Influence of the Lewis basicity hardness of recrystallization solvents on the coordination sphere of the complex $[Co(3,5-dinitrobenzoate-O,O')_2]$:

Crystallographic and Theoretical Analysis.

Daniela Fonseca[†], Andrés F. Pérez-Torres[‡], Justo Cobo^J, Jhon Zapata-Rivera³, John J.

Hurtado [†]*, and Mario A. Macías [‡]*.

† Inorganic Chemistry, Catalysis and Bio-inorganic Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia.

‡ Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia.

3 Molecular Electronic Structure Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia.

J Departamento de Química Inorgánica y Orgánica Campus las Lagunillas, Universidad de Jaén, E-23071 Jaén, Spain.

*Corresponding Author(s): jj.hurtado@uniandes.edu.co; ma.maciasl@uniandes.edu.co

Table of contents

Table S1 Dielectric constants and dipole moments of solventspg 2
Table S2. Crystallographic data of complex [Co(DNB) ₂] recrystallized in acetone (Ac), acetonitrile (ACN), dimethyl sulfoxide (DMSO), and water H ₂ Opg 3
Table S3. Suggested names considering the nomenclaturepg 4
Figure S1. Graphical result of LeBail analysis of complex [Co(DNB) ₂]pg 5
Figure S2. Packing of the complex [Co(DNB) ₂] recrystallized in H ₂ Opg 5
Figure S3. Packing of the complex [Co(DNB) ₂] recrystallized in MeOHpg 6
Figure S4. Packing of the complex [Co(DNB) ₂] recrystallized in EtOHpg 6

Figure S5. Optimized geometries of models of the [Co(DBN) ₂] complex recrystallized in the different solventspg 7
Figure S6. SOMOs of models of the [Co(DBN) ₂] complex recrystallized in ACN. a) Mononuclear with S=3/2 ground state and b) Trinuclear with S=9/2 ground state
Table S4. Analysis of Potential Hydrogen Bonds for complex crystallized in waterpg 8
Table S5. Analysis of Potential Hydrogen Bonds for complex crystallized in MeOHpg 9
Table S6. Analysis of Potential Hydrogen Bonds for complex crystallized in EtOH
Table S7. Analysis of Potential Hydrogen Bonds for complex crystallized in DMSOpg 10
Table S8. Analysis of Potential Hydrogen Bonds for complex crystallized in Acetonepg 11
Table S9. Analysis of Potential Hydrogen Bonds for complex crystallized in Acetonepg 12

Table S1.Dielectric constants and dipole moments for water (H₂O), methanol (CH₃OH), ethanol (EtOH), dimethyl sulfoxide (DMSO), acetone (Act), and acetonitrile (ACN).

	Dielectric constant*	Dipole moment (D)*
H ₂ O	80	1.85
DMSO	47	3.96
ACN	37	3.92
СН ₃ ОН	33	1.70
EtOH	30	1.69
Act	21	2.88

* Li, C.-P.; Du, M. Role of solvents in coordination supramolecular systems. *Chem. Commun.* 2011, 47, 5958–5972. DOI: 10.1039/c1cc10935a

Crystal Data	Act	ACN	DMSO	H ₂ O
Chemical Formula	C ₆₆ H ₇₄ Co ₃ N ₁₂ O ₄₈	C ₅₄ H ₃₈ Co ₃ N ₁₈ O ₃₇	$C_{18}H_{22}CoN_4O_{16}S_2$	C ₁₄ H ₂₂ CoN ₄ O ₂₀
M _r	1980.16	1707.81	673.44	625.28
Solvent for Crystallization	Acetone	Acetonitrile	dimethylsulfoxide	water
Crystalline system, space group	Triclinic, P-1	Triclinic, P-1	Monoclinic, $P2_1/n$	Triclinic, P-1
<i>a, b, c</i> (Å)	12.7882 (10), 13.2551 (10), 14.4372 (11)	11.2634 (8), 12.6777 (9), 25.2927 (18)	10.3871 (9), 5.2909 (4), 22.6353 (17)	7.1199 (3), 11.6544 (5), 15.0334 (7)
<i>α, β,</i> γ (°)	67.940 (2), 79.147 (3), 69.028 (3)	99.217 (3), 102.517 (3), 100.460 (3)	90, 91.788 (3) , 90	103.409 (2), 98.950 (2), 92.642 (2)
Volume, (Å ³) Z	2113.7 (3)	3391.5 (4) 2	1243.36 (17) 2	1194.27 (9) 2
Temperature, (K)	100(2)	100(2)	100(2)	100(2)
Radiation type	Μο Κα	Μο Κ _α	Μο Κ _α	Μο Κα
μ (mm ⁻¹)	0.69	0.84	0.95	0.82
Data collection				
Diffractometer	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-Scan method (SADABS)	Multi-Scan method (SADABS)	Multi-Scan method (SADABS)	Multi-Scan method (SADABS)
No. of measured, independent and observed reflections [I>2σ(I)]	92160, 12892, 9316	168659, 20677, 16206	20489, 2845, 2536	42405, 5469, 5113
R _{int}	0.060	0.049	0.048	0.037
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.717	0.715	0.650	0.650
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2),$ S	0.057, 0.164, 1.14	0.036, 0.102, 1.16	0.025, 0.066, 1.10	0.022, 0.058, 1.06
No. of reflections	12892	20677	2845	5469
Refined parameters	607	1026	189	352
H-atoms treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.77, -0.94	0.54, -0.63	0.37, -0.42	0.38, -0.35

Table S2. Crystallographic data of complex $[Co(DNB)_2]$ crystallized in acetone (Act), acetonitrile (ACN), dimethyl sulfoxide (DMSO), and water H₂O.

Table S3. Suggested names considering the nomenclature for compounds crystallized in water (H_2O) , methanol (CH₃OH), ethanol: acetone (EtOH: Act), dimethyl sulfoxide (DMSO), acetone (Act), and acetonitrile (ACN)

H ₂ O	Tetraaquabis(3,5-dinitrobenzoato- $\kappa^1 O$)cobalt(II) tetrahydrate.
CH ₃ OH	$Tetrakis (methanol) bis (3,5-dinitrobenzoato-\kappa^1 O) cobalt (II).$
EtOH: Act	Tetrakis(ethanol)bis(3,5-dinitrobenzoato-κ ¹ O)cobalt(II).
DMSO	Diaquabis(dimethylsulfoxide- κO)bis(3,5-dinitrobenzoato- $\kappa^1 O$)cobalt(II).
ACN	 Acetonitrileaqua(μ-3,5-dinitrobenzoato-1κ²O,O':2κ¹O')bis(μ-3,5-dinitrobenzoato-1κ¹O:2κ¹O')-bis(μ-3,5-dinitrobenzoato-2κ¹O:3κ¹O')-acetonitrileaqua(μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')tricobalt(II) Diacetonitrile(μ-3,5-dinitrobenzoato-1κ²O,O':2κ¹O')bis(μ-3,5-dinitrobenzoato-1κ¹O:2κ¹O')-bis(μ-3,5-dinitrobenzoato-2κ¹O:3κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-2κ¹O:3κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-2κ¹O) diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')-diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile (μ-3,5-dinitrobenzoato-3κ²O,O':2κ¹O')+diacetonitrile trisolvate

Figure S1. Graphical result of LeBail analysis of complex $[Co(DNB)_2]$. Unit cell a = 9.6586 (17) Å, b = 11.6717 (14) Å, c = 6.3204 (9) Å and β = 96.286 °, with most probably space group $P2_1/m$.

Figure S2. Packing of the complex $[Co(DNB)_2]$ recrystallized in H₂O.

Figure S3. Packing of the complex [Co(DNB)₂] recrystallized in MeOH.

Figure S4. Packing of the complex [Co(DNB)₂] recrystallized in EtOH.

Figure S5. Optimized geometries of models of the $[Co(DBN)_2]$ complex recrystallized in the different solvents.

Figure S6. SOMOs of models of the $[Co(DBN)_2]$ complex recrystallized in ACN. a) Mononuclear with S=3/2 ground state and b) Trinuclear with S=9/2 ground state.

=== Ana	alysis	of	E Poter	ntial Hyd	====== rogen Bon	ds	and Schemes	with d(DA) < R(D)	+R(A)+0.50,	d(HA) < 1	======================================	.12 Ang.,	D-HA > 1	====== 00.0 Deg
=== Not	ze: -	ARU	J codes	s in [] a	re with r ======	efe	rence to th	e Coordinates	printed	above (Pos	sibly transfo	ormed, when	MOVE .NE	 . 1.555) 	
Nr	Typ R	es	Donor	н	.Acceptor	[ARU]	D - H	нА	DA	D - HA	AHA*	A'HA"	Sum(XY,YZ)	Sum(XZ)
1		1	03	нза	010	[]	1555.05]	0.82	1.88	2.6939(13)	179				
2		1	03	НЗВ	07	[2766.02]	0.85	1.92	2.7703(12)	175				
3		1	04	H4A	07	[1555.02]	0.82	1.92	2.7360(12)	179				
4	Intra	1	04	H4B	011	[]	0.83	1.99	2.7535(13)	153				
5		1	05	H5A	08	[1555.03]	0.84	1.91	2.7552(12)	176				
6		1	05	Н5В	09	[2676.04]	0.84	1.99	2.8201(13)	173				
7		1	06	Н6А	08	[2676.03]	0.82	1.96	2.7760(12)	169				
8	Intra	. 1	06	Н6В	021	[]	0.83	1.91	2.6915(12)	157				
9		2	07	H7A	04	[2666.01]	0.80	2.58	3.1679(12)	131				
10		2	07	H7A	05	[2666.01]	0.80	2.21	2.9241(12)	149'	75'		355	
11		2	07	H7B	011	[2766.01]	0.82	2.06	2.8297(13)	157				
12		3	08	H8A	09	[1555.04]	0.82	2.07	2.8784(13)	166				
13		3	08	H8B	03	[1455.01]	0.81	2.20	2.9427(13)	151				
14		3	08	H8B	06	[1455.01]	0.81	2.50	3.0954(12)	131'	75'		357	
15		4	09	H9A	021	[1555.01]	0.81	1.93	2.7062(13)	160				
16		4	09	Н9В	01AA	[2677.01]	0.82	2.55	3.2506(12)	144				
17		5	010	H10A	013	[1556.01]	0.79	2.58	3.1001(13)	124				
18		5	010	H10A	026	[2776.01]	0.79	2.46	2.9235(14)	119'	117'		360	
19		5	010	H10B	011	[2766.01]	0.79	2.04	2.7648(13)	152				
20		1	C14	H14	025	[2775.01]	0.95	2.45	3.3714(15)	164				
21		1	C24	H24	014	[1456.01]	0.95	2.54	3.3232(15)	139				

Table S4. Analysis of Potential Hydrogen Bonds for complex crystallized in H₂O

Translation of ARU-Code to CIF and Equivalent Position Code

[1456.] = [1_456] =-1+x,y,1+z [1556.] = [1_556] =x,y,1+z [2677.] = [2_677] =1-x,2-y,2-z [2766.] = [2_766] =2-x,1-y,1-z [2666.] = [2_666] =1-x,1-y,1-z [2676.] = [2_676] =1-x,2-y,1-z [2776.] = [2_776] =2-x,2-y,1-z [2775.] = [2_775] =2-x,2-y,-z [1455.] = [1455] =-1+x,y,z

For C--H...Acceptor Interactions See: Th. Steiner, Cryst. Rev, (1996), 6, 1-57

"shelx " PLATON-H-BONDS Page 59

Table S5. Analysis of Potential Hydrogen Bonds for complex crystallized in MeOH

===== Analy	vsis	of	===== Poten	tial	====== Hydrogen	Bonds	and S	schemes	with d(D)A) < R(I	======================================	.50,	d(HA)	< R(H)+R	(A)-0.12	===== Ang.,	D-HA >	 100.0 Deg
Note:	- A	ARU (===== codes =====	in [] are wi	th ref	====== erence ======	e to the	Coordin	ates printe	ed above	(Pos:	sibly tran	sformed,	when MOV	E .NE	. 1.555)	
Nr Ty	vp Re	es Do	onor	Н	Acce	eptor [AF	RU]	D - H	н2	A D.	A	D - HA	АН	A* A'	нА"	Sum(XY,YZ) Sum(XZ)
1 2 Ir	ntra	1 0 1 0	(7) (8)	н(7 н(8	D)O(D)O((2) [(2) [2665	5.01]]	0.77(3) 0.80(3)	1.90(3) 1.89(2)	2.663 2.6498((2) 19)	178(4) 158(2)					
1 2 Ir	ntra	1 0 1 0	(7) (8)	н (7 н (8	D)0(D)0((2) [(2) [2665	5.01]]	0.77(3) 0.80(3)	1.90(3) 1.89(2)	2.663 2.6498((2) 19)	178(4) 158(2)					

Translation of ARU-Code to CIF and Equivalent Position Code

[2665.] = [2665] = 1-x, 1-y, -z

Table S6. Analysis of Potential Hydrogen Bonds for complex crystallized in EtOH

===													
Ana	lysi	s of	Potential	Hydrogen	Bonds	and Schemes	with d(DA	.) < R(D)-	+R(A)+0.50,	d(HA) <	< R(H)+R(A)-0.12 Ang.,	D-HA >	100.0 Deg
Not	.e: -	ARU	codes in	[] are wit	th refe	erence to the	e Coordinates	printed	above (Pos	sibly trans	formed, when MOVE .NE	. 1.555)	
Nr	Тур	Res	Donor	НАссеј	ptor [ARU]	D - H	НА	DA	D - HA	AHA* A'HA"	Sum(XY,YZ)	Sum(XZ)
1 2	Intr	1 a 1	07 –-Н7 08 –-Н8	02 02] [1655.01]]	0.82(2) 0.81(3)	1.90(2) 1.85(3)	2.713(3) 2.632(3)	169(3) 162(3)			

Translation of ARU-Code to CIF and Equivalent Position Code

[1655.] = [1_655] =1+x,y,z

Table S7. Analysis of Potential Hydrogen Bonds for complex crystallized in DMSO

===							===									
Ana	alys:	is o:	f Pote	ntial H	lydroger	n Bond	s a	and Schemes	with d(D	A) < R(D))+R(A)+0.50,	d(HA) <	R(H)+R(A)-0.12	Ang.,	D-HA >	100.0 Deg
No	te: ·	- ARI	U code	s in []	are wi	th re	fer	rence to th	e Coordinate:	s printed	d above (Pos	sibly transf	ormed, when MO	VE .NE	. 1.555)	
Nr	Тур	Res	Donor	н.	Acce	eptor	[ARU]	D - H	НА	DA	D - HA	AHA* A'.	.HA"	Sum(XY,YZ)	Sum(XZ)
1	Inti	ra 1	0(3)	——Н (ЗА		(11)	[3676.01]	0.83	1.84	2.6311(16)	159				
2		1	0(3)	——Н (ЗЕ	3)0	(2)	[1545.01]	0.81	2.27	2.9455(15)	141				
3		1	0(3)	Н(ЗЕ	3)0	(1)	[3666.01]	0.81	2.58	3.2683(15)	144'	72'		357	
4		1	C(21)	Н(21	.c)o	(15)	[4464.01]	0.98	2.41	3.215(2)	139				

141 127 142

5	1 C(22)H(22A)	0(14) [2566.01]	0.98	2.47	3.290(2)
6	1 C(22)H(22B)	0(15) [2556.01]	0.98	2.52	3.208(2)
7	1 C(22)H(22C)	0(3) [1565.01]	0.98	2.49	3.318(2)

Translation of ARU-Code to CIF and Equivalent Position Code

[3676.]	=	[3 676]	=1-x,2-y,1-z
[1565.]	=	[1 565]	=x,1+y,z
[3666.]	=	[3 666]	=1-x,1-y,1-z
[1545.]	=	[1 545]	=x,-1+y,z
[2556.]	=	[2 556]	=1/2-x,1/2+y,3/2-z
[4464.]	=	[4 575]	=-1/2+x,3/2-y,-1/2+z
[2566.]	=	[2 566]	=1/2-x, 3/2+y, 3/2-z

For C--H...Acceptor Interactions See: Th. Steiner, Cryst. Rev, (1996), 6, 1-57

Ana	alysis	s of	Pote	ntial Hy	drogen Bo	onds	and Scheme	s with d(D	.A) < R(D)	+R(A)+0.50,	d(HA) <	R(H)+R(A)-0.12 Ang., D-HA > 100.0	Deg	
No	ote: - ARU codes in [] are with reference to the Coordinates printed above (Possibly transformed, when MOVE .NE. 1.555)													
Nr	Тур F	Res	Donor	н	Accepto	or [ARU]	D - H	НА	DA	D - HA	AHA* A'HA" Sum(XY,YZ) Sum	(XZ)	
1		1	012	H12A	017	[2666.03]	0.87(5)	1.85(5)	2.710(3)	168(6)			
2		1	012	H12B	018	[2666.04]	0.82(6)	1.92(6)	2.702(4)	159(5)			
3		1	013	H13A	016	[2566.02]	0.80(5)	1.91(5)	2.709(4)	170(4)			
4		1	013	H13B	019	[1555.05]	0.85(5)	1.93(6)	2.767(3)	169(5)			
5	Intra	ı 1	C4	H4	011	[2666.01]	0.95	2.40	3.306(4)	159			
6		1	С7	H7	01	[2657.01]	0.95	2.55	3.446(4)	158			
7		1	C11	H11	016	[1555.02]	0.95	2.51	3.423(4)	162			
8		1	C16	H16	05	[1554.01]	0.95	2.56	3.502(4)	174			
9		2	C30	H30A	04	[2566.01]	0.98	2.51	3.386(5)	148			
10		2	C30	H30C	07	[1555.01]	0.98	2.50	3.460(5)	165			
11		3	C33	НЗЗА	019	[1655.05]	0.98	2.56	3.460(5)	153			
12		4	C36	H36B	06	[2656.01]	0.98	2.59	3.338(7)	133			

Table S8. Analysis of Potential Hydrogen Bonds for complex crystallized in Acetone

Translation of ARU-Code to CIF and Equivalent Position Code

 $\begin{bmatrix} 2666. \end{bmatrix} = \begin{bmatrix} 2_666 \end{bmatrix} = 1-x, 1-y, 1-z \\ 2566. \end{bmatrix} = \begin{bmatrix} 2_566 \end{bmatrix} = -x, 1-y, 1-z \\ 2657. \end{bmatrix} = \begin{bmatrix} 2_657 \end{bmatrix} = 1-x, -y, 2-z \\ 2656. \end{bmatrix} = \begin{bmatrix} 2_656 \end{bmatrix} = 1-x, -y, 1-z \\ 1554. \end{bmatrix} = \begin{bmatrix} 1_554 \end{bmatrix} = x, y, -1+z \\ 1655. \end{bmatrix} = \begin{bmatrix} 1_655 \end{bmatrix} = 1+x, y, z$

For C--H...Acceptor Interactions See: Th. Steiner, Cryst. Rev, (1996), 6, 1-57

Table S9. Aı	nalysis of P	otential Hydroger	Bonds for comp	plex crystallized	d in Acetonitrile
--------------	--------------	-------------------	----------------	-------------------	-------------------

Analysis of	Potential	Hydrogen	Bonds and	Schemes	with d(DA	.) < R(D)-	+R(A)+0	.50, d(H.	A) < R(H) +R (A)-0.12	Ang.,	D-HA	> 10	0.0 Deg
Note: - ARU	codes in	[] are wit	h referen	ce to the	e Coordinates	printed	above	(Possibly	transfor	med, w	hen MOV	E .NE.	. 1.555)		

Nr	Тур 1	Res	Donor	H	.Acceptor	[ARU]	D - H	НА	DA	D - HA	AHA* A'H.	.A" Sum(XY,YZ)	Sum(XZ)
1		2	07AA	H7AA	N15	[2565.04]	0.86(4)	2.10(4)	2.949(2)	173(3)			
2		2	07AA	H7AB	022	[2565.01]	0.82(3)	2.56(3)	2.8959(18)	106(3)			
3		2	07AA	H7AB	N14	[2565.03]	0.82(3)	2.29(3)	3.067(3)	158(4)'	84.0(10)'	348(5)	
4		2	C3	НЗА	02	[2675.02]	0.98	2.47	3.302(3)	142			
5		2	C3	H3C	012	[1665.02]	0.98	2.57	3.369(3)	139			
6	Intra	a 2	C20	H20	01	[2565.02]	0.95	2.55	3.448(2)	159			
7		1	C32	Н32В	022	[1665.01]	0.98	2.40	3.263(3)	146			
8		1	C32	H32C	013	[2786.01]	0.98	2.43	3.342(3)	155			
9	Intra	a 1	C35	H35	024	[2676.01]	0.95	2.53	3.4422(19)	161			
10		4	C64	H64B	020	[1445.01]	0.98	2.39	3.368(2)	177			
11		5	C65	H65B	010	[2665.02]	0.98	2.43	3.378(3)	164			

Translation of ARU-Code to CIF and Equivalent Position Code

 $\begin{bmatrix} 2565. \end{bmatrix} = \begin{bmatrix} 2_565 \end{bmatrix} = -x, 1-y, -z \\ [2676.] = \begin{bmatrix} 2_676 \end{bmatrix} = 1-x, 2-y, 1-z \\ [1445.] = \begin{bmatrix} 1_445 \end{bmatrix} = -1+x, -1+y, z \\ [2786.] = \begin{bmatrix} 2_786 \end{bmatrix} = 2-x, 3-y, 1-z \\ [1655.] = \begin{bmatrix} 1_665 \end{bmatrix} = 1+x, 1+y, z \\ [2675.] = \begin{bmatrix} 2_675 \end{bmatrix} = 1-x, 2-y, -z \\ [2665.] = \begin{bmatrix} 2_665 \end{bmatrix} = 1-x, 1-y, -z \end{bmatrix}$

For C--H...Acceptor Interactions See: Th. Steiner, Cryst. Rev, (1996), 6, 1-57