Supporting Information

Electro-elastic properties of Piezoelectric $\mathrm{Te}_{2} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{2}$ Crystal

Weimin Dong ${ }^{\text {a, }}$, Fuan Liu ${ }^{\text {a, }}{ }^{1}$, Yingjie Sun ${ }^{\text {b }}$, Biao Wang ${ }^{\text {a }}$, Mengqi Zhu ${ }^{\text {a }}$, Jing Li ${ }^{\text {a }}$, Xinguang Xu ${ }^{\text {a }}$, Jiyang Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
${ }^{\mathrm{b}}$ School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
${ }^{1}$ These authors (Weimin Dong and Fuan Liu) contributed equally to this work

CONTENTS

1. Calculation formula and process of electro-elastic constants.
2. Table S1. The crystal cuts and vibration modes for the determination of electroelastic constants of TPO crystal

1. Calculation formula and process of electro-elastic constants.

The dielectric constants can be obtained by the measured capacitance values according to the following formulas with square plate samples k, l, and j, and circumgyrate sample g:
$\varepsilon_{i j}=\frac{\varepsilon_{i j}^{T}}{\varepsilon_{0}}=\frac{C_{i j} \times t}{A \times \varepsilon_{0}}(i=1,2,3) \#(1)$
$\varepsilon_{33}^{T^{\prime}}(\theta)=\varepsilon_{11}^{T} \sin ^{2} \theta+2 \varepsilon_{13}^{T} \cos \theta \sin \theta+\varepsilon_{33}^{T} \cos ^{2} \theta$ \# (2)
where C is the capacitance, t is the thickness, A is the area of the measured sample, and ε_{0} is the vacuum dielectric constant.

$$
\begin{aligned}
& s^{E}=\frac{1}{4 \rho l f_{a}^{2}\left(1-k^{2}\right)} \#(3) \\
& k^{2}=\frac{\pi f_{r}}{2 f_{a}} \cot \frac{\pi}{2}\left(\frac{f_{r}}{f_{a}}\right) \#(4) \\
& d=k \sqrt{\varepsilon s} \#(5) \\
& s^{E}=\frac{1}{4 \rho w^{2} f_{a}^{2}\left(1-k^{2}\right)} \#(6)
\end{aligned}
$$

$$
s^{E}={\frac{1}{4 \rho t^{2} f_{a}^{2}\left(1-k^{2}\right)} \#(7)}_{\text {(7) }}
$$

$$
s^{E}=\frac{1}{4 \rho l^{2} f_{r}^{2}} \#(8)
$$

$$
\frac{k^{2}}{1-k^{2}}=\frac{\pi f_{a}}{2 f_{r}} \cot \frac{\pi}{2}\left(\frac{f_{a}}{f_{r}}\right) \# \text { (9) }
$$

$$
s_{33}^{\prime}(X Z w) \theta=s_{11} \sin ^{4} \theta+\left(2 s_{13}+s_{55}\right) \sin ^{2} \theta \cos ^{2} \theta
$$

$$
+2 s_{15} \sin ^{3} \theta \cos \theta+s_{33} \cos ^{4} \theta+2 s_{33} \sin \theta \cos ^{3} \theta \#(10)
$$

$$
s_{22}^{\prime}(X Y t) 45^{\circ}=\left(s_{22}+2 s_{23}+s_{44}+s_{33}\right) / 4 \#(11)
$$

$$
s_{11}^{\prime}(X Y l) 45^{\circ}=\left(s_{11}+2 s_{12}+s_{66}+s_{22}\right) / 4 \#(12)
$$

$$
s_{33}^{\prime}(Y Z w) 45^{\circ} /-45^{\circ}=\binom{4 s_{22}+s_{11}+s_{33}+2 s_{15}+2 s_{13}+s_{55}+2 s_{35}}{+4 s_{23}+4 s_{12}+4 s_{25}+2 s_{44}+2 s_{66}+4 s_{46}} / 16 \#(13)
$$

$$
\begin{aligned}
& s_{44}^{\prime}(X Y l) 45^{\circ}=0.5 s_{44}+s_{46}+0.5 s_{66} \#(14) \\
& d_{13}^{\prime}(X Y w) \theta=d_{11} \sin ^{2} \theta \cos \theta-d_{31} \sin ^{3} \theta+d_{13} \cos ^{3} \theta \\
& \\
& +d_{33} \sin \theta \cos ^{2} \theta+d_{15} \sin \theta \cos ^{2} \theta-d_{35} \sin ^{2} \theta \cos \theta \#(15) \\
& c=s^{-1} \#(16)
\end{aligned}
$$

Elastic compliance constants s_{11} and s_{33} and piezoelectric constants d_{11} and d_{33} were calculated using equations (3)-(5) based on samples a and b. When the electric field was applied along the thickness direction of samples c-f, piezoelectric constants d_{13}, d_{12}, d_{32}, and d_{31} and elastic compliance constants s_{33}, s_{22}, and s_{11} were obtained by equation (5), (8), and (9). Samples c-f were also used to calculate the piezoelectric constants d_{35}, d_{15}, d_{24}, and d_{26} and the elastic constants s_{55}, s_{44}, and s_{66} by equations (4)(7), where the electric field was applied along the length direction of the samples. Using the sample g-i and combining equations (8) and (9), the elastic compliance constants s_{13}, s_{15}, and s_{35} are obtained. Similarly, elastic compliance constants s_{23}, s_{12}, and s_{25} were obtained in the same way based on samples m-o and equations (8) and (11)-(13). Elastic compliance constant s_{46} was calculated based on the equations (4), (5), (7), and (14), according to the measurement of the thickness-shear vibration mode of sample p with an electric field applied along the length direction. Samples g and i were also used to verify the sign and value of piezoelectric strain constant d_{15} according to equation (15). Stiffness coefficients c_{ij} can be obtained using equation (16).

Table S1. The crystal cuts and vibration modes for the determination of electro-elastic constants of TPO crystal.

Sample	Modes	Constants
X square plate Y square plate Z square plate (XZw) 45° bar	-	$\varepsilon_{11}^{T}, \varepsilon_{22}^{T}, \varepsilon_{33}^{T}, \varepsilon_{13}^{T}$
$\begin{aligned} & \mathrm{X} \text { rod } \\ & \mathrm{Z} \text { rod } \end{aligned}$	longitudinal length extensional vibration mode	$\begin{aligned} & d_{11} \\ & d_{33} \end{aligned}$
ZX bar XY bar ZY bar XZ bar	longitudinal length extensional vibration mode	$\begin{gathered} s_{11}, d_{31} \\ s_{22}, d_{12,}, d_{32} \\ s_{33}, d_{13} \end{gathered}$
XZ bar XZ bar	transverse length extensional vibration mod	$\begin{aligned} & \hline s_{44}, d_{24} \\ & s_{66}, d_{26} \end{aligned}$
$\begin{aligned} & \text { XZ bar } \\ & \text { ZX bar } \end{aligned}$	thickness shear vibration mod	s_{55}, d_{15}, d_{35}
$\begin{aligned} & (\mathrm{XZ} w) 45^{\circ} \text { bar } \\ & (\mathrm{XZ} w) 30^{\circ} \text { bar } \\ & (\mathrm{XZ} w)-30^{\circ} \text { bar } \end{aligned}$	longitudinal length extensional vibration mode	s_{13}, s_{15}, s_{35}
$\begin{gathered} (\mathrm{XY} t) 45^{\circ} \text { bar } \\ (\mathrm{ZX} t) 45^{\circ} \text { bar } \\ (\mathrm{ZX} t w) 45^{\circ} /-45^{\circ} \text { bar } \end{gathered}$	longitudinal length extensional vibration mode	s_{12}, s_{23}, s_{25}
(XYl) 45° bar	thickness shear vibration mod	S_{46}

