Electronic Supplementary Information

Unusual ligand substitution of a metal-organic framework with distorted metal-ligand coordination

Hikaru Sakamoto, Akitaka Ito, and Masataka Ohtani^{†,*}

[†]School of Environmental Science and Engineering, Kochi University of Technology

185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan

E-mail: ohtani.masataka@kochi-tech.ac.jp (M.O.)

Table of Contents

1. Materials	S2
2. Experimental Procedure	S2
3. Supporting Figures	

1. Materials

All the reagents and chemicals used were obtained from commercial sources and used as received, unless otherwise noted. Methanol (MeOH), *N*,*N*-dimethylformamide (DMF), 2-propanol, hexane, zinc (II) acetate hexahydrate (Zn(OAc)₂·6H₂O), ortho-phthalic acid (*o*-H₄PA), triethylamine (TEA) and para-tetrafluorohthalic acid (*p*-F₄PA) were purchased from Wako Pure Chemical Industries Co. Ltd (Japan). Ortho-tetrafluorophthalic acid (*o*-F₄PA) was obtained from Sigma Aldrich.

2. Experimental Procedure

2.1 Synthesis of Zn-phthalate metal-organic framework [Zn(o-H₄P)-MOF]

Zn(OAc)₂·6H₂O (0.2 mmol) and ortho-phthalic acid (1 mmol) were dissolved in MeOH (50 mL). The resultant precursor solution was stirred for 5 min and transferred to an autoclave reactor of 100 mL inner volume. The sealed precursor solution was heated at a rate of 2 °C/min to 100 °C in a bead bath, held at 100 °C for 4 days and then cooled to room temperature. The obtained crystals were centrifuged, washed several times with MeOH, and dried under vacuum (30 °C, 1 day) to give a product (25 mg, 53%).

2.2 Ligand substitution reaction of Zn(o-H₄P)-MOF with o-F₄PA

 $Zn(o-H_4P)-MOF$ (100 mg) was dissolved in 10 mL of DMF in a centrifuge tube, and then 0.43 mmol of $o-F_4PA$ was added to reach a molar ratio of 1:1:130 ($Zn(o-H_4P)-MOF/o-F_4PA$ /DMF). After that, the reaction tube was left to stand at room temperature for 3 days.

2.3 Ligand substitution reaction of Zn(o-H₄P)-MOF with p-F₄PA

 $Zn(o-H_4P)-MOF$ (150 mg) was dissolved in 10 mL of DMF and 50 µL of H₂O in a centrifuge tube, and then 0.8 mmol of *p*-F₄PA was added to reach a molar ratio of 1:1:2.7:130 ($Zn(o-H_4P)-MOF/$ *o*-F₄PA /H₂O/DMF). After that, the reaction tube was left to stand at room temperature for 3 days.

2.4 Synthesis of Zn(*o*-F₄P)_{6.5}(*o*-H₄P)_{3.5}

Zn(OAc)₂·6H₂O (1 mmol) and phthalic acid (2.5 mmol), *o*-F₄PA (2.5 mmol), TEA (0.5 mmol) were dissolved in MeOH (50 mL). The resultant precursor solution was stirred for 5 min and transferred to an autoclave reactor of 100 mL inner volume. After that, the precursor was heated at a rate of ca. 2 °C/min to 100 °C in a bead bath, held at 100 °C for 1 day and then cooled to room temperature. The obtained crystals were centrifuged, washed several times with MeOH, and dried

under vacuum (30 °C, 24 hour) to give a product (178 mg, 64%).

To observe the structural transition from $Zn(o-F_4PA)_{0.65}(o-H_4P)_{0.35}$ to $Zn(o-F_4P)$ -MOF, $Zn(o-F_4PA)_{0.65}(o-H_4P)_{0.35}$ was dispersed in DMF without any additional ligands for 1 day at room temperature.

2.5 Scanning Electron Microscopy

Scanning electron microscopy (SEM) images were measured on a Hitachi FE-SEM SU-8020 scanning electron microscope. A specimen was prepared by directly placing the bulk powder on a conducting carbon tape.

2.6 Powder X-ray diffraction (XRD) measurement

Powder X-ray diffraction (XRD) measurements were performed using a Rigaku SmartLab SE diffractometer with graphite-monochromatized Cu- K_{α} radiation (X-ray wavelength: 1.5418 Å) in steps of 0.01° over the 2θ range of 5–60°. A sample was set in a standard glass holder or a non-refractive silicon holder (Overseas X-Ray Service, Saitama, Japan).

2.7 Optical microscopy

Optical microscopy was carried out with a Kenis Zoom Stereomicroscope TF50-B with a digital camera attached. For the preparation of the specimen, the powdery MOF sample was dispersed in solvent DMF with sonication. The resultant dispersion was drop-casted on a glass plate. The solvent was vaporized under dry or wet air conditions.

2.8 Single-crystal X-ray diffraction measurement

Data collection for X-ray crystal analysis was performed on Rigaku/XtaLAB Synergy-S/Mo (Mo K_{α} = 0.71073 Å) diffractometers. The X-ray diffraction measurement was performed at –150°C. The structures were solved by direct methods (SHELXT) and refined through full-matrix least-squares techniques on F2 using SHELXL and OLEX2 crystallographic software packages. All non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were placed at calculated positions and refined "riding" on their corresponding carbon atoms.

3. Supporting Figures

Figure S1. Comparison of XRD patterns: (blue) calculated XRD pattern from the cif file (CCDC-908149), (green) as-prepared Zn(o-H₄P)-MOF crystal, and time-course change in PXRD patterns of Zn(o-H₄P)-MOF powder upon adding H₂O (15 μ L). Photographs of powdery samples before and after adding H₂O.

Figure S2. XRD patterns of samples with different dispersion time in DMF: (i) as-prepared Zn(*o*-H₄P)-MOF, (ii) 5 min, (iii) 30 min, (iv) 45 min, (v) 60 min, (vi) 1 day.

Figure S3. XRD patterns of samples with different dispersion time in MeOH: (i) as-prepared Zn(*o*-H₄P)-MOF, (ii) 5 min, (iii) 30 min, (iv) 45 min, (v) 60 min, (vi) 90 min, (vii) 1 day, (viii) 2 days.

Figure S4. XRD patterns of samples with different dispersion time in MeCN: (i) as-prepared Zn(*o*-H₄P)-MOF, (ii) 5 min, (iii) 30 min, (iv) 45 min, (v) 60 min, (vi) 90 min, (vii) 1 day, (viii) 2 days.

Figure S5. The fragments of each crystal with numbering scheme: (a) Zn(*o*-H₄P)-MOF, (b) Zn(*o*-F₄P)-MOF, and (c) Zn(*o*-F₄P)_{6.5}(*o*-H₄P)_{3.5}. *Zn atoms, light green sticks; O atoms, red sticks; C atoms, grey sticks; N atoms; blue sticks; F atoms, light blue; H atoms, white sticks*

		•	
Bite angle (°)	Zn(<i>o</i> -H₄P)-MOF	Zn(<i>o</i> -F₄P)-MOF	Zn(o-F4P)6.5(o-H4P)3.5
O ₁ -Zn ₁ -O ₂	116.06(9)	110.171(3)	106.60(12)
O ₁ -Zn ₁ -O ₃	109.64(8)	113.335(3)	110.61(13)
O ₁ -Zn ₁ -O ₄	127.63(10)	118.305(2)	107.09(14)
O ₂ -Zn ₁ -O ₃	107.54(9)	95.611(3)	109.25(14)
O ₂ -Zn ₁ -O ₄	96.44(9)	104.635(3)	101.94(14)
O3-Zn1-O4	96.74(9)	111.939(3)	120.31(15)
O ₅ -Zn ₂ -O ₆	127.63(10)	118.305(2)	126.72(14)
O ₅ -Zn ₂ -O ₇	96.74(9)	113.335(3)	103.65(14)
O ₅ -Zn ₂ -O ₈	96.44(9)	110.171(3)	101.39(14)
O ₆ -Zn ₂ -O ₇	109.64(8)	111.939(3)	108.23(12)
O ₆ -Zn ₂ -O ₈	116.06(9)	104.635(3)	103.29(14)
O ₇ -Zn ₂ -O ₈	107.54(9)	95.611(3)	112.37(13)
Average	109.008	108.999	109.287
standard deviation	10.859	7.230	7.268

Table S1. Selected average angles (°) and standard deviation

Zn(<mark>o-F₄P)-</mark>MOF (1D crystal)

Figure S6. Schematic illustration of structural transition pathway of Zn(*o*-H₄P)-MOF and Zn(*o*-F₄P)_{6.5}(*o*-H₄P)_{3.5}-MOF.

Figure S7. SEM images of $Zn(p-F_4P)$ -MOF: (a) high magnification, (b) low magnification.

Figure S8. The fragments of $Zn(p-F_4P)$ -MOF with numbering scheme.

Bite angle (°)	Zn(<i>p</i> -F₄P)-MOF	
O ₁ -Zn ₁ -O ₂	93.52(8)	
O ₁ -Zn ₁ -O ₃	92.17(9)	
O ₁ -Zn ₁ -O ₄	86.48(8)	
O₁-Zn₁-O₅	87.83(9)	
O ₁ -Zn ₁ -O ₆	180.0000(0)	
O_2 - Zn_1 - O_3	91.17(8)	
O_2 - Zn_1 - O_4	180.0000(0)	
O_2 - Zn_1 - O_5	88.83(8)	
O_3 - Zn_1 - O_4	Zn ₁ -O ₄ 88.83(8)	
O₃-Zn₁-O₅	180.0000(0)	
O_4 - Zn_1 - O_5	91.17(8)	
Average angle	90	
Standard division	2.226942972	

Table S2. Selected average angles (°) and standard deviation.

Figure S9. Photographs of the as-prepared $Zn(o-H_4P)$ -MOF powder dispersed in DMF containing p-F₄P.

sample	Zn(o-H ₄ P)-MOF	Zn(o-F ₄ PA)-MOF	Zn(o-F4PA)6.5(o-H4P)3.5	Zn(p-F ₄ PA)-MOF
Formula	$C_8H_4O_4Zn$	$C_{14}H_{14}F_4N_2O_6Zn$	$C_{16}H_{2.88}F_{5.22}O_8Zn_2$	$C_{16}H_{14}F_4N_{0.5}O_8Zn$
Formula weight	229.48	447.64	551.04	482.65
<i>T</i> (K)	296	296	296	296
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	$P2_1/n$
a (Å)	10.5297(5)	8.5208(3)	13.8857(7)	5.2395(3)
$b(\text{\AA})$	5.2719(2)	16.3781(5)	4.77750(10)	10.1581(5)
c (Å)	13.8728(7)	12.7517(4)	25.5982(8)	16.8889(11)
α (Å)	90	90	90	90
β (Å)	109.266(5)	104.438(3)	100.241(4)	95.568(5)
$\gamma(\text{\AA})$	90	90	90	90
Ζ	4	4	4	2
$D_{\rm x}$ (g cm ⁻³)	2.097	1.725	2.190	1.792
μ (mm ⁻¹)	3.348	1.502	2.975	1.459
F (000)	456	904	1076	487
Goodness- of-fit on F^2	1.063	1.054	1.101	1.047
R_1	0.0279	0.0287	0.0453	0.0359
wR_2	0.0726	0.0738	0.1240	0.0899

Table S3. Crystallographic data and structure refinement details for each sample