Supporting Information

Electro-elastic properties of Piezoelectric Te₂O(PO₄)₂ Crystal

Weimin Dong ^{a, 1}, Fuan Liu ^{a, 1}, Yingjie Sun ^b, Biao Wang ^a, Mengqi Zhu ^a, Jing Li ^a,

Xinguang Xu ^a, Jiyang Wang ^a

^a State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.

^b School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

¹ These authors (Weimin Dong and Fuan Liu) contributed equally to this work.

CONTENTS

- 1. Calculation formula and process of electro-elastic constants.
- 2. **Table S1.** The crystal cuts and vibration modes for the determination of electroelastic constants of TPO crystal.

1. Calculation formula and process of electro-elastic constants.

The dielectric constants can be obtained by the measured capacitance values according to the following formulas with square plate samples k, l, and j, and circumgyrate sample g:

$$\varepsilon_{ij} = \frac{\varepsilon_{ij}^{T}}{\varepsilon_{0}} = \frac{C_{ij} \times t}{A \times \varepsilon_{0}} (i = 1, 2, 3) \# (1)$$

$$\varepsilon_{33}^{T}(\theta) = \varepsilon_{11}^{T} \sin^{2}\theta + 2\varepsilon_{13}^{T} \cos\theta \sin\theta + \varepsilon_{33}^{T} \cos^{2}\theta \# (2)$$

where C is the capacitance, t is the thickness, A is the area of the measured sample, and ε_0 is the vacuum dielectric constant.

$$s^{E} = \frac{1}{4\rho l f_{a}^{2}(1-k^{2})} \# (3)$$

$$k^{2} = \frac{\pi f_{r}}{2f_{a}} \cot \frac{\pi}{2} \left(\frac{f_{r}}{f_{a}}\right) \# (4)$$

$$d = k\sqrt{\epsilon s} \# (5)$$

$$s^{E} = \frac{1}{4\rho w^{2} f_{a}^{2}(1-k^{2})} \# (6)$$

$$s^{E} = \frac{1}{4\rho t^{2} f_{a}^{2}(1-k^{2})} \# (7)$$

$$s^{E} = \frac{1}{4\rho l^{2} f_{r}^{2}} \# (8)$$

$$\frac{k^{2}}{1-k^{2}} = \frac{\pi f_{a}}{2f_{r}} \cot \frac{\pi}{2} \left(\frac{f_{a}}{f_{r}}\right) \# (9)$$

$$s_{33}^{'}(XZw)\theta = s_{11}sin^{4}\theta + (2s_{13} + s_{55})sin^{2}\theta cos^{2}\theta$$

$$+ 2s_{15}sin^{3}\theta cos\theta + s_{33}cos^{4}\theta + 2s_{33}sin\theta cos^{3}\theta \# (10)$$

$$s_{22}^{'}(XYt)45^{\circ} = (s_{22} + 2s_{23} + s_{44} + s_{33})/4 \# (11)$$

$$s_{11}^{'}(XYl)45^{\circ} = (s_{11} + 2s_{12} + s_{66} + s_{22})/4 \# (12)$$

$$s_{33}'(YZw)45^{\circ}/-45^{\circ} = \binom{4s_{22}+s_{11}+s_{33}+2s_{15}+2s_{13}+s_{55}+2s_{35}}{+4s_{23}+4s_{12}+4s_{25}+2s_{44}+2s_{66}+4s_{46}} / 16\#(13)$$

$$s_{44}(XYl)45^\circ = 0.5s_{44} + s_{46} + 0.5s_{66}\#(14)$$

$$\begin{aligned} d_{13}'(XYw)\theta &= d_{11}\sin^2\theta\cos\theta - d_{31}\sin^3\theta + d_{13}\cos^3\theta \\ &+ d_{33}\sin\theta\cos^2\theta + d_{15}\sin\theta\cos^2\theta - d_{35}\sin^2\theta\cos\theta \# (15) \end{aligned}$$

 $c=s^{-1}\#(16)$

Elastic compliance constants s_{11} and s_{33} and piezoelectric constants d_{11} and d_{33} were calculated using equations (3)-(5) based on samples a and b. When the electric field was applied along the thickness direction of samples c-f, piezoelectric constants d_{13} , d_{12} , d_{32} , and d_{31} and elastic compliance constants s_{33} , s_{22} , and s_{11} were obtained by equation (5), (8), and (9). Samples c-f were also used to calculate the piezoelectric constants d_{35} , d_{15} , d_{24} , and d_{26} and the elastic constants s_{55} , s_{44} , and s_{66} by equations (4)-(7), where the electric field was applied along the length direction of the samples. Using the sample g-i and combining equations (8) and (9), the elastic compliance constants s_{13} , s_{15} , and s_{35} are obtained. Similarly, elastic compliance constants s_{23} , s_{12} , and s_{25} were obtained in the same way based on samples m-o and equations (8) and (11)-(13). Elastic compliance constant s_{46} was calculated based on the equations (4), (5), (7), and (14), according to the measurement of the thickness-shear vibration mode of sample p with an electric field applied along the length direction. Samples g and i were also used to verify the sign and value of piezoelectric strain constant d_{15} according to equation (15). Stiffness coefficients c_{ij} can be obtained using equation (16).

Sample	Modes	Constants
X square plate Y square plate Z square plate (XZw)45° bar X rod	- longitudinal length extensional	$\varepsilon_{11}^{T}, \varepsilon_{22}^{T}, \varepsilon_{33}^{T}, \varepsilon_{13}^{T}$ d_{11}
Z rod	vibration mode	<i>d</i> ₃₃
ZX bar XY bar ZY bar XZ bar	longitudinal length extensional vibration mode	s_{11}, d_{31} s_{22}, d_{12}, d_{32} s_{33}, d_{13}
XZ bar	transverse length extensional	s_{44}, d_{24}
XZ bar	vibration mod	s_{66}, d_{26}
XZ bar ZX bar	thickness shear vibration mod	s_{55}, d_{15}, d_{35}
(XZw)45° bar (XZw)30° bar (XZw)-30° bar	longitudinal length extensional vibration mode	\$13, \$15, \$35
(XY <i>t</i>)45° bar (ZX <i>t</i>)45° bar (ZX <i>tw</i>)45°/-45° bar	longitudinal length extensional vibration mode	<i>S</i> ₁₂ , <i>S</i> ₂₃ , <i>S</i> ₂₅
(XY <i>l</i>)45° bar	thickness shear vibration mod	s ₄₆

Table S1. The crystal cuts and vibration modes for the determination of electro-elastic constants ofTPO crystal.