Understanding the thermal stability of apalutamide crystalline solvates through crystal structure analyses and computational studies

Jupally Prashanth ${ }^{\text {ab }}$, A. Sivalakshmi Devic, Artem O. Surov ${ }^{d^{*}}$, Alexander P. Voronine, Andrei V. Churakove, Sridhar Balasubramanian ${ }^{\text {ab* }}$

${ }^{\text {a Centre for X-ray Crystallography, Department of Analytical \& Structural Chemistry, CSIR- }}$ Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India.
${ }^{\mathrm{b}}$ Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh- 201 002, India
${ }^{\text {charaus Labs Ltd., Ds1, Ikp Knowledge Park, Genome Valley, Shameerpet, Hyderabad, }}$ Turkapally, Rangareddy - 500078.
${ }^{\mathrm{d}}$ G.A. Krestov Institute of Solution Chemistry RAS, 153045, Ivanovo, Russia.
${ }^{\mathrm{e}}$ Institute of General and Inorganic Chemistry RAS, Leninsky Prosp. 31,119991, Moscow, Russia.

Table S1. Experimental details


```
        +2F (}\mp@subsup{}{\textrm{c}}{2})/
\Delta\rho}\mp@subsup{\rho}{\mathrm{ max }}{},\Delta\mp@subsup{\rho}{\mathrm{ min }}{}(\textrm{e}1.01,-0.79 0.67,-0.36 0.68,-0.76 0.47,-0.5
\AA -3)
Absolute ? ? ? Refined as an inversion
structure
    twin.
Absolute ? ? ? 0.73 (13)
structure
parameter
(KA1156_0m_APA- (KA1165_0m_APA- (KB02_0m_a_APA- (KB22_0m_APA-
DOX-2:1) DMA-1:1) CHY-1:1) ACN-1:1)
CCDC 2152152 2152153 2152154 2152156
Crystal data
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(a, b, c(\AA)\)} & 41.7833 (6), 13.6224 (2), & 22.5794 (15), 13.3362 & 25.2912 (7), 12.4809 & 8.9856 (4), 15.2222 \\
\hline & 17.4061 (3) & (7), 18.2192 (11) & (4), 17.6369 (5) & (6), 16.9653 (7) \\
\hline \(\alpha, \beta, \gamma\left({ }^{\circ}\right)\) & 90, 110.9090 (7), 90 & 90, 90.944 (2), 90 & 90,108.109 (1), 90 & 90, 90, 90 \\
\hline \(V\left(\AA^{3}\right)\) & 9254.9 (3) & 5485.5 (6) & 5291.4 (3) & 2320.52 (17) \\
\hline Z & 8 & 8 & 8 & 4 \\
\hline \multicolumn{2}{|l|}{Radiation type Mo \(K \alpha\)} & Mo K \(\alpha\) & Mo K \(\alpha\) & Mo K \(\alpha\) \\
\hline \(\mu\left(\mathrm{mm}^{-1}\right)\) & 0.21 & 0.18 & 0.19 & 0.21 \\
\hline \begin{tabular}{l}
Crystal size \\
(mm)
\end{tabular} & \(0.26 \times 0.22 \times 0.12\) & \(0.28 \times 0.26 \times 0.11\) & \(0.26 \times 0.24 \times 0.18\) & \(0.26 \times 0.22 \times 0.16\) \\
\hline
\end{tabular}
Data collection
```

Diffractomete r	Bruker D8 QUEST PHOTON-100			
Absorption				
correction	SADABS 2014/5	SADABS 2014/5	SADABS 2016/2: Krause, L., HerbstIrmer, R., Sheldrick G.M. \& Stalke D., J. Appl. Cryst. 48 (2015) 3-10	SADABS 2016/2: Krause, L., HerbstIrmer, R., Sheldrick G.M. \& Stalke D., J. Appl. Cryst. 48 (2015) 3-10
$T_{\text {min }}, T_{\text {max }}$	0.579, 0.745	0.628, 0.746	0.630, 0.745	0.670, 0.746
No. of measured, independent and observed [$I>$ $2 \sigma(I)]$ reflections	36635, 9440, 6534	50692, 11078, 7054	46140, 9019, 5179	36626, 6979, 6697
$R_{\text {int }}$	0.062	0.073	0.104	0.054
$\begin{aligned} & (\sin \theta / \lambda)_{\max } \\ & \left(\AA^{-1}\right) \end{aligned}$	0.625	0.622	0.588	0.713
Refinement				
$\begin{aligned} & R\left[F^{2}>\right. \\ & \left.2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.083, 0.201, 1.06	0.062, 0.167, 1.04	0.077, 0.157, 1.04	0.027, 0.071, 1.05
No. of reflections	9440	11078	9019	6979
No. of parameters	669	894	815	330
No. of restraints	2	423	210	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained

refinement

Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.21	0.21	0.21
Crystal size (mm)	$0.25 \times 0.20 \times 0.02$	$0.28 \times 0.22 \times 0.16$	$0.26 \times 0.24 \times 0.18$
Data collection			
Diffractometer	Bruker D8 QUEST PHOTON- 100	Bruker D8 QUEST PHOTON- 100	Bruker D8 QUEST PHOTON- 100
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. \& Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. \& Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. \& Stalke D., J. Appl. Cryst. 48 (2015) 3-10
$T_{\text {min }}, T_{\text {max }}$	0.623, 0.765	0.556, 0.722	0.473, 0.746
No. of measured, independent and observed [$I>$ $2 \sigma(I)]$ reflections	43641, 8143, 5609	40466, 7083, 6096	27853, 8064, 5112
$R_{\text {int }}$	0.064	0.044	0.085
$\begin{aligned} & (\sin \theta / \lambda)_{\max } \\ & \left(\AA^{-1}\right) \end{aligned}$	0.596	0.715	0.595
Refinement			
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.063, 0.137, 1.05	0.059, 0.136, 1.16	0.070, 0.214, 1.03
No. of reflections	8143	7083	8064
No. of parameters	794	411	776
No. of restraints		3	562
H -atom treatment	H atoms treated by a mixture of independent and constrained	H -atom parameters constrained	H-atom parameters constrained

refinement

Computer programs: APEX2 (Bruker, 2008), APEX3 (Bruker, 2018), APEX3 (Bruker, 2016), SAINT (Bruker, 2008), SAINT (Bruker, 2018), SAINT (Bruker, 2016), Bruker SAINT, SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2016), SHELXT 2014/5 (Sheldrick, 2014), SHELXT (Sheldrick, 2015), SHELXL2018/3 (Sheldrick, 2018), SHELXL2016/6 (Sheldrick, 2016), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL.

Single-crystal X-ray diffraction

In all structures (except APA-ACN-1:1 \& APA-EtOH-2:1) and aromatic fluorine atoms were positionally disordered over two sites with occupancy ratios $0.795(4) / 0.205(4)$ for molecule B of APA, $0.547(8) / 0.453(8), 0.556(10) / 0.444(10), 0.508(7) / 0.492(7), 0.587(8) / 0.413(7)$ for APA-DMF-2:1 and $0.54(1) / 0.46(1), 0.60(1) / 0.40(1), 0.56(1) / 0.44(1), 0.51(1) / 0.49(1)$ for APA-DMF-1:1, 0.542(7)/0.458(7) for APA-DOX-2:1, 0.879(3)/0.121(3), 0.755(5)/0.245(5) for APA-DMA-1:1, $0.620(7) / 0.480(7), \quad 0.667(6) / 0.333(6)$ for APA-CYH-1:1, $0.726(6) / 0.274(6)$ for APA-ACE-2:1, $0.545(4) / 0.456(4)$ for APA-BUT-1:0.5. In APA-ACE2:1 pyridine ring was positionally disordered with occupancies equal to $0.523(2)$ and $0.477(2)$. As for APA-DMF-2:1, cyclobutane ring was conformationally disordered with occupancy ratio $0.63(3) / 0.37(3)$. In APA-DMF-1:1, atoms F1B/F2B of $-\mathrm{CF}_{3}$ groups was rotationally disordered over two sites with occupancies equal to $0.556(10) / 0.444(10)$. The studied crystal of APA-DMF-2:1 was pseudomerohedrally twinned with domain ratio $0.922(1) / 0.078(1)$. The crystal APA-DMF-1:1 exhibited racemic twinning with domain ratio $0.75(13) / 0.25(13)$. In APA-DMA-1:1, the fluorine atoms F1-F3 of molecule A and F1- F2 of molecule B of APA were disordered over two positions with occupancies equal to $0.879(3) / 0.121(3)$, for molecule A, $0.755(5) / 0.245(5)$, for molecule B, respectively. All atoms (C22-C25/O3/N6A) of DMA solvate molecules A \& B were disordered, and their site occupational factors were refined to $0.654(10) / 0.346(10)$ for molecule A and $0.560(13) / 0.440(10)$ for molecule B, respectively. In APA-CYH-1:1, all the atoms (C22C27/O3) of the CYH solvate molecule B were disordered over two positions (C23BC27B/O3B and C23D-C27D/O3D), and their site occupational factors were refined to $0.538(6)$ and $0.462(6)$, respectively. In the APA-BUT-1:0.5 structure, the atoms C20/N5/C21 of APA molecule were disordered over two sites (C20/N5/C21 \& C20D/N5D/C21D), and their site occupational factors were refined to equal occupancies of 0.5 for both the disordered components. The atoms F2/F3 of APA were disordered over two positions (F2/F3/F4/H15 \& F2D/F3D/F4D/H13D), and their occupational factors were refined to $0.879(3) / 0.121(3)$, respectively. In APA-EtOH-2:1, the atoms N5A/C21A and atoms F1-F3 of APA molecule A were disordered over two positions, and their site occupancies (C21A/N5A \& C211/N51 and F1A/F2A/F3A \& F11/F21/F31) were refined to $0.57(3) / 0.43(3)$ and $0.68(4) / 0.32(4)$, respectively. In APA molecule B , the atoms $\mathrm{C} 20 \mathrm{~B} / \mathrm{N} 5 \mathrm{~B} / \mathrm{C} 21 \mathrm{~B} / \mathrm{O} 2 \mathrm{~B}$ and $\mathrm{F} 1 \mathrm{~B} / \mathrm{F} 2 \mathrm{~B} / \mathrm{F} 3 \mathrm{~B}$ were disordered, and their site (C20B/N5B/C21B/O2B \& C202/N52/C212/O22 and F1B/F2B/F3B \& F12/F22/F32)
occupational factors were refined to $0.658(13) / 0.342(13)$ and $0.67(4) / 0.33(4)$, respectively. The EtOH solvate A was disordered over the two-fold symmetry with the site occupancies of 0.5 , while the atoms ($\mathrm{C} 22 \mathrm{~B} / \mathrm{C} 23 \mathrm{~B} / \mathrm{O} 3 \mathrm{~B}$) were disordered over four-fold symmetry, and their disordered components ($\mathrm{C} 22 \mathrm{~B} / \mathrm{C} 23 \mathrm{~B} / \mathrm{O} 3 \mathrm{~B}$ \& $\mathrm{C} 222 / \mathrm{C} 232 / \mathrm{O} 32$) were refined with 0.25 occupancies.

Table S2: Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for APA

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B$	$0.85(3)$	$2.02(3)$	$2.854(2)$	$165(3)$
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$0.87(2)$	$2.14(3)$	$2.998(2)$	$169(2)$
$\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{~N} 4 B^{\mathrm{ii}}$	0.99	2.57	$3.429(3)$	145
$\mathrm{C} 19 A-\mathrm{H} 19 B \cdots \mathrm{O} 1 A^{\mathrm{iii}}$	0.99	2.43	$3.215(3)$	135
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{~N} 4 B^{\mathrm{ii}}$	0.95	2.38	$3.234(3)$	149
$\mathrm{C} 5 B-\mathrm{H} 5 B \cdots \mathrm{~S} 1 A^{\mathrm{iv}}$	0.95	2.80	$3.723(2)$	165
$\mathrm{C} 15 B-\mathrm{H} 15 B \cdots \mathrm{~S} 1 A^{\mathrm{V}}$	0.95	2.85	$3.710(2)$	152

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x,-y+1,-z+1$; (iv) $x,-y+3 / 2, z-1 / 2$; (v) $-x+1,-y+1,-z+1$.

Table S3: Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for APA-DMF-2:1

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B$	$0.80(6)$	$2.10(6)$	$2.870(6)$	$162(6)$
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 D$	$0.94(6)$	$1.85(6)$	$2.761(7)$	$163(5)$
$\mathrm{N} 5 C-\mathrm{H} 5 N C \cdots \mathrm{O} 2 A$	$0.82(6)$	$2.00(6)$	$2.811(7)$	$172(6)$
$\mathrm{N} 5 D — \mathrm{H} 5 N D \cdots \mathrm{O} 2 C^{\mathrm{i}}$	$0.92(6)$	$2.03(6)$	$2.939(7)$	$170(5)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 3 A$	0.95	2.43	$3.226(8)$	141
$\mathrm{C} 16 B-\mathrm{H} 16 B \cdots \mathrm{~S} 1 D$	0.95	2.83	$3.680(6)$	149
$\mathrm{C} 17 B-\mathrm{H} 17 D \cdots \mathrm{~F} 3 A^{\mathrm{ii}}$	0.99	2.55	$3.348(7)$	137
$\mathrm{C} 18 B-\mathrm{H} 18 D \cdots \mathrm{O} 3 B$	0.99	2.45	$3.405(7)$	162
$\mathrm{C} 21 C-\mathrm{H} 21 I \cdots \mathrm{~S} 1 B^{\mathrm{iii}}$	0.98	2.84	$3.746(7)$	154
$\mathrm{C} 2 D — \mathrm{H} 2 D \cdots \mathrm{O} 3 B$	0.95	2.55	$3.334(8)$	140

$\mathrm{C} 24 A — \mathrm{H} 24 B \cdots \mathrm{~N} 4 A^{\text {iv }}$	0.98	2.61	$3.592(11)$

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y,-z+1$; (iv) $x-1, y, z$.

Table S4: Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for APA-DMF-1:1

$D-\mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H}^{\cdots} \cdot$	$D^{\cdots} A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B$	0.88	1.93	2.789 (6)	163
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.88	2.15	2.929 (6)	147
$\mathrm{N} 5 \mathrm{C}-\mathrm{H} 5 \mathrm{NC} \cdots \mathrm{O} 2 \mathrm{D}$	0.88	1.94	2.792 (6)	162
$\mathrm{N} 5 \mathrm{D}-\mathrm{H} 5 N D \cdots \mathrm{O} 2 C^{\text {ii }}$	0.88	2.15	2.932 (6)	148
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{O} 3 A$	0.95	2.29	3.233 (7)	171
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 3 D$	0.95	2.48	3.243 (8)	137
$\mathrm{C} 5 \mathrm{C}-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 3 B$	0.95	2.33	3.275 (7)	173
$\mathrm{C} 2 \mathrm{D}-\mathrm{H} 2 \mathrm{D}^{\cdots} \mathrm{O} 3 \mathrm{C}$	0.95	2.59	3.296 (7)	132
C19D-H19H \cdots F2C ${ }^{\text {iii }}$	0.99	2.50	3.477 (7)	168
$\mathrm{C} 23 A-\mathrm{H} 23 A \cdots \mathrm{~N} 4 B^{\text {ii }}$	0.98	2.56	3.509 (10)	162
$\mathrm{C} 24 B-\mathrm{H} 24 F \cdots \mathrm{O} 1 \mathrm{C}$	0.98	2.54	3.295 (8)	133
$\mathrm{C} 24 C-\mathrm{H} 24 H \cdots \mathrm{O} 1 D$	0.98	2.51	3.457 (8)	163
$\mathrm{C} 23 \mathrm{D}-\mathrm{H} 23 \mathrm{~J} \cdots \mathrm{O} 1 B$	0.98	2.38	3.322 (9)	162
$\mathrm{C} 24 \mathrm{D}-\mathrm{H} 24 J \cdots \mathrm{~N} 4 A^{\text {iv }}$	0.98	2.56	3.437 (8)	149

Symmetry codes: (i) $x-1 / 2,-y+2, z$; (ii) $x+1 / 2,-y+1, z$; (iii) $x+1 / 2,-y+2, z$; (iv) $x, y+1, z$.

Table S5: Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for APA-DOX-2:1

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.83(2)$	$2.08(2)$	$2.904(4)$	$173(4)$
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 A$	$0.84(2)$	$2.02(2)$	$2.849(4)$	$173(5)$
$\mathrm{C} 2 A — \mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.93	2.47	$3.179(5)$	133
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{~S} 1 B^{\mathrm{iii}}$	0.93	2.82	$3.681(4)$	155
$\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{~S} 1 B^{\mathrm{iv}}$	0.93	2.79	$3.611(4)$	148
$\mathrm{C} 5 B-\mathrm{H} 5 B \cdots \mathrm{~S} 1 A$	0.93	2.67	$3.412(5)$	138

$\mathrm{C} 22 — \mathrm{H} 22 A \cdots \mathrm{~N} 4 B$	0.97	2.61	$3.305(7)$	129

Symmetry codes: (i) $x,-y+2, z-1 / 2$; (ii) $x, y+1, z$; (iii) $x,-y+1, z-1 / 2$; (iv) $-x+3 / 2,-y+3 / 2,-z+1$.

Table S6: Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for APA-DMA-1:1

$D-\mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.85(3)$	$2.12(3)$	$2.974(3)$	$177(3)$
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 A$	$0.79(3)$	$2.06(3)$	$2.847(4)$	$171(3)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 3 A$	0.93	2.46	$3.158(17)$	132
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{~S} 1 B^{\mathrm{ii}}$	0.93	2.81	$3.697(3)$	159
$\mathrm{C} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 3 B$	0.93	2.32	$3.197(19)$	157
$\mathrm{C} 23 B-\mathrm{H} 23 H \cdots \mathrm{~N} 4 A^{\mathrm{iii}}$	0.96	2.52	$3.448(15)$	162

Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $x,-y+5 / 2, z-1 / 2$; (iii) $x,-y+5 / 2, z+1 / 2$.

Table S7: Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for APA-CYH-1:1

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N \cdots \mathrm{O} 2 B$	$0.77(4)$	$2.15(4)$	$2.904(5)$	$165(4)$
$\mathrm{N} 5 B-\mathrm{H} 2 N \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$0.78(5)$	$2.03(5)$	$2.796(6)$	$167(5)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 3 B$	0.95	2.59	$3.37(3)$	140
$\mathrm{C} 19 A-\mathrm{H} 19 A \cdots \mathrm{~F} 4 A^{\mathrm{i}}$	0.99	2.32	$3.179(7)$	144
$\mathrm{C} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 3 A$	0.95	2.34	$3.285(6)$	175
$\mathrm{C} 17 B-\mathrm{H} 17 C \cdots \mathrm{O} 3 B^{\mathrm{i}}$	0.99	2.56	$3.54(2)$	168
$\mathrm{C} 21 B-\mathrm{H} 21 E \cdots \mathrm{~S} 1 B^{\mathrm{ii}}$	0.98	2.85	$3.753(5)$	154
$\mathrm{C} 23 B-\mathrm{H} 23 C \cdots \mathrm{O} 1 A$	0.99	2.54	$3.415(12)$	147

Symmetry codes: (i) $x,-y+3 / 2, z+1 / 2$; (ii) $-x+1, y+1 / 2,-z+3 / 2$.

Table S8: Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for APA-ACN-1:1

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 — \mathrm{H} 5 N \cdots \mathrm{~N} 6$	$0.86(3)$	$2.30(3)$	$3.155(3)$	$171(2)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.39	$3.1022(19)$	132
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.95	2.80	$3.6131(16)$	144

$\mathrm{C} 15 — \mathrm{H} 15 \cdots \mathrm{Ol}^{\mathrm{iii}}$	0.95	2.47	$3.4059(19)$	168
$\mathrm{C} 18 — \mathrm{H} 18 A \cdots \mathrm{~N} 4^{\mathrm{iv}}$	0.99	2.54	$3.475(2)$	158

Symmetry codes: (i) $-x+1,-y+1, z+1 / 2$; (ii) $x-1 / 2,-y+1 / 2, z$; (iii) $-x+1,-y+1, z-1 / 2$; (iv) $-x+1 / 2, y+1 / 2, z-1 / 2$.

Table S9: Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for APA-ACE-2:1

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.84(4)$	$2.10(4)$	$2.941(4)$	$177(4)$
$\mathrm{N} 5 B-\mathrm{H} 5 N B \cdots \mathrm{O} 2 A$	$0.87(4)$	$1.96(4)$	$2.794(4)$	$160(4)$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.95	2.43	$3.194(5)$	137
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{~S} 1 B^{\mathrm{ii}}$	0.95	2.79	$3.683(4)$	156
$\mathrm{C} 21 A-\mathrm{H} 21 C \cdots \mathrm{~S} 1 B^{\mathrm{iii}}$	0.98	2.82	$3.479(4)$	125
$\mathrm{C} 23 — \mathrm{H} 23 B \cdots \mathrm{~N} 4 B^{\mathrm{iv}}$	0.98	2.49	$3.308(12)$	141

Symmetry codes: (i) $x,-y+3, z-1 / 2$; (ii) $x,-y+2, z-1 / 2$; (iii) $-x+1 / 2,-y+5 / 2,-z+1$; (iv) $x, y+1, z$.

Table S10: Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for APA-BUT-1:0.5

$D-\mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 — \mathrm{H} 5 N \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.24	$2.936(5)$	136
$\mathrm{O} 3 — \mathrm{H} 3 O \cdots \mathrm{O} 2$	0.84	2.10	$2.699(5)$	128
$\mathrm{C} 24 — \mathrm{H} 24 A \cdots \mathrm{O}^{2 i}$	0.99	1.59	$2.491(7)$	148
$\mathrm{C} 24 — \mathrm{H} 24 B \cdots \mathrm{~F}^{\mathrm{iiii}}$	0.99	2.32	$3.218(7)$	150

Symmetry codes: (i) $x,-y+5 / 2, z+1 / 2$; (ii) $-x,-y+2,-z$; (iii) $x, y, z-1$.

Table S11: Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for APA-EtOH-2:1

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 N A \cdots \mathrm{O} 2 B$	0.86	2.10	$2.93(4)$	162
$\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.93	2.56	$3.454(13)$	160
$\mathrm{C} 19 B-\mathrm{H} 19 C \cdots \mathrm{~F} 2 A^{\mathrm{ii}}$	0.97	2.54	$3.49(2)$	163
$\mathrm{C} 22 A-\mathrm{H} 22 B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.96	2.56	$3.43(5)$	149

Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $x+1 / 2,-y+1 / 2,-z+2$.

Figure S1. Displacement ellipsoids of APA-DMF-1:1 are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. For representative purposes and clarity, only APA molecule A and DMF solvate A are shown. Similar atom numbering is followed for APA molecules B-D and DMF solvates A-D.

Figure S2. Packing arrangements and void maps for APA-CYH-1:1 along (a) b-axis and (b) c-axis

(a)

(b)

Figure S3. Packing arrangements and void maps for (a) APA-DOX-2:1 and (b) APA-ACE2:1 along c-axis

(a)

(b)

Figure S4. Packing arrangements and void maps for APA-DMA-1:1 along (a) b-axis and (b) c-axis

Figure S5. Packing arrangements and void maps for (a) APA-EtOH-2:1 and (b) APA-BUT-1:0.5 along c-axis

Figure S6. Packing arrangement and void map for APA-ACN-1:1 along a-axis

Figure S7. Packing arrangement and void map for APA-DMF-2:1 along b-axis

HSM studies

Apalutamide DMF 1:1 solvate (APA-DMF-1:1)

ne plate crystal was selected for HSM studies, the crystal shows two desolvation events, followed by complete melting. The first desolvation was observed from $108^{\circ} \mathrm{C}$ to $128^{\circ} \mathrm{C}$, while the second desolvation was observed from $140^{\circ} \mathrm{C}$ to $148^{\circ} \mathrm{C}$. Finally, the crystal melted at $199^{\circ} \mathrm{C}$. Another two HSM experiments were performed in the following temperature ranges $25^{\circ} \mathrm{C}-130^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$. After that, the crystals were subjected to unit cell determinations. The first crystal unit cell matched with APA-DMF-2:1, while the crystal collected at $150^{\circ} \mathrm{C}$ unit cell corresponded the APA parent form.

Apalutamide DMF 2:1 solvate (APA-DMF-2:1)

APA DMF 2:1 plate type crystal was opted for HSM studies where it desolvated from $136^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ followed by melting at $200^{\circ} \mathrm{C}$.

$160^{\circ} \mathrm{C}$	$191^{\circ} \mathrm{C}$	$205^{\circ} \mathrm{C}$
Figure S. 9 Hot stage images of the APA-DMF-2:1 crystal		

Apalutamide acetone 2:1 solvate (APA-ACE-2:1)
HSM studies were performed for APA Acetone plate type crystal where desolvation started from $97^{\circ} \mathrm{C}-123^{\circ} \mathrm{C}$. The crystal lost its transparency after solvent removal, but the original crystal integrity was maintained during the desolvation process.

Apalutamide 1,4-dioxane 2:1 solvate (APA-DOX-2:1)
The HSM studies were performed for APA-DOX block shaped crystal in which desolvation started from $110^{\circ} \mathrm{C}-162^{\circ} \mathrm{C}$, followed by completely melting at $192^{\circ} \mathrm{C}$.

	$192.4^{\circ} \mathrm{C}$	$196.2^{\circ} \mathrm{C}$
$167.9^{\circ} \mathrm{C}$		
Figure S11. Hot stage images of the APA-DOX-2:1 crystal		

Apalutamide N, N-dimethylacetamide $1: 1$ solvate (APA-DMA-1:1)
The APA-DMA solvate plate was opted for HSM studies in which it started desolvating from $100^{\circ} \mathrm{C}-117^{\circ} \mathrm{C}$, followed by the melting around $196^{\circ} \mathrm{C}-200.6^{\circ} \mathrm{C}$.

Apalutamide cyclohexanone 1:1 solvate (APA-CYH-1:1)
The APA-CYH plate crystal was subjected to the HSM analysis, which desolvated from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, followed by complete melting around $198^{\circ} \mathrm{C}$.

Apalutamide ethanol 2:1 solvate (APA-EtOH-2:1)

The HSM studies were performed for APA-EtOH needle type crystals, where desolvation started from $115^{\circ} \mathrm{C}-134^{\circ} \mathrm{C}$, followed by complete melting at $201^{\circ} \mathrm{C}$.

Figure S14. Hot stage images of the APA-EtOH-2:1 crystal

Apalutamide 2-butanol 1:0.5 solvate (APA-BUT-1:0.5)

The APA-BUT plate type crystal was selected for HSM studies. Desolvation started from $111^{\circ} \mathrm{C}-130^{\circ} \mathrm{C}$. At round $150^{\circ} \mathrm{C}$, crystallization events occurred following by complete melting around $200^{\circ} \mathrm{C}$.

Figure S15. Hot stage images of the APA-BUT-1:0.5 crystal

Apalutamide acetonitrile 1:1 solvate (APA-ACN-1:1)
The APA-ACN crystals have selected for HSM studies whose desolvation started from $110^{\circ} \mathrm{C}-118^{\circ} \mathrm{C}$, followed by crystallization around $150-170^{\circ} \mathrm{C}$, after that it is completely melted at $200^{\circ} \mathrm{C}$.

$150^{\circ} \mathrm{C}$	$170^{\circ} \mathrm{C}$	$200.4^{\circ} \mathrm{C}$

DSC and TG analysis

Figure S17. Results of DSC/TG analyses for APA

Figure S18. Results of DSC/TG analyses for the APA-DMF-2:1 solvate

Figure S19. Results of DSC/TG analyses for the APA-ACE-2:1 solvate

Figure S20. Results of DSC/TG analyses for the APA-DOX-2:1 solvate

Figure S21. Results of DSC/TG analyses for the APA-DMA-1:1 solvate

Figure S22. Results of DSC/TG analyses for the APA-CYH-1:1 solvate

Figure S23. Results of DSC/TG analyses for the APA-EtOH-2:1 solvate

Figure S24. Results of DSC/TG analyses for the APA-BUT-1:0.5 solvate

Figure S25. Results of DSC analyses for the APA-ACN-1:1 solvate

Figure S26. PXRD patterns of residual materials obtained via desolvation of APA-ACN1:1 and APA-DOX-2:1 solid forms.

Figure S27. Difference between desolvation temperature of the APA solvate and boiling temperature of pure solvent plotted against the total energy of non-covalent interactions between APA molecules estimated using QTAIMC for open channel solvates

Figure S28. Total energy of non-covalent interactions between APA molecules estimated using QTAIMC plotted against the van-der-Waals volume of solvent molecules with respect to solvate stoichiometry

