Regio- and Diastereoselective Synthesis of Unsymmetrical 1,4-Diketone-Derived (*Z*)-Monosilyl Enol Ethers via Siloxyallylpotassium Intermediates

Shuto Okuda, Yutaka Narita, Rikuo Hayashi, and Masahiro Sai*

Supporting Information

Table of Contents

1.	Instr	umentation and Materials	S2
2.	Experimental Details		S3
	2.1.	Synthesis of Allyloxysilanes 1	S3
	2.2.	Synthesis of Weinreb Amides 2	S3
	2.3.	General Procedure for the Synthesis of 3-Functionalized Silyl Enol Ethers	S4
	2.4	Determination of Z Configuration of 3am by NOESY Analysis	S5
	2.5.	Procedure for the Transformation of the Products	S6
3.	Characterization Data		S8
	3.1	Characterization Data for New Allyloxysilanes	S8
	3.2	Characterization Data for the Products	S11
4.	References		S25
5.	¹ H, ¹³ C, and ¹⁹ F NMR Spectra		S26

1. Instrumentation and Materials

NMR spectra were recorded on JEOL JNM-ECA500 and JNM-ECA600 spectrometers (500 MHz for ¹H NMR, 126 MHz for ¹³C NMR, and 565 MHz for ¹⁹F NMR). Tetramethylsilane (TMS) served as internal standard (δ = 0) for ¹H NMR, and CDCl₃ served as internal standard (δ = 77.16) for ¹³C NMR. CF₃C₆H₅ sealed in a glass capillary was used as an external internal standard (δ = -63.72) for ¹⁹F NMR. Multiplicities are indicated as: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), or m (multiplet). Coupling constants (*J*) are reported in Hertz (Hz). IR spectra were taken with a Perkin-Elmer spectrum 400. High-resolution mass spectra (HRMS) were recorded on a Waters Xevo Q-Tof mass spectrometer. Melting points were determined with a Yanaco micro melting point apparatus Model MP-J3. Preparative HPLC was performed with a Yamazen EPCLC-AI-580S equipped with Fuji Silysia CHROMATOREX Q-PACK SI 30. Amino-functionalized silica gel (NH DM1020, Fuji Silysia) was used for purification of **3ga**. Analytical thin-layer chromatography (TLC) was performed on Merck aluminium sheets precoated with silica gel 60 F254. The TLC plates were visualized with UV light (254 nm), anisaldehyde, KMnO₄, and phosphomolybdic acid.

Unless otherwise noted, all chemicals were purchased from commercial suppliers and used as received. (TrimethylsilyI)methylpotassium (TMSCH₂K) and (trimethylsilyI)methylsodium (TMSCH₂Na) were prepared according to previously reported procedure^[1] and stored in an argon-filled glovebox. Hexamethylphosphoramide was purchased from Tokyo Chemical Industry; the bulk of the material was stored in an argon-filled glovebox, and small portions were removed from the glovebox in glass vials and stored in the air. *sec*-Butyllithium (1.2 M in cyclohexane/*n*-hexane) and *tert*-butyllithium (1.6 M in *n*-pentane) were purchased from Kanto Chemical and stored in an argon-filled glovebox.

S2

2. Experimental Details

2.1. Synthesis of Allyloxysilanes 1

2.1.1. Synthesis of 1a, 1a', and 1b-1j

ArCHO
$$\xrightarrow{MgCl (1.2 eq)}$$
 OH $\xrightarrow{Si-Cl (1.2 eq)}$
THF, 0 °C to rt, 1 h \xrightarrow{Ar} OH $\xrightarrow{DCMAP (5 mol\%)}$ \xrightarrow{OSi}

To a solution of aldehyde (6 mmol) in THF (12 mL) was slowly added vinylmagnesium chloride (1.38 M in THF, 5.22 mL, 7.2 mmol) under argon at 0 °C. The reaction mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched by saturated aq. NH₄Cl solution and extracted with Et₂O. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude allylic alcohol was dissolved in DCM (15 mL), and to the flask were added silyl chloride (7.2 mmol), imidazole (9 mmol), and DMAP (0.3 mmol) at room temperature. After stirring for 2 h, the mixture was diluted with H₂O and extracted with DCM. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude allylic alcohol with H₂O and extracted with DCM. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude allylosy diluted with H₂O and extracted with DCM. The organic layer was purified by flash chromatography on silica gel (hexane/EtOAc) to give the corresponding allyloxysilane.

2.1.2. Synthesis of 1a"

To a solution of benzaldehyde (0.51 mL, 5 mmol) in THF (10 mL) was slowly added vinylmagnesium chloride (1.38 M in THF, 4.35 mL, 6 mmol) under argon at 0 °C. The reaction mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched by saturated aq. NH_4Cl solution and extracted with Et_2O . The organic layer was combined, dried over Na_2SO_4 , and concentrated under reduced pressure. The crude allylic alcohol was dissolved in DMF (12 mL), and to the flask were added TIPSCl (1.38 mL, 6.5 mmol), imidazole (511 mg, 7.5 mmol), and DMAP (916 mg, 7.5 mmol) at room temperature. The reaction mixture was heated at 100 °C for 5.5 h. The mixture was diluted with H_2O and extracted with hexane. The organic layer was combined, washed with brine, dried over Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 99:1) to give **1a**" as a colorless oil.

2.2. Synthesis of Weinreb Amides 2

$$R \xrightarrow{O} CI \xrightarrow{HNMeOMe \cdot HCl (1.2 eq)}{DCM, 0 \circ C \text{ to rt, 1 h}} \xrightarrow{O} R \xrightarrow{O} N^{OMe}$$

To a solution of *N*,*O*-dimethylhydroxyamine hydrochloride (585 mg, 6 mmol) in DCM (12 mL) was added Et_3N (2.09 mL, 15 mmol) followed by dropwise addition of acyl chloride (5 mmol) at 0 °C. The mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched by H₂O and extracted with DCM. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel or Kugelrohr distillation to give the corresponding Weinreb amide.

2.3. General Procedure for the Synthesis of 3-Functionalized Silyl Enol Ethers

Synthesis of **3ab** is representative: In a glovebox, an oven-dried vial equipped with a magnetic stir bar was charged with TMSCH₂K (37.9 mg, 0.30 mmol). The vial was sealed with a rubber septum and removed from the glovebox. The vial was cooled to -78 °C, and cold THF (2 mL, -78 °C) was added. To the vial was added allyloxysilane **1a** (62.1 mg, 0.25 mmol) via microsyringe at -78 °C, and the mixture was stirred for 10 min. Subsequently, Weinreb amide **2b** (58.2 mg, 0.325 mmol) dissolved in THF (1 mL) was added at -78 °C, and the mixture was stirred at this temperature for an additional 10 min. The reaction was quenched by saturated aq. NH₄Cl solution and extracted with EtOAc three times. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 50:1) to give **3ab** (72.1 mg, 79% yield) as a white solid.

2.4. Determination of Z Configuration of 3am by NOESY Analysis

2.5. Procedure for the Transformation of the Products

2.5.1. Procedure for the fluorination of 3da

Selectfluor (26.6 mg, 0.075 mmol) was dissolved in MeCN (0.75 mL), and **3da** (19.1 mg, 0.050 mmol) was added at 0 °C. The reaction mixture was warmed to room temperature and stirred for 0.5 h. The reaction was quenched by saturated aq. NaHCO₃ solution and extracted with hexane/EtOAc (5/1). The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The crude solid was washed with hexane three times and dried in vacuo to give **6** (10.4 mg, 73%) as a white solid.

2.5.2. Procedure for the Rubottom oxidation of 3da

To a solution of **3da** (95.7 mg, 0.25 mmol) in hexane (2 mL) and DCM (1 mL) was added *m*CPBA (contains ca. 30% H₂O, 67.8 mg, 0.275 mmol) at 0 °C, and the mixture was stirred for 0.5 h. The reaction was quenched by saturated aq. NaHCO₃ solution and extracted with hexane/EtOAc (5/1). The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 7:1) to give **7** (89.0 mg, 89%) as a colorless viscous oil.

2.5.3. Procedure for the synthesis of 8[2]

An oven-dried vial was charged with CuBr·SMe₂ (1.0 mg, 5.0 μ mol), diphenyliodonium triflate (107.5 mg, 0.25 mmol), and **3da** (114.8 mg, 0.30 mmol), and the vial was flushed with argon and sealed with a rubber septum. To the vial was added DCE (2.5 mL), and the mixture was heated at 70 °C for 10 min. The reaction was quenched by saturated aq. NaHCO₃ solution and extracted with Et₂O. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced

pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 6:1) to give **8** (70.9 mg, 82%) as a pale yellow viscous oil.

2.5.4. Procedure for the synthesis of 9

1,4-Diketone **8** (70.9 mg, 0.206 mmol) was dissolved in DCE (3 mL), and triflic acid (1.81 μ L, 0.0206 mmol) was added at room temperature. The mixture was heated at 60 °C for 3 h. The reaction was quenched by saturated aq. NaHCO₃ solution and extracted with Et₂O. The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 9:1) to give **9** (46.5 mg, 57% in two steps from **3da**) as a colorless viscous oil.

2.5.5. Procedure for the synthesis of 10

1,4-Diketone **8** (70.9 mg, 0.206 mmol) was dissolved in MeOH (3 mL), and NH₄OAc (159 mg, 2.06 mmol) was added at room temperature. The mixture was heated at 65 °C overnight. The reaction was quenched by saturated aq. NaHCO₃ solution and extracted with hexane/EtOAc (5/1). The organic layer was combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 7:1) to give **10** (55.6 mg, 68% in two steps from **3da**) as a colorless amorphous solid.

3. Characterization Data

1a,^[3] 1a',^[4] 1a",^[5] 1b,^[4] 4,^[6] 8,^[7] 9,^[8] and 10^[9] were reported in the literatures.

3.1. Characterization Data for New Allyloxysilanes

tert-Butyldimethyl((1-(naphthalen-1-yl)allyl)oxy)silane (1c)

Colorless oil.

 R_{f} : 0.72 (hexane/EtOAc = 20:1).

IR (ATR): 3060, 2955, 2929, 2891, 2856, 1640, 1598, 1511, 1472, 1462, 1361, 1335, 1252, 1228, 1168, 1128, 1030, 1005 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.19–8.17 (m, 1H), 7.86–7.84 (m, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.49–7.44 (m, 3H), 6.11 (ddd, *J* = 17.0, 10.5, 5.0 Hz, 1H), 5.82 (br d, *J* = 5.0 Hz, 1H), 5.36 (app. dt, *J* = 17.0, 1.5 Hz, 1H), 5.09 (app. dt, *J* = 10.5, 1.5 Hz, 1H), 0.91 (s, 9H), 0.09 (s, 3H), –0.08 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 141.1, 139.4, 134.0, 130.4, 128.9, 128.0, 125.7, 125.6, 125.5, 124.3, 124.2, 113.9, 74.1, 26.0, 18.5, -4.68, -4.72 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₉H₂₆OSiNa [M+Na]⁺: 321.1645, found: 321.1666.

tert-Butyl((1-(4-methoxyphenyl)allyl)oxy)dimethylsilane (1d)

Colorless oil.

R_f: 0.63 (hexane/EtOAc = 20:1).

IR (ATR): 2955, 2930, 2897, 2856, 2836, 1640, 1611, 1587, 1509, 1471, 1463, 1442, 1302, 1246, 1171, 1126, 1034, 1006 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.25–7.23 (m, 2H), 6.87–6.84 (m, 2H), 5.90 (ddd, *J* = 17.0, 10.5, 6.0 Hz, 1H), 5.25 (app. dt, *J* = 17.0, 2.0 Hz, 1H), 5.12 (br d, *J* = 6.0 Hz, 1H), 5.04 (app. dt, *J* = 10.5, 1.5 Hz, 1H), 3.79 (s, 3H), 0.91 (s, 9H), 0.07 (s, 3H), -0.02 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 158.8, 142.1, 136.1, 127.3, 113.7, 113.1, 75.6, 55.4, 26.0, 18.5, – 4.5, –4.7 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₆H₂₇O₂Si [M+H]⁺: 279.1775, found: 279.1790.

tert-Butyl((1-(3,4-dimethoxyphenyl)allyl)oxy)dimethylsilane (1e)

Colorless oil.

 R_{f} : 0.59 (hexane/EtOAc = 5:1).

IR (ATR): 2954, 2931, 2898, 2856, 2835, 1640, 1606, 1594, 1512, 1463, 1417, 1361, 1253, 1187, 1132, 1073, 1029, 1006 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 6.92 (d, J = 2.0 Hz, 1H), 6.84 (dd, J = 8.0, 2.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 5.92 (ddd, J = 17.0, 10.0, 6.0 Hz, 1H), 5.27 (app. dt, J = 17.0, 1.5 Hz, 1H), 5.12 (br d, J = 6.0 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 3.874 (s, 3H), 3.867 (s, 3H), 0.92 (s, 9H), 0.08 (s, 3H), 0.00 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 148.9, 148.1, 141.9, 136.6, 118.2, 113.3, 110.8, 109.3, 75.7, 56.0, 55.9, 26.0, 18.5, -4.5, -4.7 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₈O₃SiNa [M+Na]⁺: 331.1700, found: 331.1714.

tert-Butyl(4-(1-((tert-butyldimethylsilyl)oxy)allyl)phenoxy)dimethylsilane (1f)

Yellow oil.

R_f: 0.53 (hexane).

IR (ATR): 2956, 2930, 2891, 2858, 1641, 1607, 1508, 1472, 1463, 1390, 1362, 1251, 1197, 1166, 1126, 1072, 1032, 1006 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.22–7.20 (m, 2H), 6.82–6.81 (m, 2H), 5.94 (ddd, *J* = 16.5, 10.5, 6.0 Hz, 1H), 5.29 (app. dt, *J* = 16.5, 1.5 Hz, 1H), 5.14 (br d, *J* = 6.0 Hz, 1H), 5.08 (dd, *J* = 10.5, 1.5 Hz, 1H), 1.01 (s, 9H), 0.94 (s, 9H), 0.22 (s, 6H), 0.10 (s, 3H), 0.01 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 154.8, 142.0, 136.7, 127.3, 119.9, 113.2, 75.7, 26.0, 25.9, 18.5, 18.3, -4.3 (two signals merged), -4.5, -4.6 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₁H₃₈O₂Si₂Na [M+Na]+: 401.2303, found: 401.2296.

4-(1-((tert-Butyldimethylsilyl)oxy)allyl)-N,N-dimethylaniline (1g)

Colorless oil.

R_f: 0.53 (hexane/EtOAc = 20:1).

IR (ATR): 2955, 2928, 2886, 2855, 2804, 1640, 1615, 1568, 1520, 1472, 1462, 1346, 1250, 1183, 1113, 1061, 1031, 1005 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.19–7.18 (m, 2H), 6.70 (d, *J* = 9.0 Hz, 2H), 5.91 (ddd, *J* = 17.5, 10.0, 5.5 Hz, 1H), 5.24 (app. dt, *J* = 17.5, 1.5 Hz, 1H), 5.09 (br d, *J* = 5.5 Hz, 1H), 5.02 (app. dt, *J* = 10.0, 1.5 Hz, 1H), 2.93 (s, 6H), 0.91 (s, 9H), 0.06 (s, 3H), -0.02 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 150.0, 142.3, 131.9, 127.1, 112.7, 112.5, 75.7, 40.9, 26.1, 18.5, – 4.5, –4.6 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₉NOSiNa [M+Na]+: 314.1911, found: 314.1932.

2-(1-((tert-Butyldimethylsilyl)oxy)allyl)pyridine (1h)

Yellow oil.

R_f: 0.38 (hexane/EtOAc = 20:1).

IR (ATR): 3060, 3012, 2955, 2930, 2890, 2857, 1642, 1590, 1571, 1471, 1435, 1361, 1347, 1253, 1138, 1101, 1075, 1006 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.47 (dd, J = 5.5, 1.5 Hz, 1H), 7.63 (app. td, J = 8.0, 1.5 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.09 (dd, J = 7.5, 5.5 Hz, 1H), 6.01 (ddd, J = 17.5, 10.5, 5.0 Hz, 1H), 5.38 (app. dt, J = 17.5, 1.5 Hz, 1H), 5.28 (d, J = 5.0 Hz, 1H), 5.08 (d, J = 10.5 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 3H), -0.01 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 163.3, 148.6, 140.3, 136.8, 122.0, 120.1, 114.0, 77.0, 25.9, 18.4, – 4.7, –4.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₄H₂₃NOSiNa [M+Na]+: 272.1441, found: 272.1443.

((1-(Benzofuran-2-yl)allyl)oxy)(tert-butyl)dimethylsilane (1i)

Colorless oil.

 R_{f} : 0.72 (hexane/EtOAc = 20:1).

IR (ATR): 3085, 3064, 3035, 2955, 2929, 2886, 2857, 1644, 1600, 1585, 1472, 1462, 1454, 1361, 1253, 1152, 1101, 1006 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.52 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.24 (app. td,

J = 8.0, 1.0 Hz, 1H), 7.19 (app. td, J = 7.5, 1.0 Hz, 1H), 6.59 (s, 1H), 6.09 (ddd, J = 17.0, 10.5, 5.5 Hz, 1H), 5.46 (app. dt, J = 17.0, 1.5 Hz, 1H), 5.33–5.32 (m, 1H), 5.25 (app. dt, J = 10.5, 1.5 Hz, 1H), 0.94 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 159.0, 155.1, 137.8, 128.4, 124.0, 122.8, 121.1, 115.8, 111.3, 102.7, 70.2, 25.9, 18.6, -4.7, -4.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₅O₂Si [M+H]⁺: 289.1612, found: 289.1618.

((1-(Benzo[b]thiophen-2-yl)allyl)oxy)(tert-butyl)dimethylsilane (1j)

Yellow oil.

R_f: 0.45 (hexane/EtOAc = 60:1).

IR (ATR): 3061, 2955, 2929, 2885, 2856, 1641, 1472, 1459, 1436, 1398, 1361, 1251, 1140, 1114, 1074, 1030, 1005 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.76 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.28 (app. t, *J* = 7.5 Hz, 1H), 7.23 (app. t, *J* = 8.0 Hz, 1H), 7.07 (s, 1H), 6.07–6.00 (m, 1H), 5.45 (d, *J* = 6.0 Hz, 1H), 5.37 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.17 (dd, *J* = 10.5, 1.5 Hz, 1H), 0.95 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 150.0, 140.4, 139.9, 139.8, 124.2, 123.9, 123.5, 122.5, 119.5, 114.9, 72.9, 26.0, 18.5, -4.5, -4.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₄OSSiNa [M+Na]⁺: 327.1209, found: 327.1214.

3.2. Characterization Data for the Products

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1,4-diphenylbut-3-en-1-one (3aa)

Yield: 72.4 mg, 82% yield, colorless oil.

 R_{f} : 0.40 (hexane/EtOAc = 30:1).

IR (ATR): 3062, 2955, 2930, 2886, 2858, 1686, 1649, 1599, 1581, 1492, 1472, 1447, 1390, 1319, 1255, 1204, 1102, 1050 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.03–8.02 (m, 2H), 7.56 (t, *J* = 7.0 Hz, 1H), 7.49–7.45 (m, 4H), 7.31–7.25 (m, 3H), 5.48 (t, *J* = 6.5 Hz, 1H), 3.92 (d, *J* = 6.5 Hz, 2H), 1.02 (s, 9H), -0.03 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.4, 151.6, 139.1, 136.9, 133.2, 128.7, 128.4, 128.1 (two signals merged), 126.3, 103.7, 37.0, 26.0, 18.5, –3.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₈O₂SiNa [M+Na]⁺: 375.1751, found: 375.1748.

(Z)-1,4-Diphenyl-4-((triethylsilyl)oxy)but-3-en-1-one (3aa')

Yield: 56.8 mg, 64% yield, colorless oil.

 R_{f} : 0.25 (hexane/EtOAc = 60:1).

IR (ATR): 3064, 2955, 2911, 2876, 1686, 1654, 1594, 1579, 1491, 1447, 1397, 1352, 1319, 1223, 1179, 1105, 1074, 1002 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.04–8.02 (m, 2H), 7.56 (tt, *J* = 7.0, 1.5 Hz, 1H), 7.50–7.45 (m, 4H), 7.32–7.25 (m, 3H), 5.48 (t, *J* = 7.0 Hz, 1H), 3.93 (d, *J* = 7.0 Hz, 2H), 0.94 (t, *J* = 8.0 Hz, 9H), 0.62 (q, *J* = 8.0 Hz, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.5, 151.9, 139.1, 136.9, 133.2, 128.7, 128.4, 128.2, 128.1, 126.0, 103.1, 36.9, 6.8, 5.5 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₈O₂SiNa [M+Na]⁺: 375.1751, found: 375.1722.

(Z)-1,4-Diphenyl-4-((triisopropylsilyl)oxy)but-3-en-1-one (3aa'')

Yield: 56.5 mg, 64% yield, colorless oil.

 R_{f} : 0.32 (hexane/EtOAc = 60:1).

IR (ATR): 2938, 2922, 2888, 2865, 1686, 1649, 1598, 1581, 1462, 1446, 1349, 1306, 1260, 1207, 1115, 1059, 1014 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.03–8.02 (m, 2H), 7.57–7.53 (m, 1H), 7.50–7.45 (m, 4H), 7.31– 7.25 (m, 3H), 5.36 (t, *J* = 7.0 Hz, 1H), 3.96 (d, *J* = 7.0 Hz, 2H), 1.13–1.05 (m, 21H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.4, 152.6, 139.8, 136.9, 133.1, 128.7, 128.4, 128.1 (two signals merged), 126.4, 103.1, 37.1, 18.0, 13.7 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₅H₃₄O₂SiNa [M+Na]+: 417.2220, found: 417.2249.

(Z)-4-((*tert*-Butyldimethylsilyl)oxy)-4-(naphthalen-2-yl)-1-phenylbut-3-en-1-one (3ba)

Yield: 82.3 mg, 82% yield, white solid.

 R_{f} : 0.24 (hexane/EtOAc = 50:1).

IR (ATR): 2948, 2924, 2883, 2853, 1685, 1637, 1596, 1579, 1508, 1471, 1448, 1407, 1357, 1310, 1253, 1206, 1130, 1051 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.08–8.06 (m, 2H), 7.98 (s, 1H), 7.85–7.78 (m, 3H), 7.65 (dd, J = 9.0, 2.0 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.51–7.45 (m, 4H), 5.69 (t, J = 6.5 Hz, 1H), 4.01 (d, J = 6.5 Hz, 2H), 1.08 (s, 9H), 0.01 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.4, 151.5, 136.9, 136.5, 133.19, 133.15, 128.7 (two signals merged), 128.4, 128.3, 127.7 (two signals merged), 126.3, 126.1, 125.0, 124.4, 104.3, 37.0, 26.0, 18.5, -3.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₆H₃₀O₂SiNa [M+Na]⁺: 425.1907, found: 425.1906.

M.p.: 74–75 °C.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-4-(naphthalen-1-yl)-1-phenylbut-3-en-1-one (3ca)

Yield: 80.6 mg, 79% yield, brown solid.

 R_{f} : 0.25 (hexane/EtOAc = 50:1).

IR (ATR): 2950, 2927, 2883, 2853, 1678, 1646, 1598, 1578, 1448, 1318, 1288, 1255, 1183, 1122, 1058, 1025 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.23–8.22 (m, 1H), 8.13–8.11 (m, 2H), 7.83–7.79 (m, 2H), 7.61–7.58 (m, 1H), 7.53–7.45 (m, 5H), 7.41 (dd, *J* = 8.0, 7.0 Hz, 1H), 5.32 (t, *J* = 6.5 Hz, 1H), 4.05 (d, *J* = 6.5 Hz, 2H), 0.92 (s, 9H), -0.30 (s, 6H) ppm.

¹³C NMR (CDCl₃, 126 MHz): δ 198.7, 151.6, 137.3, 136.9, 133.6, 133.1, 131.7, 128.8, 128.7, 128.5, 128.2, 126.7, 126.6, 126.1, 125.9, 125.1, 106.2, 36.8, 25.8, 18.4, -4.5 ppm.
HRMS (ESI): *m/z* calcd. for C₂₆H₃₀O₂SiNa [M+Na]⁺: 425.1907, found: 425.1904.

M.p.: 72–73 °C.

(Z)-4-((*tert*-Butyldimethylsilyl)oxy)-4-(4-methoxyphenyl)-1-phenylbut-3-en-1-one (3da)

Yield: 79.1 mg, 83% yield, orange solid.

 R_{f} : 0.21 (hexane/EtOAc = 50:1).

IR (ATR): 2949, 2927, 2894, 1727, 1686, 1638, 1604, 1578, 1509, 1447, 1346, 1308, 1249, 1200, 1106, 1051, 1005 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.03 (dd, *J* = 8.5, 1.0 Hz, 2H), 7.57–7.54 (m, 1H), 7.47 (app. t, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 9.0 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 5.37 (t, *J* = 7.0 Hz, 1H), 3.90 (d, *J* = 7.0 Hz, 2H), 3.81 (s, 3H), 1.02 (s, 9H), -0.03 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.6, 159.6, 151.3, 136.9, 133.1, 131.8, 128.7, 128.4, 127.6, 113.4, 102.2, 55.4, 37.0, 26.0, 18.5, -3.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₃₀O₃SiNa [M+Na]⁺: 405.1856, found: 405.1853.

M.p.: 73–74 °C.

(Z)-4-((*tert*-Butyldimethylsilyl)oxy)-4-(3,4-dimethoxyphenyl)-1-phenylbut-3-en-1-one (3ea)

Yield: 79.4 mg, 77% yield, brown oil.

 $R_{f}: 0.22$ (hexane/EtOAc = 10:1).

IR (ATR): 2957, 2928, 2894, 2858, 1688, 1654, 1600, 1582, 1513, 1460, 1327, 1268, 1209, 1167, 1140, 1108, 1054, 1020 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.02 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.47 (app. t, *J* = 7.5 Hz, 2H), 7.06 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.02 (d, *J* = 2.5 Hz, 1H), 6.80 (d, *J* = 8.5 Hz, 1H), 5.41 (t, *J* = 6.5 Hz, 1H), 3.90 (d, *J* = 6.5 Hz, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 1.02 (s, 9H), -0.01 (s, 6H) ppm.

¹³**C** NMR (CDCl₃, 126 MHz): δ 198.5, 151.3, 149.0, 148.4, 136.9, 133.1, 132.1, 128.7, 128.3, 118.8, 110.6, 109.5, 102.3, 56.0, 55.9, 36.9, 26.0, 18.5, -3.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₄H₃₃O₄Si [M+H]⁺: 413.2143, found: 413.2150.

(*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-4-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1-phenylbut-3en-1-one (3fa)

Yield: 86.3 mg, 71% yield, colorless oil.

 R_{f} : 0.26 (hexane/EtOAc = 60:1).

IR (ATR): 2955, 2930, 2887, 1686, 1649, 1605, 1582, 1507, 1472, 1449, 1362, 1305, 1253, 1167, 1100, 1050, 1005 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.04–8.02 (m, 2H), 7.57–7.54 (m, 1H), 7.47 (app. t, *J* = 7.5 Hz, 2H), 7.36–7.34 (m, 2H), 6.79–6.76 (m, 2H), 5.37 (t, *J* = 7.0 Hz, 1H), 3.90 (d, *J* = 7.0 Hz, 2H), 1.02 (s, 9H), 0.98 (s, 9H), 0.19 (s, 6H), –0.03 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.6, 155.7, 151.5, 136.9, 133.1, 132.5, 128.7, 128.4, 127.6, 119.7, 102.2, 37.0, 26.0, 25.8, 18.5, 18.4, -3.9, -4.3 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₈H₄₃O₃Si₂ [M+H]+: 483.2745, found: 483.2736.

(*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-4-(4-(dimethylamino)phenyl)-1-phenylbut-3-en-1-one (3ga)

Yield: 43.4 mg, 44% yield, white solid.

 $R_{f}: 0.25$ (hexane/EtOAc = 30:1).

IR (ATR): 2950, 2922, 2886, 2858, 1686, 1637, 1607, 1522, 1445, 1359, 1321, 1256, 1207, 1048, 1002 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.03 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.45 (app. t, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 9.0 Hz, 2H), 6.64 (d, *J* = 9.0 Hz, 2H), 5.31 (t, *J* = 7.0 Hz, 1H), 3.89 (d, *J* = 7.0 Hz, 2H), 2.95 (s, 6H), 1.03 (s, 9H), -0.01 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.9, 151.8, 150.4, 137.0, 133.0, 128.6, 128.4, 127.2 (two signals merged), 111.7, 100.6, 40.6, 37.3, 26.1, 18.5, -3.7 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₄H₃₄NO₂Si [M+H]+: 396.2353, found: 396.2362.

M.p.: 96–97 °C.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1-phenyl-4-(pyridin-2-yl)but-3-en-1-one (3ha)

Yield: 41.1 mg, 47% yield, yellow oil.

 R_{f} : 0.24 (hexane/EtOAc = 10:1).

IR (ATR): 3062, 2955, 2929, 2893, 2857, 1685, 1648, 1598, 1584, 1567, 1471, 1448, 1347, 1324, 1254, 1205, 1118, 1055 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.53 (d, J = 4.5 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.64 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.46 (app. t, J = 7.5 Hz, 2H), 7.15 (dd, J = 7.5, 5.0 Hz, 1H), 6.12 (t, J = 6.5 Hz, 1H), 3.96 (d, J = 6.5 Hz, 2H), 1.05 (s, 9H), 0.07 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.0, 155.7, 150.3, 148.9, 136.8, 136.3, 133.2, 128.7, 128.4, 122.7, 120.2, 106.2, 37.0, 26.1, 18.7, -3.6 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₁H₂₈NO₂Si [M+H]+: 354.1884, found: 354.1891.

(Z)-4-(Benzofuran-2-yl)-4-((tert-butyldimethylsilyl)oxy)-1-phenylbut-3-en-1-one (3ia)

Yield: 82.7 mg, 84% yield, yellow oil.

 R_{f} : 0.40 (hexane/EtOAc = 30:1).

IR (ATR): 3065, 2953, 2930, 2892, 2857, 1685, 1655, 1596, 1560, 1472, 1447, 1408, 1358, 1302, 1256, 1159, 1115, 1051 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.80–7.78 (m, 2H), 7.35–7.32 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.25 (app. t, *J* = 7.5 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.04–7.01 (m, 1H), 6.98–6.95 (m, 1H), 6.49 (s, 1H), 5.79 (t, *J* = 7.0 Hz, 1H), 3.73 (d, *J* = 7.0 Hz, 2H), 0.86 (s, 9H), -0.05 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.6, 154.7, 153.8, 142.6, 136.7, 133.3, 128.8, 128.6, 128.4, 124.6, 123.0, 121.2, 111.2, 105.1, 103.2, 36.5, 26.0, 18.6, -3.7 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₄H₂₈O₃SiNa [M+Na]⁺: 415.1700, found: 415.1704.

(Z)-4-(Benzo[b]thiophen-2-yl)-4-((tert-butyldimethylsilyl)oxy)-1-phenylbut-3-en-1-one (3ja)

Yield: 78.4 mg, 77% yield, yellow oil.

 R_{f} : 0.30 (hexane/EtOAc = 60:1).

IR (ATR): 3060, 2954, 2927, 2854, 1682, 1632, 1596, 1579, 1522, 1471, 1436, 1339, 1254, 1178, 1129, 1081, 1025, 1001 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.03–8.02 (m, 2H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 7.0 Hz, 1H),
7.58 (app. t, *J* = 7.5 Hz, 1H), 7.49 (app. t, *J* = 7.5 Hz, 2H), 7.34–7.30 (m, 3H), 5.72 (t, *J* = 7.0 Hz, 1H),
3.94 (d, *J* = 7.0 Hz, 2H), 1.09 (s, 9H), 0.15 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.7, 146.1, 142.6, 139.8, 139.4, 136.8, 133.3, 128.8, 128.3, 124.7, 124.5, 123.7, 122.3, 120.8, 105.7, 36.9, 26.1, 18.6, –3.6 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₄H₂₉O₂SSi [M+H]⁺: 409.1652, found: 409.1657.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-4-phenyl-1-(p-tolyl)but-3-en-1-one (3ab)

Yield: 72.1 mg, 79% yield, white solid.

R_f: 0.24 (hexane/EtOAc = 50:1).

IR (ATR): 2956, 2927, 2855, 1683, 1655, 1607, 1470, 1445, 1402, 1342, 1316, 1258, 1176, 1107, 1049, 1025 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.49–7.47 (m, 2H), 7.31–7.25 (m, 5H), 5.48 (t, *J* = 6.5 Hz, 1H), 3.89 (d, *J* = 6.5 Hz, 2H), 2.40 (s, 3H), 1.02 (s, 9H), -0.04 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.1, 151.4, 143.9, 139.2, 134.4, 129.4, 128.5, 128.1, 128.0, 126.2, 103.9, 36.9, 26.0, 21.8, 18.5, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₃₁O₂Si [M+H]+: 367.2088, found: 367.2087.

M.p.: 73–74 °C.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-4-phenyl-1-(o-tolyl)but-3-en-1-one (3ac)

Yield: 49.1 mg, 54% yield, colorless oil.

 R_{f} : 0.31 (hexane/EtOAc = 50:1).

IR (ATR): 3061, 3024, 2955, 2930, 2892, 2857, 1686, 1653, 1601, 1571, 1492, 1472, 1446, 1337, 1305, 1255, 1103, 1026 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.75–7.74 (m, 1H), 7.48–7.47 (m, 2H), 7.38–7.35 (m, 1H), 7.31– 7.23 (m, 5H), 5.45 (t, *J* = 6.5 Hz, 1H), 3.84 (d, *J* = 6.5 Hz, 2H), 2.52 (s, 3H), 1.00 (s, 9H), –0.05 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 202.3, 151.6, 139.2, 138.5, 137.7, 132.1, 131.4, 128.8, 128.1, 128.0, 126.3, 125.8, 103.8, 39.6, 26.0, 21.6, 18.4, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₃₁O₂Si [M+H]+: 367.2088, found: 367.2103.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1-(4-methoxyphenyl)-4-phenylbut-3-en-1-one (3ad)

Yield: 71.8 mg, 75% yield, colorless oil.

 R_{f} : 0.21 (hexane/EtOAc = 30:1).

IR (ATR): 2959, 2924, 2894, 2857, 1671, 1648, 1599, 1574, 1509, 1461, 1420, 1351, 1306, 1259, 1210, 1172, 1108, 1024 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.01 (d, *J* = 9.0 Hz, 2H), 7.49–7.47 (m, 2H), 7.29 (app. t, *J* = 7.5 Hz, 2H), 7.26–7.23 (m, 1H), 6.93 (d, *J* = 9.0 Hz, 2H), 5.47 (t, *J* = 7.0 Hz, 1H), 3.87–3.86 (m, 5H), 1.02 (s, 9H), -0.03 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.1, 163.5, 151.3, 139.2, 130.6, 130.0, 128.1, 128.0, 126.2, 113.8, 104.1, 55.5, 36.8, 26.0, 18.5, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₃₁O₃Si [M+H]⁺: 383.2037, found: 383.2026.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1-(4-fluorophenyl)-4-phenylbut-3-en-1-one (3ae)

Yield: 75.6 mg, 82% yield, colorless oil.

 R_{f} : 0.25 (hexane/EtOAc = 50:1).

IR (ATR): 2956, 2930, 2886, 2859, 1687, 1637, 1607, 1522, 1445, 1359, 1321, 1256, 1207, 1048, 1002 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.07–8.04 (m, 2H), 7.48–7.47 (m, 2H), 7.31–7.24 (m, 3H), 7.14–7.10 (m, 2H), 5.44 (t, *J* = 7.0 Hz, 1H), 3.87 (d, *J* = 7.0 Hz, 2H), 1.02 (s, 9H), -0.03 (s, 6H) ppm. ¹³**C NMR** (CDCl₃, 126 MHz): δ 196.8, 165.8 (d, *J*_{C-F} = 254.8 Hz), 151.7, 139.0, 133.2, 131.0(d, *J*_{C-F} = 9.7 Hz), 128.1 (two signals merged), 126.2, 115.8 (d, *J*_{C-F} = 21.5 Hz), 103.5, 37.0, 26.0, 18.4, – 3.9 ppm.

¹⁹**F NMR** (CDCl₃, 565 MHz): δ –106.35 – –106.40 (m) ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₈FO₂Si [M+H]+: 371.1837, found: 371.1829.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1-(4-chlorophenyl)-4-phenylbut-3-en-1-one (3af)

Yield: 82.1 mg, 85% yield, colorless oil.

 R_{f} : 0.28 (hexane/EtOAc = 50:1).

IR (ATR): 2956, 2929, 2894, 2858, 1695, 1660, 1586, 1571, 1471, 1399, 1336, 1316, 1275, 1258, 1209, 1088, 1042, 1013 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.98–7.95 (m, 2H), 7.48–7.46 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.31–7.25 (m, 3H), 5.42 (t, *J* = 7.0 Hz, 1H), 3.87 (d, *J* = 7.0 Hz, 2H), 1.02 (s, 9H), -0.04 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.2, 151.8, 139.6, 139.0, 135.1, 129.8, 129.0, 128.2, 128.1, 126.2, 103.4, 37.1, 26.0, 18.4, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₈ClO₂Si [M+H]⁺: 387.1542, found: 387.1528.

(Z)-1-(4-Bromophenyl)-4-((tert-butyldimethylsilyl)oxy)-4-phenylbut-3-en-1-one (3ag)

Yield: 90.0 mg, 83% yield, colorless oil.

 R_{f} : 0.29 (hexane/EtOAc = 50:1).

IR (ATR): 2952, 2931, 2892, 2856, 1696, 1656, 1581, 1491, 1470, 1445, 1397, 1335, 1312, 1256, 1209, 1099, 1042, 1010 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.30–7.23 (m, 3H), 5.40 (t, *J* = 6.5 Hz, 1H), 3.85 (d, *J* = 6.5 Hz, 2H), 1.01 (s, 9H), -0.05 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.4, 151.8, 139.0, 135.5, 132.0, 129.9, 128.3, 128.2, 128.1, 126.2, 103.3, 37.1, 26.0, 18.4, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₈BrO₂Si [M+H]⁺: 431.1036, found: 431.1031.

(Z)-4-(4-((tert-Butyldimethylsilyl)oxy)-4-phenylbut-3-enoyl)benzonitrile (3ah)

Yield: 64.5 mg, 68% yield, pale yellow solid.

 R_{f} : 0.42 (hexane/EtOAc = 10:1).

IR (ATR): 2956, 2928, 2890, 2856, 1699, 1660, 1604, 1563, 1490, 1471, 1403, 1338, 1319, 1254, 1211, 1190, 1103, 1043 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.47–7.44 (m, 2H), 7.33–7.28 (m, 3H), 5.37 (t, *J* = 7.0 Hz, 1H), 3.90 (d, *J* = 7.0 Hz, 2H), 1.02 (s, 9H), -0.04 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.2, 152.4, 139.7, 138.8, 132.6, 128.8, 128.4, 128.2, 126.3, 118.1, 116.4, 102.6, 37.4, 26.0, 18.5, -3.8 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₂₇NO₂SiNa [M+Na]+: 400.1703, found: 400.1730. **M.p.**: 92–93 °C.

(*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-4-phenyl-1-(4-(trifluoromethyl)phenyl)but-3-en-1-one (3ai)

Yield: 79.3 mg, 75% yield, colorless viscous oil.

 R_{f} : 0.36 (hexane/EtOAc = 50:1).

IR (ATR): 2959, 2953, 2929, 2900, 2884, 2858, 1698, 1660, 1600, 1580, 1492, 1471, 1409, 1313, 1256, 1209, 1130, 1043 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.13 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 7.32–7.25 (m, 3H), 5.42 (t, J = 7.0 Hz, 1H), 3.92 (d, J = 7.0 Hz, 2H), 1.03 (s, 9H), -0.03 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 197.5, 152.2, 139.4, 138.9, 134.4 (q, *J*_{C-F} = 32.8 Hz), 128.7, 128.3, 128.2, 126.3, 125.8, 123.8 (q, *J*_{C-F} = 274.1 Hz), 102.9, 37.4, 26.0, 18.5, -3.9 ppm.

¹⁹**F NMR** (CDCl₃, 565 MHz): δ –64.1 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₂₈F₃O₂Si [M+H]⁺: 421.1805, found: 421.1831.

(Z)-4-((tert-Butyldimethylsilyl)oxy)-1-(furan-2-yl)-4-phenylbut-3-en-1-one (3aj)

Yield: 71.0 mg, 83% yield, colorless viscous oil.

 R_{f} : 0.45 (hexane/EtOAc = 10:1).

IR (ATR): 3061, 2955, 2930, 2886, 2858, 1678, 1649, 1600, 1569, 1492, 1467, 1446, 1391, 1317, 1255, 1156, 1054, 1012 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.59 (d, J = 1.5 Hz, 1H), 7.48–7.46 (m, 2H), 7.32–7.24 (m, 4H), 6.53 (dd, J = 3.5, 1.5 Hz, 1H), 5.45 (t, J = 7.0 Hz, 1H), 3.78 (d, J = 7.0 Hz, 2H), 1.01 (s, 9H), -0.04 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 187.4, 152.6, 151.9, 146.5, 139.1, 128.1 (two signals merged), 126.3, 117.4, 112.3, 102.9, 36.6, 26.0, 18.5, -3.9 ppm.

HRMS (ESI): m/z calcd. for C₂₀H₂₆O₃SiNa [M+Na]+: 365.1543, found: 365.1556.

(Z)-5-((tert-Butyldimethylsilyl)oxy)-5-phenylpent-4-en-2-one (3ak)

Yield: 42.4 mg, 58% yield, colorless oil.

R_f: 0.21 (hexane/EtOAc = 50:1).

IR (ATR): 2955, 2930, 2887, 2858, 1717, 1649, 1600, 1492, 1473, 1446, 1337, 1279, 1254, 1156, 1109, 1049, 1006 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.45 (dd, J = 8.0, 1.5 Hz, 2H), 7.32–7.25 (m, 3H), 5.29 (t, J = 7.0 Hz, 1H), 3.33 (d, J = 7.0 Hz, 2H), 2.19 (s, 3H), 0.99 (s, 9H), -0.07 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 207.3, 152.1, 139.1, 128.1 (two signals merged), 126.3, 103.0, 41.5, 29.6, 25.9, 18.4, –3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₇O₂Si [M+Na]+: 291.1775, found: 291.1787.

(Z)-6-((tert-Butyldimethylsilyl)oxy)-2-methyl-6-phenylhex-5-en-3-one (3al)

Yield: 57.1 mg, 72% yield, colorless oil.

 R_{f} : 0.30 (hexane/EtOAc = 50:1).

IR (ATR): 2957, 2931, 2891, 2858, 1713, 1649, 1600, 1492, 1464, 1446, 1384, 1332, 1282, 1255, 1111, 1066, 1028, 1005 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.45 (d, J = 6.5 Hz, 2H), 7.31–7.24 (m, 3H), 5.32 (t, J = 6.5 Hz, 1H),
3.39 (d, J = 6.5 Hz, 2H), 2.71 (sept, J = 6.5 Hz, 1H), 1.12 (d, J = 6.5 Hz, 6H), 0.99 (s, 9H), -0.07 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 212.9, 151.7, 139.2, 128.1, 128.0, 126.3, 103.4, 40.5, 38.4, 26.0, 18.5, 18.4, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₉H₃₁O₂Si [M+H]+: 319.2088, found: 319.2086.

(Z)-6-((tert-Butyldimethylsilyl)oxy)-2,2-dimethyl-6-phenylhex-5-en-3-one (3am)

Yield: 54.0 mg, 65% yield, colorless oil.

 R_{f} : 0.39 (hexane/EtOAc = 50:1).

IR (ATR): 2957, 2930, 2902, 2859, 1708, 1650, 1600, 1492, 1474, 1446, 1392, 1363, 1303, 1256, 1111, 1071, 1042, 1027 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.30–7.24 (m, 3H), 5.37 (t, *J* = 7.0 Hz, 1H), 3.47 (d, *J* = 7.0 Hz, 2H), 1.18 (s, 9H), 1.00 (s, 9H), –0.06 (s, 6H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 213.9, 151.2, 139.2, 128.0, 127.9, 126.2, 104.0, 44.3, 34.7, 26.7, 26.0, 18.4, -3.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₀H₃₂O₂SiNa [M+Na]+: 355.2064, found: 355.2074.

2-Fluoro-1-(4-methoxyphenyl)-4-phenylbutane-1,4-dione (6)

Yield: 10.4 mg, 73% yield, white solid.

 R_{f} : 0.31 (hexane/EtOAc = 5:1).

IR (ATR): 2977, 1689, 1678, 1604, 1595, 1510, 1453, 1320, 1268, 1172 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.06 (d, *J* = 8.5 Hz, 2H), 8.01–7.99 (m, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.49 (app. t, *J* = 7.5 Hz, 2H), 6.99–6.96 (m, 2H), 6.32 (ddd, *J* = 47.5, 6.5, 5.5 Hz, 1H), 3.89 (s, 3H), 3.72–3.70 (m, 1H), 3.67–3.66 (m, 1H) ppm.

¹³**C** NMR (CDCl₃, 126 MHz): δ 195.7 (d, J_{C-F} = 4.8 Hz, 1H), 193.7 (d, J_{C-F} = 19.3 Hz, 1H), 164.3, 136.4, 133.8, 131.8 (d, J_{C-F} = 4.9 Hz, 1H), 128.9, 128.4, 127.3, 114.2, 89.1 (d, J_{C-F} = 180.3 Hz, 1H), 55.7, 40.5 (d, J_{C-F} = 21.7 Hz, 1H) ppm.

¹⁹**F NMR** (CDCl₃, 565 MHz): δ –187.4 – –187.6 (m) ppm.

HRMS (ESI): *m*/*z* calcd. for C₁₇H₁₆FO₃ [M+H]⁺: 287.1078, found: 287.1078.

M.p.: 76–77 °C.

2-((tert-Butyldimethylsilyl)oxy)-1-(4-methoxyphenyl)-4-phenylbutane-1,4-dione (7)

Yield: 89.0 mg, 89% yield, colorless viscous oil.

 \mathbf{R}_{f} : 0.44 (hexane/EtOAc = 5:1).

IR (ATR): 2947, 2934, 2927, 2916, 2854, 1691, 1683, 1600, 1574, 1512, 1464, 1449, 1421, 1317, 1254, 1177, 1133, 1029 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.10–8.07 (m, 2H), 7.98–7.97 (m, 2H), 7.58–7.55 (m, 1H), 7.46 (app. t, *J* = 7.5 Hz, 2H), 6.97–6.94 (m, 2H), 5.67 (dd, *J* = 8.0, 4.0 Hz, 1H), 3.87 (s, 3H), 3.55 (dd, *J* = 16.0, 8.0 Hz, 1H), 3.24 (dd, *J* = 16.0, 4.0 Hz, 1H), 0.79 (s, 9H), 0.03 (s, 3H), –0.02 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 198.2, 197.6, 163.8, 137.1, 133.4, 131.4, 128.7, 128.5, 127.7, 114.0, 72.4, 55.6, 44.1, 25.7, 18.3, -4.6, -5.0 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₃₁O₄Si [M+H]⁺: 399.1986, found: 399.1960.

1-(4-Methoxyphenyl)-2,4-diphenylbutane-1,4-dione (8)

Yield: 70.9 mg, 82% yield, pale yellow viscous oil.

 \mathbf{R}_{f} : 0.34 (hexane/EtOAc = 5:1).

IR (ATR): 3061, 3027, 3005, 2955, 2933, 2909, 2840, 1670, 1597, 1575, 1510, 1493, 1419, 1320, 1249, 1166, 1076, 1028 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 8.04–8.01 (m, 2H), 7.98–7.96 (m, 2H), 7.53 (t, *J* = 7.0 Hz, 1H), 7.42 (app. t, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.29 (app. t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 6.88–6.85 (m, 2H), 5.29 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.19 (dd, *J* = 17.5, 10.0 Hz, 1H), 3.79 (s, 3H), 3.26 (dd, *J* = 17.5, 4.0 Hz, 1H) ppm.

¹³C NMR (CDCl₃, 126 MHz): δ 198.3, 197.4, 163.4, 139.3, 136.7, 133.3, 131.4, 129.5, 129.2, 128.6, 128.3 (two signals merged), 127.4, 113.8, 55.5, 48.5, 43.9 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₂₀O₃Na [M+Na]+: 367.1305, found: 367.1307.

2-(4-Methoxyphenyl)-3,5-diphenylfuran (9)

Yield: 46.5 mg, 57% yield in two steps, colorless viscous oil.

 R_{f} : 0.59 (hexane/EtOAc = 5:1).

IR (ATR): 3055, 3030, 3001, 2955, 2932, 2835, 1607, 1570, 1509, 1489, 1462, 1419, 1389, 1299, 1247, 1175, 1111, 1027 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.75–7.72 (m, 2H), 7.55–7.52 (m, 2H), 7.46–7.44 (m, 2H), 7.41–7.35 (m, 4H), 7.31–7.24 (m, 2H), 6.86–6.83 (m, 2H), 6.79 (s, 1H), 3.80 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 159.3, 152.2, 148.2, 134.6, 130.8, 128.84, 128.76 (two signals merged), 127.8, 127.4, 127.2, 124.1, 123.8, 123.2, 114.0, 109.4, 55.4 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₁₈O₂Na [M+Na]⁺: 349.1199, found: 349.1178.

2-(4-Methoxyphenyl)-3,5-diphenyl-1*H*-pyrrole (10)

Yield: 55.6 mg, 68% yield in two steps, colorless amorphous solid.

 \mathbf{R}_{f} : 0.44 (hexane/EtOAc = 5:1).

IR (ATR): 3425, 3061, 3049, 3020, 2997, 2954, 2933, 2834, 1602, 1566, 1509, 1489, 1437, 1244, 1173, 1107, 1053, 1025 cm⁻¹.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.31 (br s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.39–7.36 (m, 4H), 7.32–7.26 (m, 4H), 7.23–7.17 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 3.0 Hz, 1H), 3.79 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 126 MHz): δ 158.9, 136.6, 132.4, 131.8, 129.5, 129.1 (two signals merged), 128.44, 128.40, 126.5, 125.9, 125.8, 123.8, 123.1, 114.3, 108.4, 55.4 ppm.

HRMS (ESI): *m*/*z* calcd. for C₂₃H₁₉NONa [M+Na]+: 348.1359, found: 348.1357.

M.p.: 50–51 °C.

4. References

[1] R. Hayashi, K. Ando, T. Udagawa, M. Sai, *Adv. Synth. Catal.* **2022**, in press, DOI: 10.1002/adsc.202201047.

[2] M. Bouquin, F. Jaroschik, M. Taillefer, Tetrahedron Lett. 2021, 75, 153208.

[3] R. J. Fox, G. Lalic, R. G. Bergman, J. Am. Chem. Soc. 2007, 129, 14144–14145.

[4] S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 14194–14195.

[5] I. Lyothier, C. Defieber, E. M. Carreira, Angew. Chem. Int. Ed. 2006, 45, 6204–6207.

[6] J. J. Song, Z. Tan, J. T. Reeves, D. R. Fandrick, N. K. Yee, C. H. Senanayake, *Org. Lett.* **2008**, *10*, 877–880.

[7] V. K. R. Garapati, M. Gravel, Org. Lett. 2018, 20, 6372-6375.

[8] Y. Wu, Z. Huang, Y. Luo, D. Liu, Y. Deng, H. Yi, J.-F. Lee, C.-W. Pao, J.-L. Chen, A. Lei, *Org. Lett.* **2017**, *19*, 2330–2333.

[9] M.-N. Zhao, Z.-H. Ren, D.-S. Yang, Z.-H. Guan, Org. Lett. 2018, 20, 1287–1290.

5. ¹H, ¹³C, and ¹⁹F NMR Spectra

¹H and ¹³C NMR spectra of **1c**

¹H and ¹³C NMR spectra of **1i**

¹H and ¹³C NMR spectra of **3aa'**

¹H and ¹³C NMR spectra of **3aa**"

¹H and ¹³C NMR spectra of 9

¹H and ¹³C NMR spectra of **10**

