Supplementary Information

Dichlorine-containing chlorobismuthate(III) supramolecular hybrid: structure and experimental studies of stability

Nikita A. Korobeynikov, Andrey N. Usoltsev, Boris A. Kolesov, Pavel A. Abramov, Pavel E. Plyusnin, Maxim N. Sokolov and Sergey A. Adonin

Synthetic procedures

All reagents were obtained from commercial sources and used without additional purification. **Caution:** All experiments with dichlorine require obligatory use of fume hood and presence of adequate exhaust ventilation, as well as eye (goggles) and skin (gloves) protection.

Synthesis of 1

93.2 mg (0.2 mmol) of Bi_2O_3 and 44 mg (0.4 mmol) of Me_4NCI were dissolved in 4 ml of concentrated HCI and heated to 60°C. At this temperature, excess of dichlorine was bubbled through the solution for 5 min. Solution was filtered and Cl_2 was bubbled for another 5 min. Then the vial was closed and slowly cooled to 5°C. Within one day, there form transparent crystals of **1**. Yield: 69%. For $C_{12}H_{36}Bi_2Cl_{11}N_3$ calcd, %: C, 14.05; H, 3.54; N, 4.10; found, %: C, 14.06; H, 3.58; N, 4.11.

X-ray Diffractometry

Crystallographic data and refinement details for **1** are given in Table S1. The diffraction data were collected on a Bruker D8 Venture diffractometer with a CMOS PHOTON III detector and I μ S 3.0 source (Mo K α radiation, λ = 0.71073 Å) at 150 K. The ϕ - and ω -scan techniques were employed. Absorption correction was applied by SADABS (Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI, 2017.). Structures were solved by SHELXT[1] and refined by full-matrix least-squares treatment against $|F|^2$ in anisotropic approximation with SHELX 2014/7[2] in ShelXle program.[3] H-atoms were refined in the geometrically calculated positions. The crystallographic data have been deposed in the Cambridge Crystallographic Data Centre under the deposition codes CCDC 2141780.

- [1] G.M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 71 (2015) 3–8.
- [2] G.M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8.
- [3] C.B. Hübschle, G.M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44 (2011) 1281–1284.

	1
Chemical formula	C ₁₂ H ₃₆ Bi ₂ Cl ₁₁ N ₃
M _r	1030.35
Crystal system, space group	Hexagonal, P6 ₃ /mmc
Temperature (K)	150
<i>a, c</i> (Å)	9.1792 (3), 21.9776 (10)
V (Å ³)	1603.69 (13)
Z	2
Radiation type	Mo Ka
μ (mm ⁻¹)	11.88
Crystal size (mm)	0.12 × 0.10 × 0.04
Diffractometer	Bruker D8 Venture
	diffractometer
Absorption correction	Multi-scan
	SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
	Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015)
	3-10
T_{\min}, T_{\max}	0.524, 0.746
No. of measured, independent and	16530, 621, 615
observed $[l > 2\sigma(l)]$ reflections	
R _{int}	0.110
θ values (°)	θ_{max} = 25.7, θ_{min} = 2.6
(sin θ/λ) _{max} (Å ⁻¹)	0.609
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-11 \le h \le 11, -11 \le k \le 11, -26 \le l \le 26$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.141, 1.45
No. of reflections, parameters,	621, 50, 94
restraints	
H-atom treatment	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + 50.5902P]$ where $P = (F_o^2 + 2F_c^2)/3$
Dρ _{max} , Dρ _{min} (e Å ⁻³)	1.76, -2.46

Computer programs: *APEX3* (Bruker-AXS, 2016), *SAINT* (Bruker-AXS, 2016), *SHELXT* 2014/5 (Sheldrick, 2014), *SHELXL2017*/1 (Sheldrick, 2017).

Powder X-ray diffractometry

XRD analysis of polycrystals was performed on Shimadzu XRD-7000 diffractometer (CuK-alpha radiation, Ni – filter, linear One Sight detector, $5 - 50^{\circ} 2\theta$ range, $0.0143^{\circ} 2\theta$ step, 2s per step). A polycrystalline sample was slightly ground with hexane in an agate mortar, and the resulting suspension was deposited on the polished side of a standard quartz sample holder, and a

smooth thin layer being formed after drying. Plotting of PXRD patterns and data treatment was performed using X'Pert Plus software.

Figure S1. Theoretical (blue) and experimental (red) PXRD patterns for 1

Figure S2. Experimental PXRD pattern (red) of the sample of **1** after TGA thermostatic experiment (140°C, ≈40 min) compared to theoretical pattern of **1** (blue)

Figure S3. Experimental PXRD pattern (red) of the sample of **1** after TGA thermostatic experiment (140°C, \approx 40 min) compared to theoretical pattern of TMA₃[Bi₂Cl₉] (blue)

Raman spectroscopy

Raman spectra were collected using a LabRAM HR Evolution (Horiba) spectrometer with the excitation by the 633 nm line of the He-Ne laser. The spectra at room temperatures were obtained in the backscattering geometry with a Raman microscope. The laser beam was focused to a diameter of 2 micrometers using a LMPlan FL 50x/0.50 Olympus objective. The spectral resolution was 0.7 cm⁻¹. The laser power on the sample surface was about 0.03 mW.

Thermogravimetric analyses (TGA) were carried out on a TG 209 F1 Iris thermobalance (NETZSCH, Germany). The measurements were made in a helium flow in the temperature range of 30–450°C using the heating rate of 10°C min⁻¹ the gas flow rate of 60 mL min⁻¹ and open Al crucibles.