Electronic Supplementary Information (ESI)

A series of isostructural lanthanide metal-organic frameworks:

effective fluorescence sensing for Fe³⁺, 2,4-DNP and 4-NP

Qianlan Hu, Tong Xu, Jiaming Gu, Lirong Zhang* and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China, E-mail: zlr@jlu.edu.cn; yunling@jlu.edu.cn

S1. Calculation of quenching efficiency, Stern-Volmer (S-V) equation and LOD.

Quenching efficiency:

quenching efficiency = (I0 - I)/ $I0 \times 100\%$

 I_0 is the fluorescence intensity values of JLU-MOF201-Y and JLU-MOF201-Tb. I is the fluorescence intensity value after adding the Fe³⁺.

Stern-Volmer (S-V) equation:

I0/I = 1 + Ksv[C]

 I_0 is the fluorescence intensity values of JLU-MOF201-Y and JLU-MOF201-Tb. *I* is the fluorescence intensity value after adding the Fe³⁺. K_{sv} is Stern–Volmer quenching constant. [C] is the concentration of the analyte.

LOD:

L = 3Sb/K

 S_{b} is standard deviation for compounds and K is slope of the Stern-Volmer.

S1. Supporting Figures.

Fig. S1 3,4L83 topology of JLU-MOF201-Y.

Fig. S2 Binuclear SBUs in JLU-MOF201-Y. Color scheme: carbon = gray, nitrogen = blue, oxygen = red, yttrium = green. (All H atoms and guest molecules are omitted for clarity)

Fig. S4 Thermogravimetric analysis curves of JLU-MOF201-Ln for the as-synthesized samples.

Fig. S5 Excitation and emission spectra of (a) H₂PIA, (b) JLU-MOF201-Y and (c) JLU-MOF201-Tb.

Fig. S6 Emission spectra of compounds (a) JLU-MOF201-Y and (b) JLU-MOF201-Tb in different solvents.

Fig. S7 UV-vis absorption spectra of different metal ions in DMF solution ($5 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$), emission spectrum of (a) JLU-MOF201-Y and excitation spectrum of (b) JLU-MOF201-Tb in DMF solution ($2 \text{ mg} \cdot \text{mL}^{-1}$).

Fig. S8 UV-vis absorption spectra of different NAEs in DMF solution $(1 \times 10^{-4} \text{ M})$ and emission spectrum of (a) JLU-MOF201-Y and (b) JLU-MOF201-Tb in DMF solution (2 mg·mL⁻¹).

Fig. S9 Influence on the emission spectra of JLU-MOF201-Y decentralized in DMF by gradual addition of (a) TNP, (b) 4-NP, (c) 4-NBA, (d) 4-NT, (e) 3-NT and (f) 2,4-DNT solution.

Fig. S10 Influence on the emission spectra of JLU-MOF201-Y decentralized in DMF by gradual addition of (a) 2,4-DNP, (b) TNP, (c) 4-NBA, (d) 2,4-DNT, (e) 4-NT and (f) 3-NT solution.

Fig. S11 PXRD patterns of JLU-MOF201-Y for simulated and as-synthesized samples of JLU-MOF201-Ln.

Fig. S12 PXRD patterns of (a) JLU-MOF201-Y and (b) JLU-MOF201-Tb as-synthesized and after soaking in different organic solvents.

Fig. S13 PXRD patterns of JLU-MOF201-Y (a, b) and JLU-MOF201-Tb (c, d) as-synthesized and after soaking in

DMF solutions with different metal ions.

Fig. S14 PXRD patterns of as-synthesized JLU-MOF201-Y and samples after soaking in different NAEs DMF solution.

Fig. S15 PXRD patterns of JLU-MOF201-Y (a) and JLU-MOF201-Tb (b) as-synthesized and after four quenching-recovery cycles.

S1. Supporting Tables.

 Table S1. Crystal data and structure refinements for the JLU-MOF201-Y.

Parameters	JLU-MOF201-Y
Formula	$C_{43}H_{42}N_9O_{16}Y_2$
Formula weight	1118.67
Temperature(K)	297.8
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	44.809(4)
b (Å)	10.8964(9)
<i>c</i> (Å)	25.255(2)
α (°)	90.00
<i>B</i> (°)	113.735(2)
γ (°)	90.00
volume (ų)	11287.9(17)
Z, D _x (g/cm³)	8, 1.317
F(000)	4552.0
ϑ range (deg)	2.39-24.26
reflns collected/unique	4927/10254
R _{int}	0.1071
data/restraints/params	10254/779/638
GOF on <i>F</i> ²	1.069
R_{\perp} w R_2 (I>2 σ (I))	0.0837/0.1975
R_{ν} w R_2 (all data)	0.1466/0.2258

	JLU-MOF201- Y	JLU-MOF201- Tb	JLU-MOF201- Yb	JLU-MOF201- Ho	JLU-MOF201- Er
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
a (Å)	44.81	45.21	45.77	44.93	45.02
b (Å)	10.90	10.98	11.06	10.90	10.91
<i>c</i> (Å)	25.26	25.34	25.73	25.23	25.26
α (°)	90.00	90.00	90.00	90.00	90.00
β (°)	113.74	113.76	113.44	113.73	113.45
γ (°)	90.00	90.00	90.00	90.00	90.00
volume (ų)	11287	11514	11950	11309	11387

 Table S2. Unit cell data for the JLU-MOF201-Ln.

MOFs	K _{sv} (M ⁻¹)	LOD (µM)	Ref.
[Zr ₆ O ₆ (OH ₎₂ (CF ₃ COO) ₂ (C ₁₁ H ₅ NO ₄) ₄ (H ₂ O) ₄]	2.25 × 10 ⁷	1.70 × 10 ⁻³	1
[Zn ₂ Na ₂ (TPHC)(4,4-Bipy)(DMF)] [.] 8H ₂ O	5.57 × 10 ⁴	6.40	2
[EuDTTA(DMF) ₃]NO ₃	3.63×10^{4}	4.14	3
${[Cd(tptb)(H_2DOBDC)(H_2O)]}^{\cdot}DMF_n$	3.00×10^{4}	1.67 × 10⁻⁵	4
[Tb(L ₂)(H ₂ O)(DMF)] _n	2.89×10^{4}	0.91	5
{[Eu(L)(H ₂ O)]·4H ₂ O} _n	1.88×10^{4}	0.57	6
{[Tb(L)(H ₂ O)]·7H ₂ O} _n	1.48×10^{4}	1.26	7
[Tb ₂ (PIA) ₃ (DMF) ₃ (CH ₃ OH)]	8.83 × 10 ⁴	2.49	This work
FJI-C8 (Zn)	8.25 × 10 ³	23.3	8
[Y ₂ (PIA) ₃ (DMF) ₃ (CH ₃ OH)]	7.67 × 10 ³	2.21	This work
534-MOF-Tb(L11)	5.51 × 10 ³	130	9
[Zn ₂ (cptpy)(btc)(H ₂ O)] _n	5.46 × 10 ³	4.33	10
[Zr ₆ O ₄ (OH) ₄ (C ₈ H ₂ O ₄ S ₂) ₆]·DMF·18H ₂ O	4.41×10^{3}	1.26	11
[Zn(3-bpmh)(HEA)·H ₂ O] _n	4.14×10^{3}	0.89	12
{[Eu(BIPATC) _{0.5} (DMA) ₂ (NO ₃)]·DMA·H ₂ O} _n	3.89×10^{3}	-	13
[Zn(HBCPBA)(tpim)]·H ₂ O	3.57 × 10 ³	-	14
${[Eu(TMCA)(DEF)(H_2O)]} (CH_3CN)_n$	1.84 × 10 ³	30.10	15

Table S3. A comparison of K_{sv} and LODs values of luminescent MOFs for $Fe^{3\star}$ detection.

MOFs	K _{sv} (M ⁻¹)	LOD (µM)	Ref.
[Cd ₂ (TPA) ₂ (BIYB) ₂] _n	1.60 × 10 ⁵	0.13	16
[Zn ₅ (DpImDC) ₂ (DMF) ₄ (H ₂ O) ₃]·H ₂ O·DMF	8.70 × 10 ⁴	-	17
[Cd(TTPBA-4)₂(OH)₂·H₂O]n	4.10×10^{4}	9.50 × 10⁻³	18
[Y ₂ (PIA) ₃ (DMF) ₃ (CH ₃ OH)]	3.63 × 10 ⁴	0.46	This work
Sc-EBTC	2.85 × 10 ⁴	4.30 × 10 ⁻⁵	19
[Zn ₂ (TCPE)(tta) ₂]·2DMF·4H ₂ O·2Me ₂ NH ²⁺	2.60 × 10 ⁴	6.12 × 10 ⁻⁵	20
$\{[(CH_3)_2NH_2]_6[Cd_5(L)_4]\cdot H_2O\cdot 3DMF\}_n$	2.37 × 10 ⁴	4.57 × 10⁻³	21
${(NH_2(CH_3)_2)[Zn_4(ddn)_2(COO)(H_2O)_4] \cdot solvent}_n$	0.89×10^{4}	8.75 × 10 ⁻³	22

Table S4. A comparison of K_{sv} and LODs values of luminescent MOFs for 2,4-DNP detection.

Table S5. A comparison of the values of K_{sv} and LODs of luminescent MOFs for the detection of 4-NP.

MOFs	K _{sv} (M ⁻¹)	LOD (µM)	Ref.
[Eu _{0.5} Tb _{0.5} (L)(H ₂ O) ₃] _n	7.50 × 10 ⁶	-	23
{[Tb(HL)]·3DMF·3H ₂ O} _n	3.60 × 10 ⁵	2.33 × 10 ⁻⁸	24
${[Cd_{3.5}(\mu_3-OH)(TCPB)_2(bimb)(H_2O)_3] \cdot 0.5dioxane \cdot 0.5H_2O}$	3.80×10^{4}	0.49 × 10 ⁻³	25
[Tb ₂ (PIA) ₃ (DMF) ₃ (CH ₃ OH)]	1.89 × 104	1.01	This work
Eu-CP	1.38×10^{4}	3.00 × 10 ⁻⁹	26
[Cd(L)(phen)₂]·5H₂O	5.13 × 10 ³	1.15 × 10 ⁻⁵	27

	JLU-MOF201-Y		JLU-MO	F201-Tb
NAEs	K _{sv} (M ⁻¹)	LOD (µM)	K _{sv} (M ⁻¹)	LOD (µM)
2,4-DNP	3.36 × 10 ⁴	0.46	6.41 × 10 ³	2.99
4-NP	1.46×10^{4}	1.15	1.89×10^4	1.01
TNP	1.16×10^{4}	1.04	5.06 × 10 ³	3.79
4-NBA	2.78 × 10 ³	6.05	4.41 × 10 ³	4.35
3-NT	1.90 × 10 ³	8.85	2.16 × 10 ³	8.87
4-NT	2.74 × 10 ³	6.14	2.57 × 10 ³	7.46
2,4-DNT	1.76 × 10 ³	9.60	3.71 × 10 ³	5.17

Table S6. The K_{sv} and LODs values of JLU-MOF201-Y and JLU-MOF201-Tb for the detection of NAEs.

 Table S7. The ICP data of JLU-MOF201-Y and Fe³⁺@JLU-MOF201-Y.

Compounds	Y ³⁺ (ppm)	Fe³+ (ppm)
JLU-MOF201-Y	17.96	-
Fe ³⁺ @ JLU-MOF201-Y	23.95	0.11

 Table S8.
 The ICP data of JLU-MOF201-Tb and Fe³⁺@JLU-MOF201-Tb.

Compounds	Tb ³⁺	Fe ³⁺
JLU-MOF201-Tb	18.24	-
Fe ³⁺ @ JLU-MOF201-Tb	25.83	0.19

References

- 1. C. Gogoi and S. Biswas, *Dalton Trans.*, 2018, **47**, 14696-14705.
- 2. C. Yu, X. Sun, L. Zou, G. Li, L. Zhang and Y. Liu, Inorg. Chem., 2019, 58, 4026-4032.
- 3. Y. Zhang, L. Wu, M. Feng, D. Wang and C. Li, J. Solid State Chem., 2021, 294, 121868.
- 4. Y. P. Li, S. F. Li, X. Geng, R. D. Wang, L. C. He, S. Y. Wang, L. Du and Q. H. Zhao, *Inorg. Chem. Commun.*, 2021, **128**, 108604.
- X. Mi, D. Sheng, Y. Yu, Y. Wang, L. Zhao, J. Lu, Y. Li, D. Li, J. Dou, J. Duan and S. Wang, ACS. Appl. Mater. Interfaces, 2019, 11, 7914-7926.
- 6. B. Li, J. P. Dong, Z. Zhou, R. Wang, L. Y. Wang and S. Q. Zang, *J. Mater. Chem. C*, 2021, **9**, 3429-3439.
- 7. J. P. Dong, B. Li, Y. J. Jin and L. Y. Wang, CrystEngComm, 2021, 23, 1677-1683.
- 8. C. H. Chen, X. S. Wang, L. Li, Y. B. Huang and R. Cao, Dalton Trans., 2018, 47, 3452-3458.
- M. Chen, W. M. Xu, J.-Y. Tian, H. Cui, J. X. Zhang, C.-S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015-2021.
- H. Chen, P. Fan, X. Tu, H. Min, X. Yu, X. Li, J. L. Zeng, S. Zhang and P. Cheng, *Chem. Asian. J.*, 2019, 14, 3611-3619.
- 11. R. Dalapati, U. Kokcam-Demir, C. Janiak and S. Biswas, Dalton Trans., 2018, 47, 1159-1170.
- 12. Y. Wang, Y. Zhao, H. Yu, Z.-Q. Liu, L.-J. Wang, R.-Y. Huang, W. Xu and J.-F. Wu, *J. Solid State Chem.*, 2020, **288**, 121404.
- 13. X. Wang, Y. Wang, X. Wang, K. Lu, W. Jiang, P. P. Cui, H. Hao and F. Dai, *Dalton Trans.*, 2020, **49**, 15473-15480.
- 14. X. Liu, L. Zhao, C. Zhao, L. Meng and C. Liu, Journal of Molecular Structure, 2019, 1188, 238-243.
- 15. G. M. Liang, S. Wang, M. Y. Xu, H.-L. Chen, G. Y. Liang, L. C. Gui and X. J. Wang, *CrystEngComm*, 2020, **22**, 6161-6169.
- 16. X. Wang, Y. Han, X. X. Han, X. Hou, J.-J. Wang and F. Fu, *New J. Chem.*, 2018, **42**, 19844-19852.
- 17. J. Li, X. Luo, Y. Zhou, L. Zhang, Q. Huo and Y. Liu, *Cryst. Growth Des.*, 2018, **18**, 1857-1863.
- 18. I. E. Khalil, T. Pan, Y. Shen and W. Zhang, Inorg. Chem. Commun., 2020, 120, 108170.
- 19. D. Zhan, A. Saeed, Z. Li, C. Wang, Z. Yu, J. Wang, N. Zhao, W. Xu and J. Liu, *Dalton Trans.*, 2020, **49**, 17737-17744.
- 20. X. Zhang, G. Ren, M. Li, W. Yang and Q. Pan, Cryst. Growth Des., 2019, 19, 6308-6314.
- 21. L. Lu, J. Wu, J. Wang, J. Q. Liu, B. H. Li, A. Singh, A. Kumar and S. R. Batten, *CrystEngComm*, 2017, **19**, 7057-7067.
- 22. A. Ma, J. Wu, Y. Han, F. Chen, B. Li, S. Cai, H. Huang, A. Singh, A. Kumar and J. Liu, *Dalton Trans.*, 2018, **47**, 9627-9633.
- 23. X. Cheng, J. Hu, J. Li and M. Zhang, J. Lumin., 2020, **221**, 117100.
- 24. Z. G. Lin, F. Q. Song, H. Wang, X. Q. Song, X. X. Yu and W. S. Liu, *Dalton Trans.*, 2021, **50**, 1874-1886.
- 25. J. Zhang, L. Gao, Y. Wang, L. Zhai, X. Niu and T. Hu, New J. Chem., 2019, 43, 16853-16859.
- 26. Y. Liu, J. Ma, C. Xu, Y. Yang, M. Xia, H. Jiang and W. Liu, *Dalton Trans.*, 2018, 47, 13543-13549.
- 27. S. S. Chen, Z. Y. Zhang, R. B. Liao, Y. Zhao, C. Wang, R. Qiao and Z. D. Liu, *Inorg. Chem.*, 2021, **60**, 4945-4956.