1 Supplementary Materials

2 **1. Experimental method**

3 1.1. Synthesis of CaCO₃ ex situ

4 The syntheses of $CaCO_3$ were performed *ex situ* to estimate the reaction time to 5 implement the *in situ* TEM experiments. Additionally, a comparison between *in situ* and 6 *ex situ* TEM allowed us to understand the influence of the electron beam-induced 7 damage/artifacts in the liquid environment.

For ex situ TEM, the syntheses were performed on a TEM grid and observed by 8 conventional TEM. The experiments were conducted by dropping 5 µL of Na₂CO₃ with 9 and without L-Asp on a copper grid with carbon film followed by a drip of CaCl₂ 5 μ L. 10 The reaction was stopped by washing 3 times with distilled water for times varying 11 from 30 seconds to 30 min. The grids were analyzed using a JEOL 2100F transmission 12 electron microscope equipped with a JED-2300 energy dispersive spectrometer (JEOL). 13 14 Images were treated using Gatan DigitalMicrograph and Analysis Station (JEOL) software. 15

16 **1.2. X-ray diffraction characterization**

17 In order to confirm the polymorph formed during our experiments, 100 mM calcium 18 carbonate was added to a beaker containing 100 mM Na₂CO₃ (control experiment) and 19 100 mM Na₂CO₃ with 100 mM L-asp (L-Asp experiment). The reactions took place 20 under magnetic stirring, respecting the 1:1 stoichiometric ratio. Then, both samples 21 were centrifuged at 5000 rpm for 5 min 3 times and washed with distilled water 22 between each cycle, and lyophilized for analysis by x-ray diffraction. The X-ray 23 diffractogram of the dried samples were obtained using an X'Pert PRO diffractometer 1 (PANanalytical) equipped with x'celerator detector (PANanalytical), copper anode X-2 ray tube (1.5406 Å) and K β filter, at voltage equal to 40 kV and a current of 40 mA, 3 with speed of 200 seconds/step. Diffractograms were treated using OriginPro 8.5 4 software. Crystallite size was achieved using Scherrer equation:

$$L_{S} = \frac{\kappa \times \lambda}{FWHM \times \cos \theta}$$

6 Where κ is a constant equal to 0.94; λ is the x-rays wave length equal to 0.154 nm;

7 FWHM is the full width at half maximum and θ in the Bragg angle in radian.

2. Supporting Figures

Figure S1. SEM images and EDS spectra of the *ex situ* experiments described on
section 1.1. A and B: CaCO₃ 100 mM; C and D: CaCO₃ 10 mM; E and F: CaCO₃ 5
mM. Mean size of crystals in A = 2.6 μm; C and E varying from 2.5 to 1.5 μm

2 Figure S2. TEM images obtained from the *ex situ* experiments with interruption of the 3 reaction on the grid after 10 min. The presence of vesicle-like structures containing 4 electron-dense material can be observed (A and B). A calcium map obtained by STEM-5 EDS is presented in the insert of (B), indicating that the vesicle-like structure is rich in 6 calcium. Some crystals already formed can be observed in (C). Note that even in figures 7 A and B, the straight segmented contours of the calcium rich regions suggest that at 8 least part of the growing structures are already crystalline.

9

10

Figure S3. Intensity-based size distribution of the samples CaCO₃ control (grey) and
 CaCO₃ with L-Asp (blue) through time of reaction (1, 5, 10, 15 and 20 minutes).

3

4 Table S1: Hydrodynamic diameter and polydispersity index of CaCO3 control and

	CaCO ₃ control		CaCO ₃ with L-Asp	
	D _H (nm)	PI	D _H (nm)	PI
1 min	689 ±59	0.09 ± 0.05		
5 min	2779 ± 297	$0.28\pm\!\!0.16$	$1440\pm\!\!162$	0.26 ± 0.04
10 min	4041 ±757	$0.37 \pm \! 0.08$	$1647 \pm \! 190$	0.29 ± 0.09
15 min	$4958\pm\!\!584$	$0.40\pm\!\!0.07$	2356 ± 400	$0.37\pm\!\!0.05$
20 min	$9736\pm\!\!4790$	$0.54\pm\!\!0.04$	3055 ± 258	0.34 ± 0.07

5 $CaCO_3$ with L-Asp experiments through time of reaction analysed by DLS.

 $6 \pm$ Standard deviation; D_H: hydrodynamic diameter; PI: polydispersity index. Result of 7 CaCO₃ with L-Asp sample after 1 min analysis is not shown since the particle count rate

8 was lower than required by the equipment.

Figure S4. X-ray diffractrograms of the control experiment, without L-Asp (CaCO₃
control), and the L-Asp experiment (CaCO₃ + L-Asp) compared with Calcite pattern
(ICSD 73446) described on item 1.2. Both experiments produced crystals with
diffraction pattern corresponding to calcite.

6

7 Table S2: Crystallite size and interplanar distance of the most intense peak of each
8 diffractogram in the Figure S4

Sample	Size (nm)	Interplanar distance (Å)	h k l
Calcite ICSD 73446		3.035	104
CaCO ₃ control	46.27	3.038	104
$CaCO_3 + L-Asp$	20.62	3.029	104

1 **3.** Supplementary videos

2 Video S1: Dynamic interaction between grains visualized during the control experiment
3 (without L-Asp) in continuous flow mode; the video was collected at 3 frames per
4 second (fps) and played at 15 fps.

5 Video S2: Oriented attachment of small grains and nuclei fusion and growth visualized

6 during the control experiment (without L-Asp) in continuous flow mode; the video was

7 collected at 3 fps and played at 25 fps.

8 Video S3: Displacement of vesicle-like structure along the reactional medium collecting
9 electron-dense material visualized during the experiment with L-Asp in continuous flow
10 mode; the video was collected at 3 fps and played at 25 fps.

11 Video S4: Different behaviors of vesicle-like structures containing electron-dense 12 particles and their fusion along the reaction medium visualized during the experiment 13 with L-Asp in continuous flow mode; the video was collected at 3 fps and played at 30 14 fps.