Pd(bpy4dca)(NO₂)₂: understanding the influence of polymorphism and coligand chromophores on linkage isomer photoswitching in the singlecrystal

Supplementary Information

Ben A. Coulson,^a Lauren E. Hatcher*^a

Section 1. Crystal structure of 2,2'-bipyridine-4,4'-dicarboxylic acid methyl ester (bpy4dca)

Figure S1: Single crystal X-ray structure of bpy4dca, with the non-hydrogen atoms of the asymmetric unit labelled. Ellipsoids at 50% probability.

The ligand 2,2'-bipyridine-4,4'-dicarboxylic acid methyl ester (bpy4dca) crystallises in the monoclinic space group $P_{2_1/c}$ with half a molecule in the asymmetric unit. The molecule is located on a special position (inversion centre) in the unit cell and the other half of the bpy4dca molecule is generated by symmetry. The molecule is highly planar, with an RMS deviation of 0.0343 from the plane for all non-hydrogen atoms in the asymmetric unit.

The planar bpy4dca pack in a flattened herringbone (or γ -type) packing arrangement, with alternating stacks of molecules extending approximately parallel to the [010] direction. The interplanar distance is 3.8010(2) Å, with evidence of π - π interactions between stacked molecules. A weak intermolecular C-H...O hydrogen bond forms a link between herringbone stacks, formed between C(7)-H(7B) of the methyl group on one molecule and O(2) of the C=O group on the neighbouring molecule.

Figure S2: Crystal packing diagrams for the crystal structure of bpy4dca, viewed along [100] (a), [010] (b) and [001] (c).

	bpy4dca
Radiation wavelength / ${ m \AA}$	0.71073
Empirical formula	$C_{14}H_{12}N_2O_4$
Formula weight	272.26
Temperature / K	150
Crystal system	monoclinic
Space group	P21/c
a / Å	3.8010(2)
b / Å	5.8557(3)
c / Å	27.5948(12)
α/°	90
β/°	93.720(4)
γ/°	90
Volume / Å ³	612.90(5)
Z	2
$ ho_{calc}$ / g cm ⁻³	1.475
μ / mm ⁻¹	0.110
F(000)	284
Crystal size / mm	0.5 x 0.3 x
	0.2
Reflections (independent)	3721 (1251)
Goodness of Fit on F ²	1.069
R _{int}	0.0256
$R_1 [l \ge 2\sigma(l)]$	0.0424
wR ₂ [all data]	0.1118
Largest difference peak and hole / e \AA^{-3}	0.21/-0.30

 Table S1: Single crystal X-ray data for the crystal structure of bpy4dca

Section 2. Photocrystallography set-up

Figure S3: Circuit diagram for LED illumination array set-up.

Figure S4: Photocrystallography set-up on a Rigaku Gemini A Ultra dual source diffractometer

Section 3. Supplementary data for complex 1

Figure S5: Microscope images of **1** crystals: polymorph I needles (left) and polymorph II powder and blocks (right).

Figure S6: Experimental powder X-ray diffraction (PXRD) pattern for as-crystallised complex **1** crystals (black), compared to the patterns for pure form I (dark grey) and form II (light grey) crystals simulated from ground state single-crystal X-ray diffraction (SCXRD) datasets. All experiments were performed at 150 K.

Figure S7: Experimental powder X-ray diffraction (PXRD) pattern for the microcrystalline powder sample of **1** formed on shattering of needle-like (black), formed on aging the as-synthesised needle crystals in acetonitrile/water solution for 2 - 3 days at room temperature, compared to the patterns for pure form I (dark grey) and form II (light grey) crystals simulated from ground state single-crystal X-ray diffraction (SCXRD) datasets. All experiments were performed at 150 K.

Table S2: CrystalExplorer^{1, 2} Fingerprint plots highlighting the key intermolecular interactions involving the crystallographically independent molecules in polymorphs I (Z' = 2) and II (Z' = 1).

Overlaid molecules	Overlay image	RMSD	Maximum deviation / Å
Polymorph I molecule a [red] and Polymorph II [blue]		0.1712	0.38
Polymorph I molecule b [red] and Polymorph II [blue]		0.3006	0.77

Table S3: Molecular overlay data comparing the crystallographically independent molecules of **1** in polymorph I (Z' = 2) with polymorph II (Z' = 1) in their GS crystal structures

Table S4: Results of preliminary excitation wavelength testing with polymorph II crystals. In each experiment the same form II crystal was irradiated at the selected wavelength for a period of 1 h, before being subject to a steady-state photocrystallography experiment at 150 K. The crystal was confirmed to be in the GS nitro-(η^1 -NO₂) arrangement prior to each irradiation period.

Wavelength / nm	390	405	465	500
Irradiation time / min	60	60	60	60
ES population level, [NO ₂ ligand 1 / ligand 2] / %	0/0	0/0	55(1) / 52(1)	0/0
Radiation wavelength / Å	0.71073	0.71073	0.71073	0.71073
Empirical formula	$C_{14}H_{12}N_4O_8Pd_1\\$	$C_{14}H_{12}N_4O_8Pd_1$	$C_{14}H_{12}N_4O_8Pd_1$	$C_{14}H_{12}N_4O_8Pd_1\\$
Formula weight	470.68	470.68	470.68	470.68
Temperature / K	150	150	150	150
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P21/n	P21/n	P21/n	P21/n
a / Å	8.4156(4)	8.4551(4)	8.5072(4)	8.4628(3)
b/Å	7.7485(3)	7.7330(3)	7.7879(3)	7.7311(3)
c / Å	24.9321(15)	24.8491(12)	24.9216(8)	24.8985(7)
α/°	90	90	90	90
6/°	95.374(5)	95.093(4)	93.899(4)	95.132(3)
γ/°	90	90	90	90
Volume / Å ³	1618.63(14)	1618.30(13)	1647.31(11)	1622.50(10)
Z	4	4	4	4
$ ho_{calc}$ / g cm ⁻³	1.931	1.932	1.898	1.927
μ / mm ⁻¹	1.203	1.203	1.182	1.200
F(000)	936	936	936	936
Crystal size / mm	0.3 x 0.2 x 0.1	0.3 x 0.2 x 0.1	0.3 x 0.2 x 0.1	0.3 x 0.2 x 0.1
Reflections (independent)	7018 (3297)	11902 (3310)	6788 (3370)	6699 (3313)
Goodness of Fit on F ²	1.218	1.146	1.036	1.050
R _{int}	0.0276	0.0563	0.0450	0.0414
$R_1 [l \ge 2\sigma(l)]$	0.0648	0.0685	0.0508	0.0381
wR ₂ [all data]	0.1549	0.1585	0.1112	0.0786
Largest difference peak and hole / e Å -3	2.80/-2.31	2.18/-1.40	1.07/-0.74	0.77/-0.68

(b)

Figure S8: Crystal packing diagrams for the photostationary excited state of **1** polymorph II at 150 K, (a) showing the flattened herringbone pattern and (b) viewed along the [010] direction, both with the minor nitro-(η^1 -NO₂) components removed for clarity.

(a)

Table S5: Nitro : nitrito isomer ratios for photocrystallographic studies with **1** polymorph II at 150 K as a function of irradiation time and temperature, as refined from complete single-crystal X-ray diffraction datasets.

Tomporaturo	Innodiation	Nitrite	igand #1	Nitrite ligand #2		
(K)	time (s)	Nitro-(η ¹ -NO ₂) occupancy	Nitrito-(η ¹ -ONO) occupancy	Nitro-(η ¹ -NO ₂) occupancy	Nitrito-(η ¹ -ONO) occupancy	
150	0	1.00	0.00	1.00	0.00	
150	3600	0.45	0.55	0.48	0.52	
150	7200	0.35	0.65	0.38	0.62	
150	10800	0.30	0.70	0.33	0.67	
170	14400	0.29	0.71	0.32	0.68	
190	14400	0.29	0.71	0.31	0.69	
210	14400	0.29	0.71	0.31	0.69	
220	14400	0.30	0.70	0.33	0.67	
230	14400	0.39	0.61	0.38	0.62	
240	14400	0.69	0.31	0.63	0.37	

Figure S9: Ground state single-crystal X-ray structure of **1** polymorph II at 200 K, ellipsoids set at 50% probability.

T	able S6: I	Vitro	o : nitrito iso	mer ra	tios f	for photocrysta	llog	graphic st	tudies	with 1 poly	/morph II at 20	0 K as
а	functior	n of	irradiation	time	and	temperature,	as	refined	from	complete	single-crystal	X-ray
d	iffraction	dat	asets.									

Temperature	Irradiation	Nitrite li	igand #1	Nitrite ligand #2 [atoms N(2), O(3), O(4) + atoms N(2A), O(3A), O(4A)]		
(К)	time (s)	Nitro-(η ¹ -NO ₂) occupancy	Nitrito-(η ¹ -ONO) occupancy	Nitro-(η ¹ -NO ₂) occupancy	Nitrito-(η ¹ -ONO) occupancy	
200	0	1.00	0.00	1.00	0.00	
200	600	0.91	0.09	0.91	0.09	
200	1800	0.73	0.27	0.77	0.23	
200	3600	0.55	0.45	0.64	0.36	
200	7200	0.35	0.65	0.48	0.52	
200	10800	0.28	0.72	0.39	0.61	
200	18000	0.23	0.77	0.34	0.66	
200	36000	0.20	0.80	0.30	0.70	
210	36000	0.26	0.74	0.33	0.67	
220	36000	0.49	0.51	0.51	0.49	
230	36000	0.92	0.08	0.88	0.12	
240	36000	1.00	0.00	1.00	0.00	
250	36000	1.00	0.00	1.00	0.00	

Figure S10: Comparison of excited state nitrito-(η^1 -ONO) isomer occupancies as a function of increasing temperature in variable temperature parametric studies with **1** polymorph II, for steady-state (SS) and pseudo-steady-state (PSS) photocrystallographic experiments, both following excitation at 200 K with 465 nm LED light.

Figure S11: Crystal packing diagrams for the photostationary excited state of **1** polymorph I at 150 K, (a) viewed along the [100] direction and (b) viewed along the [010] direction, both with the minor nitro- $(\eta^{1}-NO_{2})$ components removed for clarity.

(a)

Polymorph	Nitrite	H-bond	Symmetry	HA* / Å	DA / Å	D-HA* / °
(molecule)	ligand #					
I(a)	1	C(1)-H(1)O(1)		2.44	3.16(2)	132
l(a)	1	C(1)-H(1)O(2)	-x, -y, -z	2.70	3.63(3)	166
l(a)	1	C(26)-	-x, -y, -z	2.52	3.16(2)	123
		H(26A)O(2)				
l(a)	2		no C-HO i	nteractions		
I(b)	3	C(1)-H(1)O(9)	-x, -y, -z	2.71	3.45(3)	135
I(b)	3	C(23)-H(23)O(10)	-x, -y, -z	2.62	3.36(3)	133
l(b)	4	C(15)-H(15)O(11)		2.52	3.20(2)	128
11	1	C(2)-H(2)O(1)	-x, -y, -z	2.586	3.274(6)	129.5
II	2	C(12)-	½+x, ½-y, ½+z	2.546	3.173(5)	121.8
		H(12C)O(3)				
II	2	C(14)-	-x, -y, -z	2.532	3.426(5)	151.6
		H(14A)O(3)				
II	2	C(10)-H(10)O(4)		2.521	3.201(5)	128.6

Table S7: Hydrogen bonding interactions involving the nitro- $(\eta^1 - NO_2)$ ligands in the GS structures of polymorphs I and II at 150 K.

*hydrogen atoms are treated as a riding model, therefore H...A distances and D-H..A angles have no associated esd value

Figure S12: Key C-H...O hydrogen bonding interactions in the GS structures of polymorph I, molecule **a** (a), polymorph I molecule **b** (b) and polymorph II (c)

Table S8: Comparison of the hydrogen bonding interactions involving the nitro- (η^1-NO_2) ligands in the GS structures of polymorph II at 150 and 200 K.

Temperature	Nitrite	H-bond	Symmetry	HA* / Å	DA / Å	D-HA*
(К)	ligand #					/ °
150	1	C(2)-H(2)O(1)	-x, -y, -z	2.586	3.274(6)	129.5
150	2	C(12)-	½+x, ½-y, ½+z	2.546	3.173(5)	121.8
		H(12C)O(3)				
150	2	C(14)-	-x, -y, -z	2.532	3.426(5)	151.6
		H(14A)O(3)				
150	2	C(10)-H(10)O(4)		2.521	3.201(5)	128.6
200	1	C(2)-H(2)O(1)	-x, -y, -z	2.597	3.284(6)	129.4
200	2	C(12)-	½+x, ½-y, ½+z	2.561	3.187(6)	121.7
		H(12C)O(3)				
200	2	C(14)-	-x, -y, -z	2.555	3.454(6)	152.6
		H(14A)O(3)				
200	2	C(10)-H(10)O(4)		2.517	3.192(6)	128.0

*hydrogen atoms are treated as a riding model, therefore H...A distances and D-H..A angles have no associated esd value

Figure S13: Key C-H...O hydrogen bonding interactions in the ES structures of polymorph I, molecule **a** (a), polymorph I molecule **b** (b) and polymorph II (c)

Table S9: Hydrogen bonding interactions involving the nitrito-(η^1 -ONO) ligands in the ES structures of polymorphs I and II at 150 K.

Polymorph (molecule)	Nitrite ligand #	H-bond	Symmetry	HA* / Å	DA / Å	D-HA* / °
I(a)	1	C(26)-H(26A)O(1A)	-x, -y, -z	2.35	3.08(4)	130
l(a)	2		no C-HO in	teractions		
l(b)	3	C(1)-H(1)O(9A)	-x, -y, -z	2.68	3.38(4)	131
l(b)	4	C(15)-H(15)O(12A)	-x, -y, -z	2.63	3.33(2)	131
II	2	C(12)-H(12C)O(4A)	½+x, ½-y, ½+z	2.639	3.418(5)	136.6

*hydrogen atoms are treated as a riding model, therefore H...A distances and D-H..A angles have no associated esd value

Reaction cavity analysis using CCDC Mercury software.

Procedure:

The reaction cavity volume surrounding the isomerisable NO₂ ligand can be estimated by using the Void Space analysis tool in Mercury.

CIFs were first prepared by permanently deleting the NO₂ ligand using the Edit Structure dialogue in Mercury, before the Display \rightarrow Voids dialogue was used to conduct a void space calculation. A contact surface calculation was then performed using a probe radius of 1.2 Å and the finest attainable grid spacing of 0.1 Å.

It should be noted that, after removal of the NO₂ ligand from the structure, the software calculates all remaining atoms with their van de Waals radius. For our purposes this introduces a small systematic error into the void space calculation, as the van de Waals radius for the Pd(II) metal atom will now not take into account that there is a Pd-N bond in the real structure. In other treatments this error has been taken into account through a different approach,³ however as this analysis is being used for comparative purposes any errors introduced are systematic and so do not affect our final conclusions. As such, it seems reasonable to use the available Mercury tool as a simple means to estimate the reaction cavity in this case.

Figure S14: Reaction cavity (V_c) analysis of **1** polymorphs I and II at 150 K. V_c determined by removing the nitrite group and performing a contact surface void space calculation in Mercury (probe radius 1.2 Å, grid spacing 0.1 Å). For direct comparison between polymorphs, V_c was obtained per molecule by dividing the per unit cell value from Mercury by Z for each crystal structure.

Table S10: Reaction cavity (V_c) analysis of **1** polymorph II at 150 and 200 K. V_c determined by removing the nitrite group and performing a contact surface void space calculation in Mercury (probe radius 1.2 Å, grid spacing 0.1 Å)

Temperature (K)	Nitrite ligand #	Nitrito-ONO occupancy	V _c per unit cell (ų)	V _c per molecule* (ų)
150	#1	0.71	148.31	37.08
150	#2	0.68	141.44	35.36
200	#1	0.71	144.70	36.18
200	#2	0.68	146.55	36.64

 $^{*}V_{c}$ per molecule was obtained by dividing the value obtained per unit cell by Z for each structure, allowing direct comparison of reaction cavities for forms I and II.

Table S11: Molecular overlay data comparing the crystallographically independent molecules of **1** both within polymorph I (Z' = 2), and with polymorph II (Z' = 1) in their photostationary ES crystal structures

Overlaid molecules	Overlay image	RMSD	Maximum deviation / Å
Polymorph I molecule a [red] and Polymorph I molecule b [green]		0.3659	1.1723
Polymorph I molecule a [red] and Polymorph II [blue]	i i i i i i i i i i i i i i i i i i i	0.6669	2.6577
Polymorph I molecule b [red] and Polymorph II [blue]		0.6783	2.7676

Figure S15: Molecular overlay data comparing the optimised geometries for the crystallographically independent molecules of **1** in (a) polymorph I, red = molecule **a**, green = molecule **b** (RMSD between molecules = 0.0000, zero point energy = -1489.72728807 HT for both molecules), and (b) between polymorph I = red and polymorph II = blue (RMSD between molecules = 0.3996). For all calculations: DFT(B3LYP)/6-311+G(d) for light atoms, DFT(B3LYP)/SDD for Pd.

Figure S16: Comparison of calculated and experimental absorption spectra for 1 polymorphs I and II.

Figure S17: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised GS molecule of **1** polymorph I, green = HOMO orbitals, magenta = LUMO orbitals.

Figure S18: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised GS molecule of **1** polymorph II, green = HOMO orbitals, magenta = LUMO orbitals.

Figure S19: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised GS molecule of $[Pd(Bu_4dien)(NO_2)]^{+,4}$ green = HOMO orbitals, magenta = LUMO orbitals.

Figure S20: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised molecule of [Pd(Et₄dien)(NO₂)]^{+,5} green = HOMO orbitals, magenta = LUMO orbitals.

Figure S21: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised molecule of [Pd(PPh₃)(NO₂)₂],⁶ green = HOMO orbitals, magenta = LUMO orbitals.

Figure S22: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised molecule of $[Pd(PCy_3)(NO_2)_2]$,⁶ green = HOMO orbitals, magenta = LUMO orbitals.

Figure S23: Calculated molecular orbital diagram and key frontier molecular orbitals for the geometry-optimised molecule of [Pd(AsCy₃)(NO₂)₂],⁶ green = HOMO orbitals, magenta = LUMO orbitals.

REFERENCES

- McKinnon, J.J., Fabbiani, F.P.A. & Spackman, M.A. Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. *Crystal Growth & Design* 7, 755-769 (2007).
- 2. Spackman, M.A. & McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. *CrystEngComm* **4**, 378-392 (2002).
- 3. Vorobyev, V.; Kostin, G. A.; Kuratieva, N. V.; Emelyanov, V. A. Two Oxygen-Coordinated Metastable Ru–ON States for Ruthenium Mononitrosyl Complex. Inorganic Chemistry 2016, 55, 9158-9161.
- 4. Hatcher, L.E. Raising the (metastable) bar: 100% photo-switching in [Pd(Bu4dien)(η^{1} -<u>N</u>O₂)]+ approaches ambient temperature. *CrystEngComm* **18**, 4180-4187 (2016).
- 5. Hatcher, L.E. & Raithby, P.R. The impact of hydrogen bonding on 100% photo-switching in solid-state nitro-nitrito linkage isomers. *CrystEngComm* **19**, 6297-6304 (2017).
- Warren, M.R. et al. Photoactivated linkage isomerism in single crystals of nickel, palladium and platinum di-nitro complexes - a photocrystallographic investigation. *Dalton Transactions* 41, 13173-13179 (2012).