	\checkmark			\checkmark			
714.503	\checkmark			\checkmark			
716.517	\checkmark		\checkmark	\checkmark			
719.471	\checkmark	\checkmark	\checkmark	\checkmark			
721.476	\checkmark		\checkmark	\checkmark			
724.509							
726.549	\checkmark			\checkmark			
728.560	\checkmark		\checkmark	\checkmark			
731.515	\checkmark		\checkmark	\checkmark			

Detected metabolite	Atlantic salmon eyeball tissue sections					
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
736.488	\checkmark		\checkmark			
738.495	\checkmark		\checkmark	\checkmark		
740.474						
742.534	\checkmark		\checkmark	\checkmark		
743.091		\checkmark				
744.551	\checkmark	\checkmark	\checkmark	\checkmark		
745.482	\checkmark	\checkmark	\checkmark	\checkmark		
746.535	\checkmark	\checkmark	\checkmark	\checkmark		
747.526	\checkmark	\checkmark	\checkmark	\checkmark		
748.545	\checkmark		\checkmark	\checkmark		
750.511	\checkmark		\checkmark	\checkmark		
758.523	\checkmark		\checkmark	\checkmark		
762.513	\checkmark	\checkmark	\checkmark	\checkmark		
764.540	\checkmark		\checkmark	\checkmark		
766.542	\checkmark	\checkmark	\checkmark	\checkmark		
770.548	\checkmark		\checkmark	\checkmark		
771.527		\checkmark				
772.555	\checkmark		\checkmark	\checkmark		
773.547	\checkmark		\checkmark	\checkmark		
774.551	\checkmark	\checkmark	\checkmark	\checkmark		
775.543	\checkmark			\checkmark		
776.526	\checkmark		\checkmark	\checkmark		
778.563	\checkmark		\checkmark	\checkmark		
786.487	\checkmark		\checkmark	\checkmark		
788.528	\checkmark		\checkmark	\checkmark		
790.558	\checkmark	\checkmark	\checkmark	\checkmark		
792.552	\checkmark	\checkmark		\checkmark		
797.679						
802.527		\checkmark	\checkmark			
804.543	\checkmark	\checkmark	\checkmark	\checkmark		
807.545	\checkmark			\checkmark		
808.543	\checkmark		\checkmark	\checkmark		
809.562	\checkmark			\checkmark		
810.533	\checkmark		\checkmark	\checkmark		
814.517	\checkmark		\checkmark	\checkmark		

Detected metabolite	Atlantic salmon eyeball tissue sections						
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding			
816.565	\checkmark			\checkmark			
818.579	\checkmark	\checkmark	\checkmark	\checkmark			
821.542	\checkmark			\checkmark			
822.558	\checkmark		\checkmark	\checkmark			
828.533	\checkmark		\checkmark	\checkmark			
832.544	\checkmark			\checkmark			
833.561	\checkmark		\checkmark	\checkmark			
834.550	\checkmark	\checkmark	\checkmark	\checkmark			
835.585	\checkmark		\checkmark	\checkmark			
836.538	\checkmark	\checkmark	\checkmark	\checkmark			
846.501	\checkmark		\checkmark	\checkmark			
848.543	\checkmark		\checkmark	\checkmark			
850.503			\checkmark				
856.553	\checkmark	\checkmark	\checkmark	\checkmark			
857.562	\checkmark	\checkmark	\checkmark	\checkmark			
860.641	\checkmark	\checkmark	\checkmark	\checkmark			
862.603	\checkmark	\checkmark	\checkmark	\checkmark			
863.637	\checkmark	\checkmark	\checkmark	\checkmark			
876.570	\checkmark	\checkmark	\checkmark	\checkmark			
878.486	\checkmark		\checkmark	\checkmark			
881.543	\checkmark			\checkmark			
883.569	\checkmark	\checkmark	\checkmark	\checkmark			
885.587	\checkmark	\checkmark	\checkmark	\checkmark			
888.679	\checkmark		\checkmark	\checkmark			
892.493			\checkmark				
894.519	\checkmark		\checkmark	\checkmark			
900.502	\checkmark	\checkmark	\checkmark	\checkmark			
904.664	\checkmark			\checkmark			
909.556	\checkmark		\checkmark	\checkmark			
935.490			\checkmark				
937.524			\checkmark				
939.564	\checkmark		\checkmark	\checkmark			
941.581							
981.464			\checkmark				
995.562							

Detected metabolite	Atlantic salmon eyeball tissue sections						
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding			
1002.597			\checkmark				
1023.555	\checkmark		\checkmark	\checkmark			
1025.595			\checkmark				
1069.512	\checkmark		\checkmark	\checkmark			
1071.506	\checkmark		\checkmark	\checkmark			
1084.501	\checkmark			\checkmark			
1086.489	\checkmark		\checkmark	\checkmark			
1097.464	\checkmark		\checkmark	\checkmark			
1110.552	\checkmark		\checkmark	\checkmark			
1112.437	\checkmark		\checkmark	\checkmark			
1114.451	\checkmark		\checkmark	\checkmark			
1116.463	\checkmark		\checkmark	\checkmark			
1138.361		\checkmark	\checkmark				
1140.398	\checkmark			\checkmark			
1141.465			\checkmark				
1144.479			\checkmark				
1156.394	\checkmark			\checkmark			
1157.443			\checkmark				
1158.388	\checkmark			\checkmark			
1182.388	\checkmark			\checkmark			
1184.333	\checkmark		\checkmark	\checkmark			
1218.291	\checkmark			\checkmark			
1281.242			\checkmark				
1424.803	\checkmark		\checkmark	\checkmark			
1450.950			\checkmark				
1468.777			\checkmark				
1470.548	\checkmark		\checkmark	\checkmark			
1494.456	\checkmark		\checkmark	\checkmark			
1495.973	\checkmark		\checkmark	\checkmark			
1499.492	\checkmark			\checkmark			
1516.134	\checkmark			\checkmark			
1541.962	\checkmark		\checkmark	\checkmark			
1567.965	\checkmark		\checkmark	\checkmark			
1574.236			\checkmark				
1587.895	\checkmark			\checkmark			

Detected metabolite	Atlantic salmon eyeball tissue sections					
ion signals ^{a)} (m/z)	OCT-embedding	Agarose-embedding	Gelatin-embedding	PAAG-embedding		
1614.106			\checkmark			
Total number of detected compounds	143	211	210	253		

a) Detected metabolite ion signal data were duplicate values obtained from three parallel detection of each group $(n=3\times3)$.

					Assignment		Structurally
No.	Measured m/z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
1	104.345	-	-	-		-	
2	132.182	-	-	-		-	
3	136.104	-	-	-	-	-	
4	147.038	-	-	-	-	-	
5	156.107	-	-	-	-	-	
6	166.066	166.0661	1	[M+Na] ⁺	2-Ethyl-2,5-dihydro-4,5- dimethylthiazole	$C_7H_{13}NS$	41, 56
							75, 129
7	166.977	166.9773	2	$[M+K]^+$	2-Amino-5-chloropyridine	$C_5H_5ClN_2$	66, 85, 100, 129
8	167.993	167.9936	4	$[M+H]^+$	2(3H)-Benzothiazolethione	$C_7H_5NS_2$	51, 109
9	169.018	169.0174	4	$[M+H]^+$	Ethyl propyl trisulfide	$C_5H_{12}S_3$	45, 61
10	170.008	170.0069	7	[M+Na] ⁺	Ibervirin	$C_5H_9NS_2$	41, 89
11	184.057	184.0580	6	[M+Na] ⁺	3-Aminoadipic acid	$C_6H_{11}NO_4$	42, 70
12	189.979	189.9780	5	$[M+K]^+$	1-(2-Chloroethyl)-1-nitrosourea	$C_3H_6ClN_3O_2$	63, 109 44, 63, 73
13	191.972	191.9727	4	$[M+K]^{+}$	3-Sulfinoalanine	$C_3H_7NO_4S$	42, 81, 108
14	198.067	198.0680	5	$[M+H]^+$	Clephedrone	C ₁₀ H ₁₂ ClNO	51, 111, 164
15	199.944	199.9431	5	$[M+K]^+$	Dichloroaniline	$C_6H_5Cl_2N$	39, 85, 162
16	205.947	-	-	-	-	-	
17	211.945	-	-	-	-	-	
18	227.913	-	-	-	-	-	
19	238.995	238.9952	1	$[M+K]^+$	Maleylacetoacetic acid	$C_8H_8O_6$	61, 71, 87, 99, 155
20	243.889	-	-	-	-	-	
21	253.038	253.0374	2	$[M+K]^+$	4-(4-Nitrobenzyl)pyridine	$C_{12}H_{10}N_{2}O_{2} \\$	84, 132, 211
22	256.987	256.9856	6	$[M+K]^+$	Diphenyl disulfide	$C_{12}H_{10}S_2$	51, 83, 109,
23	258.080	258.0795	2	$[M+H]^+$	2-(Ethyl sulfonylmethyl)phenyl methylcarbamate	$C_{11}H_{15}NO_4S$	58, 93, 155, 171
24	259.015	259.0149	4	$[M+K]^+$	N-Acetyl-S-(N- methylcarbamoyl)cysteine	$C_7 H_{12} N_2 O_4 S$	60, 84, 116
25	269.003	-	-	-	-	-	
26	270.010	270.0083	6	[M+K] ⁺	2-Amino-5- chlorobenzophenone	C ₁₃ H ₁₀ ClNO	51, 105, 154
27	275.967	-	-	-	-	-	
28	279.080	279.0798	1	[M+H] ⁺	5-hydroxyindole thiazolidine carboxylate	$C_{13}H_{14}N_2O_3S$	132, 146, 173

Table S6. Metabolites detected and assigned in PAAG embedded Atlantic salmon eyeball tissue sections by (+)MALDI-TOF/TOF MS using 2-MBT as the matrix.

					Assignment		Structurally
No.	Measured m/z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
29	280.079	280.0803	3	$[M+K]^+$	Tetrahydrobiopterin	$C_9H_{15}N_5O_3$	55, 124, 149, 166
30	290.997	290.9950	7	[M+Na] ⁺	Dichlorophen	$C_{13}H_{10}Cl_2O_2$	111, 141, 251
31	296.063	296.0643	4	$[M+K]^+$	2'-C-Methylcytidine	$C_{10}H_{15}N_3O_5$	95, 112, 130
32	300.986	300.9866	2	$[M+K]^+$	Dehydro-4- methoxycyclobrassinin	$C_{12}H_{10}N_2OS_2$	47, 231 47, 127, 171, 231
33	302.996	302.9935	8	$[M+K]^+$	3-Methoxy-4- hydroxyphenylethyleneglycol sulfate	$C_9H_{12}O_7S$	51, 81, 137, 203
34	312.364	-	-	-	-	-	
35	322.976	322.9766	2	$[M+K]^+$	Sulfachlorpyridazine	C ₁₀ H ₉ ClN ₄ O ₂ S	68, 88, 130
36	332.962	332.9643	7	$[M+H]^+$	2,2'-Dithiobisbenzothiazole	$C_{14}H_8N_2S_4$	51, 109
37	334.004	334.0008	10	[M+Na]	3'-Hydroxydiciofenac	$C_{14}H_{11}CI_2NO_3$	77, 266
39	336.979	336.9808	5	[M+Na] ⁺	Iodoantipyrine	C ₁₁ H ₁₁ IN ₂ O	92, 120, 167, 196
40	346.995	346.9986	10	$[M+K]^+$	2-Hydroxy-4- methoxybenzophenone sulfate	$C_{14}H_{12}O_6S$	77, 105, 151, 283
41 42	354.981 356.982	354.9785 356.9806	7 4	$[M+H]^+$ $[M+K]^+$	5'-Iododeoxyuridine (2R,3R,4S,5R)-2-(5,6- Dichlorobenzimidazol-1-yl)-5- (hydroxymethyl)oxolane-3,4-	$C_9 H_{11} I N_2 O_5$ $C_{12} H_{12} C l_2 N_2 O_4$	42, 223 153, 187, 199
12	264 041				diol		
44	366 939	-	_	_	_		
45	370.943	-	-	-	-		
46	386.955	386.9571	6	$[M+K]^+$	Daidzein sulfate	$C_{15}H_8O_8S$	316, 349
47	390.047	390.0463-	2	[M+Na] ⁺	Lodoxamide ethyl	$C_{15}H_{14}ClN_3O_6$	47, 168, 240, 368
48	392.066	392.0651	2	[M+Na] ⁺	Lansoprazole	$C_{16}H_{14}F_{3}N_{3}O_{2}S$	184, 252 47, 359
49	396.910	396.9133	8	$[M+K]^+$	Triclabendazole	$C_{14}H_9Cl_3N_2OS$	47, 85, 147, 213, 359
50	398.909	-	-	-	-		
51	400.402	-	-	-	-	-	
52	400.904	-	-	-	-		
53	404.043	404.0427	1	[M+Na] ⁺	Dehydrofelodipine	$C_{18}H_{17}Cl_2NO_4$	164, 250, 276,
54	406.075	406.0720	7	$[M+H]^+$	Difenoconazole	$C_{19}H_{17}Cl_2N_3O_3$	141, 188, 223, 251

	Assignment				Structurally		
No.	Measured m/z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
55	424.038	424.0400	5	$[M+H]^+$	Glucoiberin	$C_{11}H_{21}NO_{10}S_3$	261, 406, 424
56	426.412	-	-	-	-		
57	428.455	-	-	-	-		
58	440.913	-	-	-	-		
59	442.889	-	-	-	-	-	
60	456.026	-	-	-	-	-	
61	466.022	466.0252	7	$[M+K]^+$	Cefpodoxime	$C_{15}H_{17}N_5O_6S_2\\$	56, 188, 243, 366
62	468.013	-	-	-	-		
63	468.420	-	-	-	-	-	
64	478.419	-	-	-	-	-	
65	482.415	-	-	-	-	-	
66	494.328	494.3241	8	$[M+H]^+$	LPC(16:1)	$C_{24}H_{48}NO_7P$	104, 311, 441
67	496.375	496.3761	3	$[M+H]^+$	LPC(O-17:0)	$C_{25}H_{54}NO_6P$	480, 391, 168, 97
68	497.992	497.9951	6	[M+Na] ⁺	2',3'-Dideoxyadenosine-5- triphosphate	$C_{10}H_{16}N_5O_{11}P_3$	81, 136, 218, 378
69	499.983	-	-	-	-		
70	504.435	504.4387	7	[M+Na] ⁺	Cer(d30:1)	C ₃₀ H ₅₉ NO ₃	264, 282, 464
71	508.482	-	-	-	-	-	
72	515.113	515.1165	7	$[M+Na]^+$	Malvidin 3-glucoside	$C_{23}H_{25}O_{12}$	103, 163, 315, 331, 493
73	518.379	518.3816	5	[M+Na] ⁺	N-Nervonoyl Glutamic acid	C ₂₉ H ₅₃ NO ₅	43, 100, 123, 148, 360
74	522.396	522.3919	8	$[M+K]^+$	Docosanoylcarnitine	C ₂₉ H ₅₇ NO ₄	71, 85, 425
75	524.408	524.4075	1	$[M+H]^+$	Edelfosine	$C_{27}H_{58}NO_6P$	88, 253, 341, 508
76	525.117	502.1271	1	[M+Na] ⁺	Fluvalinate	$C_{26}H_{22}CIF_3N_2O_3$	51, 132, 226, 278, 477
77	529.960	529.9640	8	$[M+K]^+$	Deoxyadenosine triphosphate	$C_{10}H_{16}N_5O_{12}P_3$	94, 109, 136, 357
78	531.924	-	-	-	-		
79	534.360	534.3554	9	$[M+H]^+$	LPE(22:2)	C ₂₇ H ₅₂ NO ₇ P	44, 151, 319, 377, 422
80	540.991	-	-	-	-		
81	544.380	-	-	-	-		
					3,5-Dihydroxy-3',4'-dimethoxy-		07 101 040
82	557.088	557.0902	4	[M+Na] ⁺	6,7-methylenedioxyflavone 3-	$C_{24}H_{22}O_{14}$	87, 181, 343,
					glucuronide		339, 305
83	561.911	-	-	-	-	-	

			_		Assignment		Structurally
No.	Measured <i>m</i> /z	Calculated m/z	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
84	568.374	568.3763	4	$[M+K]^+$	N-Nervonoyl Tyrosine	C33H55NO4	83, 109, 136, 424
85	573.926	-	-	-	-		
86	589.041	589.0442	5	[M+Na] ⁺	Uridine diphosphate glucose	$C_{15}H_{24}N_2O_{17}P_2$	57, 113, 227, 387, 405
87	590.362	590.3582	6	$[M+K]^+$	LPC(20:0)	$C_{28}H_{58}NO_7P$	59, 88, 197, 267, 295, 369
88	606.349	606.3471	3	$[M+H]^+$	Dynorphin B (6-9)	$C_{26}H_{43}N_{11}O_6$	60, 101, 129, 285, 354, 533
89	614.266	614.2721	10	$[M+H]^+$	Ferrioxamine B	$C_{25}H_{45}F_eN_6O_8$	86, 614 41, 72, 86, 485,
90	615.253	-	_	_	_		541
91	616.275	616.2783	5	$[M+K]^+$	Aplaviroc	C ₃₃ H ₄₃ N ₃ O ₆	57, 381, 578
							118, 375, 579
92	617.329	617.3351	10	$[M+K]^+$	Deoxycholyltryptophan	$C_{35}H_{50}N_2O_5$	97, 118, 167,
							375, 533, 579
93	630.278	630.2738	7	$[M+K]^+$	Fluphenazine decanoate	$C_{32}H_{44}F_{3}N_{3}O_{2}S$	81, 153, 213, 420, 590
94	631.265	631.2628	3	$[M+K]^+$	Hexobendine	$C_{30}H_{44}N_2O_{10}\\$	86, 171, 255, 349, 593
95	632.270	-	-	-	-		
96	638.259	-	-	-	-	-	
97	639.247	639.2449	3	$[M+H]^+$	Hexyl heptanoate	$C_{35}H_{34}N_4O_8$	63, 107, 120, 327, 533
98	646.279	646.2769	3	[M+Na] ⁺	Leukotriene C5	$C_{30}H_{45}N_3O_9S$	56, 177, 333, 475, 560
99	648.260	648.2583	3	$[M+K]^+$	Ergocristine	$C_{35}H_{39}N_5O_5$	70, 98, 166, 223, 334
100	655.066	-	-	-	-	-	
101	675.524	675.5194	7	$[M+H]^+$	DG(18:0/PGJ2)	$C_{41}H_{70}O_7$	307, 357, 363, 413, 697
102	676.593	-	-	-	-	-	
103	678.615	-	-	-	-		
104	683.972	-	-	-	-	-	
105	697.504	697.5014	4	[M+Na] ⁺	DG(18:0/ PGJ2)	$C_{41}H_{70}O_{7} \\$	307, 357, 363, 413, 698
					N-[(4E,8Z)-1,3-		43, 127, 211,
106	698.561	698.5565	6	$[M+H]^+$	dihydroxyoctadeca-4,8-dien-2- yl]hexadecanamide 1-glucoside	$C_{40}H_{75}NO_8$	440, 518, 663

					Assignment		Structurally
No.	Measured m/z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
107	700.601	-	-	-	-		
108	704.623	-	-	-	-	-	
109	706.644	-	-	-	-	-	
110	711.924	-	-	-	-	-	
111	714.558	714.5515	9	[M+H] ⁺	Soyacerebroside I	C40H75NO9	43, 163, 278, 458, 656
112	716.587	-	-	-	-	-	
113	718.630	-	-	-	-	-	
114	724.579	724.5850	8	[M+Na] ⁺	Arachidyl amido cholanoic acid	C ₄₄ H ₇₉ NO ₅	41, 93, 295, 434, 518, 703
115	726.612	-	-	-	-		
116	728.620	-	-	-	-		
							44, 307, 688
117	730.580	730.5745	8	$[M+H]^+$	PE(P-36:1)	$C_{41}H_{80}NO_7P$	44, 142, 267,
							307, 421, 575
118	732.625	-	-	-	-	-	
119	739.998	-	-	-	-	-	
120	742.568	742.5745	9	$[M+H]^{+}$	PC(O-34:3)	C42H80NO7P	279, 375, 464,
							655, 715
							88, 249, 323,
121	744.592	744.5902	2	$[M+H]^+$	PC(P-34:1)	$C_{42}H_{82}NO_7P$	490, 550, 630,
							701
100			-				285, 395, 408,
122	746.575	746.5694	7	$[M+H]^{+}$	PE(36:1)	$C_{41}H_{80}NO_8P$	426, 536, 605,
							728
123	752.588	752.5928	6	[M+Na] ⁺	CerP(d42:1)	$C_{42}H_{84}NO_6P$	365, 617
							88 249 572
124	754 618	754 6109	9	$[M+H]^{+}$	PC(P-36·2)	C44H84NO4P	88, 249, 307
124	754.010	754.0109	,	[141 + 11]	10(1 50.2)	0,441184100,61	490 570 683
125	756.574	-	-	-	-		,
126	758.574	758.5694	-	$[M+H]^{+}$	PC(34:2)	C ₄₂ H ₈₀ NO ₈ P	86, 699
127	760.583	760.5851	3	[M+H] ⁺	PC(34:1)	C ₄₂ H ₈₂ NO ₈ P	86, 577, 761
128	766.570	766.5721	3	[M+Na] ⁺	PC(P-34:1)	C ₄₂ H ₈₂ NO ₇ P	88, 249, 480, 658, 701
							88, 184, 267,
129	768.588	768.5878	0	[M+Na] ⁺	PC(O-34:1)	$C_{42}H_{84}NO_7P$	297, 550, 689
130	770.598	770.6034	7	[M+Na] ⁺	PC(O-34:0)	$C_{42}H_{86}NO_7P$	72, , 299, 691
131	772.616	772.6215	7	$[M+H]^+$	PC(P-36:1)	$C_{44}H_{86}NO_7P$	88, 590

					Assignment		Structurally
No.	Measured	Calculated	Error			Molecular	specific CID
	<i>m/z</i> ,	m/z	ppm	Ion form	Compound	formula	ions $(m/z)^{a}$
							88, 249, 403,
							506, 590, 755
132	774.620	-	-	-	-	-	
							88, 291, 741
133	780.547	780.5514	6	[M+Na] ⁺	PC(34:2)	$C_{42}H_{80}NO_8P$	88, 169, 291,
							365, 566, 715
134	782.596	782.6034	7	[M+Na] ⁺	PE(P-38:0)	$C_{43}H_{86}NO_7P$	79, 311, 603
135	786.618	786.6233	7	$[M+K]^+$	Tetrac	$C_{14}H_8I_4O_4\\$	371, 577
136	788.635	-	-	-	-		
							44, 734
137	792.573	792.5668	2	$[M+H]^+$	PS(36:0)	$C_{42}H_{82}NO_{10}P$	192, 490, 608,
							712,
138	794 608	794 6058	3	[M+H]+	$PC(P_38\cdot A)$	C. H. NO-P	79, 237, 305,
150	794.000	774.0058	5		1 C(1-50.4)	C46118411071	441, 689
139	798.582	798.5773	6	$[M+K]^+$	PE(P-38:0)	$C_{43}H_{86}NO_7P$	42, 703
140	804.382	-	-	-	-	-	
141	806.538	806.5330	-	$[M+H]^+$	PE(40:7)	$C_{45}H_{76}NO_9P$	164, 471, 479
142	808.581	808.5827	1	[M+Na]+	PC(36:2)	C₄₄H₃₄NO₅P	147, 467, 526,
			-	[]	()	- ++0+ 0-	544, 626, 750
143	810.627	810.6347	9	[M+Na] ⁺	PE(P-40:0)	$\mathrm{C}_{45}\mathrm{H}_{90}\mathrm{NO}_{7}\mathrm{P}$	44, 381, 634
					Isofucosterol 3-O-[6-O-		97, 147, 239,
144	813.667	813.6603	8	$[M+H]^+$	Hexadecanoyl-b-D-	$C_{51}H_{88}O_7$	413, 657, 714
					glucopyranoside]		
							86, 104, 125,
145	818.537	818.5330	5	$[M+H]^+$	PC(38:8)	$C_{46}H_{76}NO_9P$	184, 500, 558,
							635
146	824.592	824.5930	1	$[M+K]^+$	PE(P-40:1)	C45H88NO7P	44, 57, 142,
							198, 309, 466
147	826.646	-	-	-	-	-	
148	828.542	828.5445	3	[M+Na] ⁺	LacCer(d30:1)	$C_{42}H_{79}NO_{13}$	264, 447, 807
							88, 249, 610
149	830.540	830.5460	7	$[M+K]^+$	PC(P-38:5)	$C_{46}H_{82}NO_7P$	88, 249, 323,
							490, 596, 692,
							749
150	832.565	832.5617	4	$[M+K]^+$	PC(P-38:4)	$C_{46}H_{84}NO_7P$	86, 104,
							124,184,267
151	924 555	024 5410	0	[N (. N)]+	DE(40.4 OUD		351, 6/2
151	834.555	834.5619	8	[M+Na]	PE(40:4-OH)	C45H82NO9P	301, 492, 672,
152	025 (2)	025 (210	7	[N. <i>t.</i> . 171+	TC(40.5)	C U O	795, 815
152	835.626	835.6212	6	$[M+K]^{T}$	16(48:5)	$C_{51}H_{88}O_6$	309, 804

		Calculated m/z			Assignment		Structurally
No.	Measured <i>m/z</i>		Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
153	842.549	842.5542	6	$[M+H]^+$	PE(40:5-3OH)	$C_{45}H_{80}NO_{11}P$	367, 490, 550, 702, 825
154	844.514	844.5123	2	$[M+H]^+$	PE(42:10)	$C_{47}H_{74}NO_{10}P$	164, 463, 519, 725, 823, 866
155	846.542	846.5410	1	$[M+K]^+$	PC(38:5)	$C_{46}H_{82}NO_8P$	86, 104, 125, 184, 478, 496,
156	854.568	854.5670	1	[M+Na] ⁺	PC(40:7)	C ₄₈ H ₈₂ NO ₈ P	570, 626, 750 88, 219, 323, 506, 650, 760
157	856.520	856.5253	6	$[M+K]^+$	PE(42:7)	$C_{47}H_{80}NO_8P$	367, 385, 508, 526, 678, 801
158	863.558	863.5563	2	$[M+K]^+$	PA(44:4)	$C_{47}H_{85}O_9P$	479, 497, 527, 545, 727, 710
159	872.571	-	-	-	-		44, 74, 130,
160	878.427	878.4285	2	$[M+K]^+$	Ala-Thr-Trp-Leu-Pro-Pro-Arg	$C_{40}H_{61}N_{11}O_9$	260, 265, 373, 567, 624
161	925.515	925.5203	6	$[M+K]^+$	PI(38:4)	$C_{47}H_{83}O_{13}P$	41,165, 211, 297, 409, 627, 717, 869
162	927.482	927.4841	2	[M+Na] ⁺	PI(40:9)	$C_{45}H_{77}O_{16}P$	97, 223, 315, 413, 481, 593, 643, 904
163	947.988	-	-	-	-	-	87, 147, 317,
164	973.418	973.4251	7	[M+Na] ⁺	Rebaudioside C	$C_{44}H_{70}O_{22}$	481, 641, 771, 933
165	1231.072	-	-	-	-		
166	1279.668	-	-	-	-	-	
167	1281.670	-	-	-	-	-	
168	1347.332	-	-	-	-	-	
169	1373.335	-	-	-	-		
170	1375.430	-	-	-	-		
171	1396.208	-	-	-	-		
172	1402.442	-	-	-	-	-	
173	1409.663	-	-	-	-	-	
174	1421.390	-	-	-	-		
175	1433.733	-	-	-	-	-	

					Assignment		Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
							163, 325, 487,
176	1435.665	1435.6587	4	$[M+H]^+$	Capsicoside E	$C_{64}H_{106}O_{35}$	625, 947, 1110,
							1256, 1418
							57, 142, 221,
177	1437.873	1437.8832	7	[M+Na] ⁺	Ganglioside GM2 (d40:2)	$C_{72}H_{128}N_2O_{26}$	364, 438, 587,
							1116, 1438
178	1457.688	-	-	-	-	-	
179	1461.148	-	-	-	-		
							45, 95, 163,
180	1463.820	1463.8104	6	$[M+H]^+$	Ganglioside GM1 (d30: 0)	$C_{68}H_{122}N_2O_{31}$	309, 438, 656,
							1265, 1464
181	1465.895	-	-	-	-		
							57, 163, 383,
182	1491.854	1491.8417	8	$[M+H]^+$	Ganglioside GM1 (d32:0)	$C_{70}H_{126}N_2O_{31}$	478, 762, 998,
							1265, 1402
183	1513.777	-	-	-	-	-	
184	1515.816	-	-	-	-	-	
185	1517.757	-	-	-	-	-	
							81, 163, 383,
186	1519.876	1519.8730	2	$[M+H]^+$	Ganglioside GM1 (d34:0)	$C_{72}H_{130}N_2O_{31}$	438, 656, 762,
							1280
							165, 282, 366,
187	1540.835	1540.8346	0	[M+Na] ⁺	Ganglioside GM1 (34:1)	$C_{71}H_{127}N_3O_{31}\\$	438, 506, 657,
							999, 1518
							95, 163, 282,
188	1546.881	1546.8839	2	$[M+H]^+$	Ganglioside GM1 (36:1)	$C_{73}H_{131}N_3O_{31}$	438, 657, 1388,
							1547
189	1562.233	-	-	-	-	-	
							81, 138, 163,
190	1565.841	1565.8550	9	[M+Na] ⁺	Ganglioside GM1 (36:2)	$C_{74}H_{130}N_2O_{31}\\$	438, 530, 656,
							762, 1454
							265, 385, 539,
191	1571.983	1571.9952	8	$[M+H]^+$	CL(82:17)	C ₉₁ H ₁₄₄ O ₁₇ P ₂	672, 828, 988,
						91 1 11 1/ 2	1230, 1308,
							1554
192	1586.826	-	-	-	-	-	
193	1592.098	-	-	-	-	-	
194	1615.614	-	-	-	-	-	
195	1637.710	-	-	-	-	-	

a) Structurally specific CID ions of extracted compounds were detected by LC-MS/MS and/or MALD-TOF/TOF MS/MS using CID.

Red fragment ions were detected by LC-MS/MS, and blue fragment ions were detected by MALD-TOF/TOF MS/MS.

					Assignment		Structurally
No.	Measured <i>m</i> /z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
1	111.027	-	-	-	-	-	
2	113.024	113.0244	4	[M-H] ⁻	cis-Acetylacrylate	$C_5H_6O_3$	43, 51, 69
3	119.981	-	-	-	-	-	
4	122.019	-	-	-	-	-	
5	123.022	-	-	-	-	-	
6	124.041	124.0404	5	[M-H] ⁻	5-(Hydroxymethyl)-1H-pyrrole-2- carbaldehyde	$C_6H_7NO_2$	66, 124 66, 92, 124
7	125.044	-	-	-	-	-	
8	132.076	-	-	-	-	-	
9	132.910	-	-	-	-	-	
10	134.058	-	-	-	-	-	
11	135.045	135.0452	1	[M-H] ⁻	M-toluic Acid	$C_8H_8O_2$	65, 91, 135
12	138.057	138.0561	7	[M-H] ⁻	3,4-Dihydroxybenzylamine	C ₇ H ₉ NO ₂	41, 51, 66
13	140.047	140.0466	3	[M-H] ⁻	Dimetridazole	$C_5H_7N_3O_2$	42, 73, 99, 130
14	145.109	-	-	-	-	-	
15	146.097	146.0975	3	[M-H] ⁻	1,2,3,4-Tetrahydro-2-naphthylamine	$C_{10}H_{13}N$	77, 91, 129
16	147.006	-	-	-	-	-	
17	148.126	-	-	-	-	-	
18	150.071	-	-	-	-	-	
19	152.049	152.0484	4	[M-H] ⁻	(2E)-4-hydroxy-5-methyl-2- propylidene-3(2H)-furanone	$C_8H_9O_3$	55, 135, 137
20	153.049	-	-	-	-	-	
21	154.081	-	-	-	-	-	
22	158.048	158.0472	5	[M-H] ⁻	1,N6-Ethenoadenine	$C_7H_5N_5$	89, 131, 158
23	159.060	-	-	-	-	-	
24	166.025	-	-	-	-	-	
25	168.042	168.0431	7	[M-H] ⁻	Phosphodimethylethanolamine	$C_4H_{12}NO_4P$	63,79, 97
26	174.092	174.0924	3	[M-H] ⁻	Dimethylaminocinnamaldehyde	$C_{11}H_{13}NO$	44, 91, 132
27	179.066	179.0648	6	[M-H] ⁻	Protionamide	$C_7H_{14}FO_2P$	33, 58, 120
28	180.073	-	-	-	-	-	
29	182.006	182.0046	8	[M-H] ⁻	Acephate	$C_4H_{10}NO_3PS$	46, 94, 131
30	184.017	-	-	-	-	-	
31	191.057	-	-	-	-	-	
32	192.125	192.1255	2	[M-H] ⁻	Alvameline	$C_{9}H_{15}N_{5}$	40, 92, 121
33	193.035	193.0354	2	[M-H] ⁻	3-Dehydro-L-gulonate	$C_{6}H_{10}O_{7}$	57, 59, 87, 117
34	196.071	196.0728	9	[M-H] ⁻	N-Acetylhistidine	$C_8H_{11}N_3O_3$	42, 67, 84, 108
35	198.023	-	-	-	-	-	
36	207.088	207.0874	3	[M-H] ⁻	Ethyl beta-D-glucopyranoside	$C_8H_{16}O_6$	43, 59, 89, 135

Table S7. Metabolites detected and assigned in PAAG embedded Atlantic salmon eyeball tissue sections by (–)MALDI-TOF/TOF MS using MEK as the matrix.

			_		Assignment		- Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
37	209.006	-	-	-	·	-	
38	211.039	211.0401	5	[M-H] ⁻	Urolithin B	$C_{13}H_8O_3$	141, 169, 183
39	212.055	212.0564	7	[M-H] ⁻	Droxidopa	C ₉ H ₁₁ NO ₅	56, 72, 109, 151
40	213.074	-	-	-	-	-	
41	223.082	223.0837	7	[M-H] ⁻	Temurin	$C_9H_{12}N_4O_3$	56, 109, 166
42	224.098	-	-	-	-	-	
43	236.051	236.0533	10	[M-H] ⁻	Mergepta	$C_7 H_{15} N_3 O_2 S_2$	32, 74, 101
44	249.069	249.0703	5	[M-H] ⁻	Dansylamide	$C_{12}H_{14}N_{2}O_{2}S \\$	79, 154, 206 44, 206
45	251.089	251.0885	2	[M-H] ⁻	Cycasin	$C_8 H_{16} N_2 O_7$	44, 86, 116, 206
46	252.124	252.1241	1	[M-H] ⁻	L-DOPA n-Butyl Ester	C ₁₃ H ₁₉ NO ₄	72, 123, 179
47	253.194	253.1962	9	[M-H] ⁻	18-Nor-4(19),8,11,13-abietatetraene	$C_{19}H_{26}$	39, 117, 185, 237
48	255.211	-	-	-	-	-	
49	263.069	263.0707	7	[M-H] ⁻	Methionyl-Aspartate	$C_9H_{16}N_2O_5S$	47, 114, 202
50	264.089	264.0877	5	[M-H] ⁻	N-Phenylacetylglutamic acid	$C_{13}H_{15}NO_5$	41, 91, 102, 128
51	265.099	265.0983	3	[M-H] ⁻	Miroprofen	$C_{16}H_{14}N_2O_2$	221, 249 94, 142, 221, 265
52	266.116	266.1146	5	$[M-H]^{-}$	4-amino-MX	$C_{12}H_{17}N_{3}O_{4}$	17, 266 17, 46, 221, 266
53	267.119	267.1179	4	[M-H] ⁻	3-Methylcholanthrene	$C_{21}H_{16}$	51, 251
54	268.125	-	-	-	-	-	
55	279.112	-	-	-	-	-	
56	281.190	281.1911	4	[M-H] ⁻	Vitamin A2 aldehyde	$C_{20}H_{26}O$	65, 237
57	283.208	283.2067	5	[M-H] ⁻	Vitamin A2	$C_{20}H_{28}O$	43, 65, 133, 237
58	291.015	-	-	-	-	-	
59	292.996	-	-	-	-	-	
60	295.107	295.1088	6	[M-H] ⁻	10-Acetoxy-10,11-dihydro-5h- dibenz[b,f]azepine-5-carboxamide	$C_{17}H_{16}N_2O_3$	41, 208
61	296.244	-	-	-	-	-	
62	301.262	-	-	-	-	-	
63	303.263	-	-	-	-	-	
64	307.214	307.2140	0	[M-H] ⁻	2,2'-Azobis(4-methoxy-2,4- dimethylvaleronitrile)	$C_{16}H_{28}N_4O_2$	71, 168, 219, 291

			_		Assignment		- Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
65	309.208	309.2071	3	[M-H] ⁻	12(13)Ep-9-KODE	$C_{18}H_{30}O_4$	41, 59, 109, 193
66	311.189	311.1877	4	[M-H] ⁻	Granisetron	$C_{18}H_{24}N_4O$	42, 104, 171, 295
67	321.189	-	-	-	-	-	
68	323.210	-	-	-	-	-	
69	325.236	325.2384	7	[M-H] ⁻	Avocadyne 2-acetate	$C_{19}H_{34}O_4$	59, 265 41, 59, 265, 283
70	327.232	327.2330	3	[M-H] ⁻	Docosahexaenoic acid	$C_{22}H_{32}O_2$	59, 309, 327 45, 89, 197, 267, 309
71	329.251	329.2486	7	[M-H] ⁻	Docosapentaenoic acid (22n-3)	$C_{22}H_{34}O_2$	45, 59, 71, 131, 283
72	330.203	-	-	-	-	-	
73	330.931	-	-	-	-	-	
74	331.684	-	-	-	-	-	
75	337.205	337.2020	9	[M-H] ⁻	[6]-Gingerdiol 3-acetate	$C_{19}H_{30}O_5$	41, 59, 195, 279
76	339.211	339.0278	9	[M-H] ⁻	Ethylhydrocupreine	$C_{21}H_{28}N_2O_2\\$	130, 293
77	349.227	349.2285	4	[M-H] ⁻	(+)-cis-3-Methylfentanyl	$C_{23}H_{30}N_2O$	55, 148, 189, 293
78	351.215	351.2177	8	[M-H] ⁻	prostaglandin	$C_{20}H_{32}O_5$	113, 139, 233, 279, 315
79	353.256	-	-	-	-	-	
80	355.192	355.1915	2	[M-H] ⁻	Piperochromanoic acid	$C_{22}H_{28}O_4$	81, 131, 203, 295
81	369.169	369.1707	5	[M-H] ⁻	Calanolide A	$C_{22}H_{26}O_5$	41, 133, 283, 351
82	371.187	371.1864	2	[M-H] ⁻	Tanabalin	$C_{22}H_{28}O_5$	59, 285, 355
83	375.164	-	-	-	-	-	
84	383.174	-	-	-	-	-	
85	385.192	385.1915	1	[M-H] ⁻	Butyryl timolol	$C_{17}H_{30}N_4O_4S$	74, 143, 257, 355
86	387.180	387.1813	3	[M-H] ⁻	Cyclomammein	$C_{22}H_{28}O_6$	41, 67, 301
87	391.215	391.2126	6	[M-H] ⁻	Neuroprostane	$C_{22}H_{32}O_{6}$	95, 109, 219, 237
88	393.070	393.0668	8	[M-H] ⁻	Diflufenican	$C_{19}H_{11}F_5N_2O_2$	49, 92, 128, 238
89	395.059	-	-	-	-	-	

					Assignment		Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
90	399.181	399.1813	1	[M-H] ⁻	Melleolide	$C_{23}H_{28}O_6$	81, 23, 205, 355
91	409.227	409.2232	9	[M-H] ⁻	Forskolin	$C_{22}H_{34}O_7$	59, 139, 243, 349
92	414.241	-	-	-	-	-	
93	417.193	417.1919	3	[M-H] ⁻	Diosbulbin H	$C_{23}H_{30}O_7$	67, 109, 265, 317, 401
94	419.240	-	-	-	-	-	
95	425.176	425.1718	10	[M-H] ⁻	Mespirenone	$C_{25}H_{30}O_4S$	41, 74, 367, 425
96	428.247	428.2442	6	[M-H] ⁻	Mebeverine	C ₂₅ H ₃₅ NO ₅	95, 181, 264, 382
97	429.229	429.2283	2	[M-H] ⁻	Homofukinolide	$C_{25}H_{34}O_6$	55, 99, 235, 317
98	431.218	431.2204	6	[M-H] ⁻	LPA(18:3)	$C_{21}H_{37}O_7P$	
99	435.239	435.2361	7	[M-H] ⁻	DN-isobutylamide	$C_{20}H_{32}N_6O_5\\$	42, 168, 250, 433
100	437.250	-	-	-	-	-	
101	442.258	-	-	-	-	-	
102	447.239	-	-	-	-	-	
103	452.260	-	-	-	-	-	70, 152, 171
104	457.237	457.2674	2	[M-H] ⁻	LPA (18:0)	$C_{21}H_{43}O_7P$	79, 153, 171, 283, 437
105	462.273	462.2762	7	[M-H] ⁻	Bilastine	$C_{28}H_{37}N_3O_3$	45, 157, 272, 390
106	463.221	-	-	-	-	-	
107	464.277	464.2783	3	[M-H] ⁻	LPC (14:1)	$C_{22}H_{44}NO_7P$	210, 225, 486
108	465.217	465.2130	9	[M-H] ⁻	8-Pentanoylneosolaniol	$C_{24}H_{34}O_9$	59, 157, 265, 447
109	467.352	467.3531	2	[M-H] ⁻	Ambonic acid	$C_{31}H_{48}O_3$	55, 73, 341, 451
110	470.272	-	-	-	-	-	
111	472.281	-	-	-	-	-	
112	474.234	474.2362	5	[M-H] ⁻	Fluspirilene	$C_{29}H_{31}F_2N_3O$	42, 95, 173, 324, 415
113	475.213	-	-	-	-	-	
114	478.275	-	-	-	-	-	
115	480.280	480.2755	9	[M-H] ⁻	Dihydrocytochalasin B	C ₂₉ H ₃₉ NO ₅	42, 91, 317, 376, 462

					Assignment		Structurally
No.	Measured <i>m</i> /z	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
116	481.208	481.2079	0	[M-H] ⁻	3'-Hydroxy-T2 Toxin	$C_{24}H_{34}O_{10}$	41, 183, 321, 381, 463
117	483.228	483.2308	6	[M-H] ⁻	Kanamycin	$C_{18}H_{36}N_4O_{11}\\$	59, 159, 233, 322, 380
118	490.269	490.2675	3	[M-H] ⁻	Lidoflazine	-	
119	498.282	498.2861	8	[M-H] ⁻	Beloranib	$C_{29}H_{41}NO_{6}$	119, 163, 303, 411
120	500.267	-	-	-	-	-	
121	502.248	502.2519	8	[M-H] ⁻	Lysyl-aspartyl-glutamyl-leucine	$C_{21}H_{37}N_5O_9$	42, 144, 259, 328, 412
122	504.234	-	-	-	-	-	
123	506.262	506.2582	8	[M-H] ⁻	Epothilone B	$C_{27}H_{41}NO_6S$	40, 74, 138, 472, 486
124	507.211	507.2083	5	[M-H] ⁻	6-O-Oleuropeoylsucrose	$C_{22}H_{36}O_{13}$	43, 147, 299, 327, 475
125	514.265	-	-	-	-	-	
126	518.285	-	-	-	-	-	
127	524.274	524.2731	2	[M-H] ⁻	Isodesmosine	$C_{24}H_{40}N_5O_8\\$	45, 132, 490
128	533.291	533.2885	5	[M-H] ⁻	LPG (20:3)	$C_{26}H_{47}O_9P$	97, 153, 227, 245, 305, 533
129	535.214	535.2185	8	[M-H] ⁻	Quassimarin	$C_{27}H_{36}O_{11} \\$	59, 115, 287, 363, 447
130	537.218	-	-	-	-	-	
131	546.312	-	-	-	-	-	
132	548.334	-	-	-	-	-	
133	552.273	552.2715	3	[M-H] ⁻	Vignatic acid A	$C_{30}H_{39}N_3O_7$	57, 85, 331, 392, 438
134	553.182	-	-	-	-	-	
135	568.218	568.2188	1	[M-H] ⁻	Aklavin	$C_{30}H_{35}NO_{10}$	59, 129, 281, 377, 411, 568
136	574.320	-	-	-	-	-	
137	576.347	-	-	-	-	-	
138	582.268	582.2722	7	[M-H] ⁻	Dihydroegotamine	$C_{33}H_{37}N_5O_5$	42, 103, 209, 358, 450, 580
139	587.353	587.3589	10	[M-H] ⁻	25-Hydroxyvitamin D2-25- glucuronide	$C_{34}H_{52}O_8$	59, 131, 311, 411, 481
140	589.357	589.3615	8	[M-H] ⁻	Benextramine	$C_{32}H_{54}N_4O_2S_2\\$	59, 120, 248, 347, 453
141	590.276	-	-	-	-	-	
142	595.201	-	-	-	-	-	

			_		Assignment		Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
143	603.367	603.3667	0	[M-H] ⁻	PA(28:2)	$C_{31}H_{57}O_9P$	79, 171, 295, 325, 431, 449
144	605.384	-	-	-	-	-	525, 451, 447
145	613.353	-	-	-	-	-	
146	615.389	615.3902	2	[M-H] ⁻	13-O-Tetradecanoylphorbol 12- acetate	$C_{36}H_{56}O_8$	59, 127, 209, 405, 547, 615
147	617.403	-	-	-	-	-	
148	619.417	619.4215	7	[M-H] ⁻	Glucoside Rh4	$C_{36}H_{60}O_8 \\$	59, 499, 603 79, 97, 153,
149	622.371	622.3726	3	[M-H] ⁻	PS(24:0)	$C_{30}H_{58}NO_{10}P$	199, 353, 535, 622
150	643.403	-	-	-	-	-	
151	645.425	-	-	-	-	-	
152	647.435	-	-	-	-	-	
153	649.429	-	-	-	-	-	
154	651.443	651.4395	5	[M-H] ⁻	PA (O-34:5)	$C_{37}H_{65}O_7P$	79, 97, 171, 275, 393
155	659.492	-	-	-	-	-	
156	671.459	671.4657	10	[M-H] ⁻	PA(34:2)	$C_{37}H_{69}O_8P$	79, 97, 209, 307, 671
157	673.483	673.4814	2	[M-H] ⁻	PA(34:1)	$C_{37}H_{71}O_8P$	79, 237, 255, 279, 673
158	693.447	693.4501	4	[M-H] ⁻	PA(36:5)	$C_{39}H_{67}O_8P$	97, 283, 313 581, 651
159	698.507	698.5130	9	[M-H] ⁻	PE(P-34:2)	C ₃₉ H ₇₄ NO ₇ P	79, 93, 140, 253, 389, 417
160	699.509	-	-	-	-	-	
161	700.529	700.5287	0	[M-H] ⁻	PE(P-34:1)	$C_{39}H_{76}NO_7P$	79, 93, 255, 391, 545
162	701.489	-	-	-	-	-	
163	702.533	-	-	-	-	-	
164	714.503	714.5079	7	[M-H] ⁻	PE(34:2)	$C_{39}H_{74}NO_8P$	153, 227, 406, 504
165	716.517	716.5236	9	[M-H] ⁻	PE(34:1)	$C_{39}H_{76}NO_8P$	153, 255, 434, 478, 717
166	719.471	719.4657	7	[M-H] ⁻	PA(38:6)	$C_{41}H_{69}O_8P$	79, 153, 255, 409, 719
167	721.476	721.4814	7	[M-H] ⁻	PA(38:5)	$C_{41}H_{71}O_8P$	79, 153, 255, 391, 721
168	726.549	726.5443	6	[M-H] ⁻	PE(P-36:2)	C ₄₁ H ₇₈ NO ₇ P	79, 571

					Assignment		Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
							79, 265, 729
169	728.565	728.5600	0	[M-H] ⁻	PE(P-36:1)	$C_{41}H_{80}NO_7P$	79, 140, 265,
							283, 419, 729
							79, 93, 159,
170	731.517	731.5233	9	[M-H] ⁻	PG (O-34:2)	$C_{40}H_{77}O_9P$	209, 377, 469,
							657
171	736.488	736.4923	6	[M-H] ⁻	PE(P-36:5)	$C_{41}H_{72}NO_8P$	63,79, 239,
					× ,		445, 573
172	738.495	-	-	-	-	-	
173	742.534	742.5392	7	[M-H] ⁻	PE(36:2)	$C_{41}H_{78}NO_8P$	196, 281, 460,
			0				478, 743
174	744.551	744.5549	0	[M-H] ⁻	PE(36:1)	$C_{41}H_{80}NO_8P$	153, 339, 536
175	745.482	745.4814	1	[M-H] ⁻	PA(40:7)	$C_{43}H_{71}O_8P$	153, 281, 327,
							455, 481, 745
176	746.535	746.5342	1	[M-H] ⁻	PS (O-34:1)	$C_{40}H_{78}NO_9P$	79, 97, 155, 281, 305, 660
177	747 526		_	_	_	_	201, 393, 000
178	748.545	748,5498	6	[M-H] ⁻	PS (O-34·0)	C40He0NO0P	79 283 662
170	110.010	/ 10.0 190	0	[[]]]	15 (0 5 1.0)	04011801 (0591	59, 127, 227,
179	750.511	750.5079	4	[M-H] ⁻	PC(34:5)	$\mathrm{C}_{42}\mathrm{H}_{74}\mathrm{NO}_{8}\mathrm{P}$	301, 453, 647
180	758.523	-	-	-	-	-	
							275, 307, 763
181	762.513	762.5079	7	[M-H] ⁻	PE(38:6)	C ₄₃ H ₇₄ NO ₈ P	153, 275, 307,
							486, 763
182	764.540	-	-	-	-	-	
							259, 283, 303,
183	766.542	766.5392	0	$[M-H]^{-}$	PE(38:4)	$C_{43}H_{78}NO_8P$	462, 480, 482,
							500, 767
184	770.548	-	-	-	-	-	
							79, 93, 157,
185	772.555	772.5498	7	$[M-H]^{-}$	PS (O-36:2)	$C_{42}H_{80}NO_9P$	377, 395, 686,
							773
186	773.547	-	-	-	-	-	
187	774.551	774.5443	9	[M-H] ⁻	PE(P-40:6)	C ₄₅ H ₇₈ NO ₇ P	83, 122, 265,
							329, 465, 620
							79, 281, 417,
188	775.543	775.5495	8	[M-H] ⁻	PG(36:1)	$C_{42}H_{81}O_{10}P \\$	/UZ
							17, 201, 400, 500, 684, 759
							390, 084, 738

No.	Measured m/z	Calculated m/z	Error ppm	Assignment			Structurally
				Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
189	776.526	776.5236	3	[M-H] ⁻	PC(36:6)	$C_{44}H_{76}NO_8P$	79, 183, 227, 327, 581, 673
190	778.563	-	-	-	-	-	
191	786.487	786.4927	7	[M-H] ⁻	PC(34:5)	$C_{42}H_{74}NO_8P$	59, 227, 301, 453
							79, 97, 153,
192	788.528	788.5236	6	[M-H] ⁻	PE (40:7)	$C_{45}H_{76}NO_8P$	283, 327, 478,
193	790.558	790.5604	0	[M-H] ⁻	PS(36:0)	$C_{42}H_{82}NO_{10}P$	324 79, 686
							153, 283, 329,
194	792.552	792.5549	4	[M-H] ⁻	PE(40:5)	$C_{45}H_{80}NO_8P$	462, 480, 508,
							526
195	804.543	804.5479	6	[M-H] ⁻	LacCer(d30:1)	C ₄₂ H ₇₉ NO ₁₃	59, 137, 224, 402, 762, 745
196	807.545	-	-	-	-	-	
197	808.543	808.5498	8	[M-H] ⁻	PE (40:5-OH)	C45H80NO9P	153, 196, 309,
						15 00 5	488, 516, 809
	809.562	809.5702	10	[M-H] ⁻	PG (O-40:5)	$C_{46}H_{83}O_9P$	79, 153, 209,
198							301, 433, 451,
							525, 736
199	810.533	810.5291	5	[M-H] ⁻	PS(38:4)	$C_{44}H_{78}NO_{10}P$	153, 279, 415,
200	014 515						723, 811
200	814.517	-	-	-	-	-	
201	816.565	-	-	-	-	-	07 102 002
202	818.579	818.5705	10	[M-H] ⁻	PE (42:6)	$C_{47}H_{82}NO_8P$	97, 122, 283, 227, 506, 810
							527, 500, 819 70, 153, 245
203	821 542	821 5338	10	[M-H]-	PG (40:6)	CuHaoQueP	<i>19</i> , 135, 245, 327, 437, 493
205	0211012	0210000	10	[141-11]		C4011/90101	555, 747
							79, 97, 153,
204	822.558	822.5655	9	[M-H] ⁻	PS (O-40:5)	C46H82NO9P	257, 301, 451,
				t j			736, 823
205	828.533	828.5396	8	[M-H] ⁻	PS (38:3-OH)	$C_{44}H_{80}NO_{11}P \\$	153, 293, 311,
							447, 742, 829
	832.544	832.5498	7	[M-H] ⁻	PE (42:7-OH)	$C_{47}H_{80}NO_9P$	153, 196, 331,
206							500, 528, 833
207	833 561	833 55/0	7	[M H]-	PE (38·2-20H)	C. H. O. P	153, 171, 313,
201	055.501	055.5577	,	[171 11]	11 (30.2-2011)	€4411 <u>8</u> 3€[21	445, 519, 541
208	834.550	-	-	-	-	-	
209	835.585	-	-	-	-	-	

No.	Measured m/z	Calculated m/z	Error ppm	Assignment			Structurally
				Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
							79, 97, 153,
210	836.538	836.5447	8	$[M-H]^{-}$	PS (40:5)	$C_{46}H_{80}NO_{10}P$	287, 331, 767,
							750
211	846.501	846.4927	10	[M-H] ⁻	PS (40:8-OH)	C46H74NO11P	153, 303, 439,
				[]		-40/4 11-	473, 759, 846
212	848.543	848.5447	2	[M-H] ⁻	PE (42:7-2OH)	C ₄₇ H ₈₀ NO ₁₀ P	153, 196, 337,
					· · · · ·		510, 534, 849
213	856.553	-	-	-	-	-	
							153, 303, 337,
214	857.562	857.5549	8	[M-H] ⁻	PG (42:4-2OH)	$C_{46}H_{83}O_{12}P$	473, 519, 565,
		0.00.000	2				858
215	860.641	860.6386	3	[M-H] [*]	PE (42:1-20H)	C ₄₇ H ₉₂ NO ₁₀ P	153, 492, 861
216	862.603	862.5967	7	[M-H] ⁻	PE (44:6-OH)	$C_{49}H_{86}NO_9P$	153, 196, 343,
217	962 627						518, 540, 865
217	803.037	-	-	-	-	-	152 106 227
218	876.570	876.5760	7	[M-H] ⁻	PE (44:7-2OH)	$C_{49}H_{84}NO_{10}P$	516 556
							153 305 349
219	878 486	878 4825	4	[M-H] ⁻	PE (40:8-30H)	C ₄ /H ₇ /NO ₁₂ P	441 485 791
21)	070.100	070.1025	·	[[]]]	12 (10.0 5011)	04011/41 (0131	878
220	881.543	_	-	_	_	-	070
221	883.569	-	-	-	_	-	
222	885.587	-	-	_	-	-	
223	888.679	-	-	-	-	-	
224	894.519	-	-	-	-	-	
							43, 179, 323,
225	900.502	900.4962	6	[M-H] ⁻	beta1-Tomatidine	C ₄₅ H ₇₅ NO ₁₇	414, 576, 810,
							868
226	904.664	-	-	-	-	-	
							79, 179, 241,
227	909.556	909.5499	7	$[M-H]^{-}$	PI(40:6)	$C_{49}H_{83}O_{13}P$	327, 479, 639,
							729
228	020 564	020 5604	4		DC (40.6 OH)	CHOP	293, 429, 483,
228	939.304	939.3004	4	[M-11]	PG (40:0-OH)	C ₅₀ H ₈₅ O ₁₄ P	645, 663, 940
229	1023.555	-	-	-	-	-	
							79, 137, 285,
230	1069.512	1069.5060	6	$[M-H]^{-}$	PG (44:10-20H)	$C_{53}H_{84}O_{18}P_2$	395, 467, 719,
							979
231	1071.506	-	-	-	-	-	
232	1084.501	-	-	-	-	-	

No.	Measured m/z	Calculated m/z	Error ppm	Assignment			Structurally
				Ion form	Compound	Molecular formula	specific CID ions $(m/z)^{a}$
							59, 159, 384,
233	1086.489	1086.4863	3	$[M-H]^{-}$	CDP-DG(42:11-O)	$C_{54}H_{79}N_3O_{16}P_2$	442, 558, 768,
							843, 1028
234	1097.464	-	-	-	-	-	
025	1110 552	1110 5420	7			CUNOD	71, 159, 291,
235	1110.552	1110.5438	7	[M-H]	CDP-DG(42:/-2OH)	$C_{54}H_{87}N_3O_{17}P_2$	384, 559, 720, 851, 1002
	1112.437	1112.4315	5	[M-H] ⁻	(13Z,16Z)-Tetracosa-13,16-dienoyl- CoA	$C_{45}H_{78}N_7O_{17}P_3S$	79 328 344
236							408, 488,
							635,716, 776
							79, 143, 159,
237	1114.451	1114.4472	3	[M-H] ⁻	Nervonyl CoA	$C_{45}H_{80}N_7O_{17}P_3S$	344, 424, 488,
							716
							79, 143, 159,
238	1116.463	1116.4628	0	$[M-H]^{-}$	Methyltricosanoyl-CoA	$C_{45}H_{82}N_7O_{17}P_3S$	408, 488, 635,
							716, 776
							79, 159, 179,
239	1140.398	1140.3900	7	[M-H] ⁻	Deoxycholoyl-CoA	$C_{45}H_{74}N_7O_{19}P_3S$	373, 488, 713,
							793, 1122
			_				79, 134, 159,
240	1156.394	1156.3849	8	[M-H] ⁻	Choloyl-CoA	$C_{45}H_{74}N_7O_{20}P_3S$	389, 488, 729,
241	1150 200						1138
241	1182 388	-	-	-	-	-	
242	1184.443	-	-	-	_	-	
244	1218.291	-	-	-	_	-	
245	1424.803	-	-	-	-	-	
246	1470.548	-	-	-	-	-	
247	1494.456	-	-	-	-	-	
248	1405 072	1405 0650	5	IM HI-	CL (76:12)	CHOP	253, 329, 389,
240	1495.975	1495.9050	5	[141-11]	CL(70.12)	C ₈₅ II ₁₄₂ O ₁₇ F ₂	465, 591, 747
249	1499.492	-	-	-	-	-	
250	1516.134	1516.1215	8	[M-H] ⁻	CL(76:2)	C ₈₅ H ₁₆₂ O ₁₇ P ₂	255, 297, 353,
250				,		- 05102 - 1/* 2	489, 638, 758
251	1541.962	1541.9493	8	[M-H] ⁻	CL(80:17)	$C_{89}H_{140}O_{17}P_2$	253, 327, 463,
							615, 770
252	1567.963	1567.9650	1	[M-H] ⁻	CL(82:18)	$C_{91}H_{142}O_{17}P_2$	255, 327, 463,
252	1587 905						028, 783
233	1307.693	-	-	-	-	-	

a) Structurally specific CID ions of extracted compounds were detected by LC-MS/MS and/or MALD-TOF/TOF MS/MS using CID.

Red fragment ions were detected by LC-MS/MS, and blue fragment ions were detected by MALD-TOF/TOF MS/MS.

Reference

- 1. K. A. Nelson, G. J. Daniels, J. W. Fournie and M. J. Hemmer, *J Biomol Tech*, 2013, 24, 119-127.
- A. Dannhorn, E. Kazanc, S. Ling, C. Nikula, E. Karali, M. P. Serra, J. L. Vorng, P. Inglese, G. Maglennon, G. Hamm, J. Swales, N. Strittmatter, S. T. Barry, O. J. Sansom, G. Poulogiannis, J. Bunch, R. J. Goodwin and Z. Takats, *Anal. Chem.*, 2020, **92**, 11080-11088.
- 3. X. Wang, J. Han, J. Yang, J. Pan and C. H. Borchers, *Chem Sci*, 2015, 6, 729-738.
- 4. K.-H. Nam, D. Y. Kim, H. J. Kim, I.-S. Pack, H. J. Kim, Y. S. Chung, S. Y. Kim and C.-G. Kim, *Applied Biological Chemistry*, 2019, **62**, 15.
- A. Ly, A. Buck, B. Balluff, N. Sun, K. Gorzolka, A. Feuchtinger, K.-P. Janssen, P. J. K. Kuppen, C. J. H. van de Velde, G. Weirich, F. Erlmeier, R. Langer, M. Aubele, H. Zitzelsberger, L. McDonnell, M. Aichler and A. Walch, *Nat. Protoc.*, 2016, 11, 1428-1443.