Supporting Information

Hybrid interaction network of guanidinium-biphenyldisulfonic acid for the structure determination of liquid molecules

Shu-Qin Qin, Qian-Ying Gan, Wei Xu*, Ren-Wang Jiang*

Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.

e-mails: trwjiang@jnu.edu.cn, xwnail2003@163.com

Tel: 8620-85221016; Fax: 8620-85221559

Outline

1. Spectra of as-synthesized host

- Figure Sa. ¹H-NMR spectrum of guanidinium–biphenyldisulfonic acid (GBPS) (400 MHz, DMSO).
- Figure Sb. ¹³C-NMR spectrum of guanidinium–biphenyldisulfonic acid (GBPS) (100 MHz, DMSO).

Figure Sc. PXRD pattern of guanidinium-biphenyldisulfonic acid (GBPS).

2. Figures for the NMR and interactions of inclusion complexes

- Figure S1a N-H \cdots O hydrogen bonds in GBPS $\supset 1$
- Figure S2a N-H \cdots O and O-H \cdots O hydrogen bonds in GBPS $\supset 2$
- Figure S3a. ¹H-NMR of (I) **GBPS**, (II) **GBPS ¬3** and (III)**3** (400 MHz, DMSO)
- Figure S3b $C-H \cdots \pi$ interactions in GBPS $\supset 3$
- Figure S3c $C-H \cdots O$ and $N-H \cdots O$ hydrogen bonds in GBPS $\supset 3$
- Figure S4a¹H-NMR of (I) **GBPS**, (II) **GBPS–**4 and (III)4 (400 MHz, DMSO)
- Figure S4b $C-H \cdots \pi$ interactions in GBPS $\supset 4$
- Figure S4c $N-H \cdots O$ interactions in GBPS $\supset 4$
- Figure S5a. ¹H-NMR of (I) **GBPS**, (II) **GBPS** \supset 5 and (III) 5(400 MHz, DMSO)
- Figure S5b $\pi \cdots \pi$ and C–H $\cdots \pi$ interactions in GBPS $\supset 5$
- Figure S5c $N-H \cdots O$ hydrogen bonds in GBPS $\supset 5$
- Fig. S6a ¹H-NMR of (I) **GBPS**, (II) **GBPS5**6 and (III)6 (400 MHz, DMSO)
- Figure S6b $C-H \cdots \pi$ interactions in GBPS $\supset 6$
- Figure S6c N-H \cdots O and C-H \cdots N hydrogen bonds in GBPS $\supset 6$
- Fig. S7a ¹H-NMR of (I) **GBPS**, (II) **GBPS5**7 and (III)7 (400 MHz, DMSO)
- Figure S7b $C-H \cdots \pi$ interactions in GBPS $\supset 7$
- Figure S7c $N-H \cdots O$ hydrogen bonds in GBPS $\supset 7$

Fig. S8a ¹H-NMR of (I) **GBPS**, (II) **GBPS** \supset 8 and (III)8 (400 MHz, DMSO) Figure S8b C–H ··· π interactions in GBPS \supset 8 Figure S8c N–H ··· O and C–H ··· O hydrogen bonds in GBPS \supset 8

3. Supplementary Tables

Table 1. C-H··· π intermolecular interactions in Host and Guest Table S2. Geometric parameters of the N–H··O, O–H··O, C–H··N and C–H··O hydrogen bonding interactions in the co-crystals

4. Guest volume calculations

1. Spectra of as-synthesized host

Figure Sa. ¹H-NMR spectra of guanidinium–biphenyldisulfonic acid (GBPS) (400 MHz, DMSO).

Figure Sa. ¹³C-NMR spectra of guanidinium–biphenyldisulfonic acid (GBPS) (100 MHz, DMSO).

Figure Sc. PXRD spectra of guanidinium-biphenyldisulfonic acid (GBPS).

2. Figures for the NMR and interactions of inclusion complexes

Figure S1a N-H \cdots O hydrogen bonds in GBPS $\supset 1$

Figure S2a N-H \cdots O and O-H \cdots O hydrogen bonds in GBPS $\supset 2$

Figure S3a. ¹H-NMR of (I) GBPS, (II) GBPS \neg 3 and (III)3 (400 MHz, DMSO) (\blacktriangle i water peaks, \star is DMSO-d₆)

Figure S3b $C-H \cdots \pi$ interactions in GBPS $\supset 3$

Figure S3c $C-H \cdots O$ and $N-H \cdots O$ hydrogen bonds in GBPS $\supset 3$

Figure S4a ¹H-NMR of (I) **GBPS**, (II) **GBPS** \neg **4** and (III)**4** (400 MHz, DMSO) (\blacktriangle is water peaks, \star is DMSO-d₆).

Figure S4b $C-H \cdots \pi$ interactions in GBPS $\supset 4$

Figure S4c $N-H \cdots O$ interactions in GBPS $\supset 4$

is water peaks, \star is DMSO-d₆).

Figure S5b $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in GBPS $\supset 5$

Figure S5c $N-H \cdots O$ hydrogen bonds in GBPS $\supset 5$

Fig. S6a ¹H-NMR of (I) **GBPS**, (II) **GBPS** $_{56}$ and (III)6 (400 MHz, DMSO) (\checkmark is water peaks, \star is DMSO-d₆).

Figure S6b $C-H \cdots \pi$ interactions in GBPS $\supset 6$

Figure S6c N–H ·· O and C–H ·· N hydrogen bonds in GBPS $\supset 6$

Fig. S7a ¹H-NMR of (I) **GBPS**, (II) **GBPS** \supset 7 and (III)7 (400 MHz, DMSO) (\blacktriangle is water peaks, \star is DMSO-d₆).

Figure S7b $C-H \cdots \pi$ interactions in GBPS $\supset 7$

Figure S7c $N-H \cdots O$ hydrogen bonds in GBPS $\supset 7$

Fig. S8a¹H-NMR of (I) **GBPS**, (II) **GBPS** \neg 8 and (III)8 (400 MHz, DMSO) (\blacktriangle is water peaks, \bigstar is DMSO-d₆).

Figure S8b $C-H \cdots \pi$ interactions in GBPS $\supset 8$

Figure S8c N–H \cdots O and C–H \cdots O hydrogen bonds in GBPS $\supset 8$

3. Supplementary Tables

Host-Guest	$X-H \cdots Cg$	$H \cdot \cdot Cg({\rm \AA})$	X-H ··· Cg(°)	$X \cdots Cg({\rm \AA})$
GBPS⊃1	C_{15} - $H_{15}A \cdots Cg1^{a}$	2.68	145	3.51(4)
Symmetry co	des: ^a X,Y,Z; Cg3 is the	centroid of C1, C2	2, C3, C4, C5 and C	6;
Host-Guest	$X-H \cdots Cg$	$H \cdots Cg(\text{\AA})$	X-H ··· Cg(°)	$\mathbf{X} \cdot \cdot \mathbf{Cg}(\mathbf{\mathring{A}})$
	$C_3A-H_3A \cdots Cg1^{a}$	2.95	118	3.50(16)
GBPS⊃2	C_{13} - H_{13} \cdots $Cg2$ ^b	2.84	151	3.71(4)
-	C_{15} - $H_{15}B \cdot Cg2^{c}$	2.95	141	3.76(4)

Table S1. C-H \cdots π intermolecular interactions in host-guest complexes

Symmetry codes: ^a 1-X,3-Y,1-Z; ^b -X,2-Y,1-Z; ^c -1+X,-1+Y,Z;Cg1 is the centroid of C7, C8, C9, C10, C11 and C13; Cg2 is the centroid of C1, C2, C3, C4, C5 and C6.

Host-Guest	$X-H \cdots Cg$	$H \cdots Cg({\rm \AA})$	X-H \cdots Cg($^{\circ}$)	$X \cdots Cg({\rm \AA})$
	C_3 - $H_3 \cdots Cg4$ ^b	2.93	147	3.74(4)
GBPS⊃3	$C_9B-H_9BA \cdots Cg1^{a}$	2.86	136	3.62(5)
	$C_{12}A-H_{12}F\cdots Cg1^{c}$	2.95	116	3.48(5)

Symmetry codes: ^a X,Y,Z; ^b -1/2+X,3/2-Y,1-Z; ^c 1-X,1-Y,1-Z; Cg1 is the centroid of C1, C2, C3, C4, C5 and C6. Cg4 is the centroid of C1B, C2B, C3B, C4B, C5B and C6B.

Host-Guest	X-H ·· Cg	$H \cdots Cg({\rm \AA})$	X-H \cdots Cg($^{\circ}$)	$X \cdot \cdot Cg(\text{\AA})$
GBPS⊃4 -	C_3 - $H_3 \cdots Cg2^{a}$	2.83	136	3.56(5)
	$C_6B-H_6B\cdots Cg2$	2.73	137	3.47(9)

Host-Guest	$X-H \cdots Cg$	$H \cdots Cg(\text{\AA})$	X-H \cdots Cg($^{\circ}$)	$X \cdots Cg({\rm \AA})$		
GBPS⊃5	C_{19} - H_{19} ··Cg2 ^a	2.68	149	3.53(19)		
symmetry codes: ^a 1-X,1-Y,1-Z; Cg2 is the centroid of C7, C8, C9, C10, C11 and C12.						

Host-Guest	$X-H \cdots Cg$	$H \cdots Cg(\mathbf{\mathring{A}})$	X-H ··· Cg(°)	$X \cdots Cg(\mathbf{\mathring{A}})$
GBPS⊃6	$C_5B-H_5B\cdots Cg1^{a}$	2.95	118	3.50(16)
	C_7 - $H_7 \cdots Cg2^{b}$	2.84	151	3.71(4)
	$C_9-H_9B\cdots Cg2^{c}$	2.95	141	3.76(4)

Symmetry codes: ^a 1-X,3-Y,1-Z; ^b -X,2-Y,1-Z; ^c -1+X,-1+Y,Z;Cg1 is the centroid of C1, C2, C3, C4, C5 and C6; Cg2 is the centroid of C1A, C2A, C3A, C4A, C5A and C6A.

Host-Guest	$X-H \cdots Cg$	$H \cdot \cdot Cg(\text{\AA})$	X-H ···Cg(°)	$X \cdots Cg(\text{\AA})$
GBPS⊃7	C_5 - $H_5 \cdots Cg3^{a}$	2.79	142	3.59(4)
	3 1/2 X X/7 C 2:	.1		

symmetry codes: ^a -1/2+X,-Y,Z; Cg2 is the centroid of C15, C16, C17, C18, C19 and C20.

Host-Guest	$X-H \cdots Cg$	$H \cdots Cg(\text{\AA})$	X-H ·· Cg(°)	$X \cdots Cg(\text{\AA})$
GBPS⊃8	$C_8A-H_8AB \cdots Cg2^{a}$	2.98	122	3.59(5)
	C ₈ B-H ₈ BA ···Cg1 ^b	2.70	154	3.58(4)
	1 1 1 1 10 100 17	hw 1 w 7 g 1:	.1	

symmetry codes: ^a 1-X,-1/2+Y,3/2-Z; ^b X,-1+Y, Z; Cg1 is the centroid of C1, C2, C3, C4, C5 and C6; Cg2 is the centroid of C7, C8, C9, C10, C11 and C12.

Table S2. Geometric parameters of the N–H \cdots O, O–H \cdots O, C–H \cdots N and C–H \cdots O hydrogen bonding interactions in the co-crystals

Host-Guest	Interactions	D-H	D···A	Н…А	D-Н …А	Summetry code
complexes	Interactions	(Å)	(Å)	(Å)	(deg)	Symmetry code
-	$N_1\text{-}H_1A\cdots O_3$	0.86	1.99	2.85(5)	172	x, y, z
	$N_1\text{-}H_1B\cdots O_1$	0.86	2.16	2.99(5)	166	x,1+y,z
	$N_2\text{-}H_2B\cdots O_3$	0.86	2.02	2.84(5)	160	-1+x,y,z
UDP3-1	$N_2\text{-}H_2C\cdots O_2$	0.86	2.08	2.93(5)	168	x, y, z
_	N_3 - H_3B \cdots O_1	0.86	2.49	3.09(5)	127	-1+x,1+y,z
	$N_3\text{-}H_3C\cdots O_2$	0.86	2.09	2.93(5)	163	x,1+y,z
_	$N_1\text{-}H_1A\cdots O_1$	0.88	2.07	2.93(4)	164	x, y, z
_	$N_1\text{-}H_1B\cdots O_3$	0.88	2.36	2.99(4)	130	1+x,y,z
_	$N_2\text{-}H_2B\cdots O_2$	0.88	1.98	2.85(4)	172	x,1+y,z
	$N_2\text{-}H_2C\cdots O_3$	0.88	2.09	2.96(4)	169	x, y, z
GBPS⊃2	N_3 - H_3B \cdots O_1	0.88	2.08	2.94(4)	166	x,1+y,z
	$N_3\text{-}H_3C\cdots O_2$	0.88	2.02	2.86(4)	159	1+x,1+y,z
_	$C_{17}\text{-}H_{17}C\cdots N_1$	0.98	2.44	3.40(3)	164	-1+x,-1+y,z
_	$C_{17}\text{-}H_{17}C\cdots N_2$	0.98	2.32	3.09(2)	135	-1+x,-1+y,z
	$C_{17}\text{-}H_{17}C\cdots N_3$	0.98	2.47	3.26(2)	137	-1+x,-1+y,z
_	$N_1\text{-}H_1A\cdots O_2$	0.86	2.11	2.93(4)	160	x, y, z
_	$N_1\text{-}H_1B\cdots O_1$	0.86	2.06	2.92(4)	175	-1/2+x,y,1/2-z
_	$N_2\text{-}H_2C\cdots O_4$	0.86	2.06	2.91(4)	171	-1/2+x,3/2-y,1-z
_	$N_2\text{-}H_2D\cdots O_3$	0.86	2.00	2.86(4)	170	-1/2+x,y,1/2-z
_	N_3 - H_3C \cdots O_6	0.86	2.09	2.92(4)	163	-1/2+x,3/2-y,1-z
_	N_3 - H_3 D \cdots O_3	0.86	2.06	2.88(4)	159	x, y, z
GBPS⊃3	$N_4\text{-}H_4A\cdots O_2$	0.86	2.05	2.85(4)	155	1-x,1-y,1-z
_	$N_4\text{-}H_4B\cdots O_5$	0.86	2.05	2.86(4)	157	x, y, z
_	N_5 - H_5C ···O ₁	0.86	2.05	2.91(4)	172	1-x,1-y,1-z
_	N_5 - H_5D \cdots O_5	0.86	1.99	2.84(4)	169	-1/2+x,y,3/2-z
-	$N_6\text{-}H_6A\cdots O_4$	0.86	2.13	2.93(4)	155	x, y, z
	$N_6\text{-}H_6B\cdots O_6$	0.86	2.44	2.93(4)	117	-1/2+x,y,3/2-z
	$C_{11}\text{-}H_{11}\cdots O_2A$	0.93	2.52	3.34(5)	148	x, y, z
_	$N_1\text{-}H_1A\cdots O_1$	0.86	2.02	2.86(4)	165	x, y, z
GBPS⊃4	$N_1\text{-}H_1B\cdots O_3$	0.86	2.02	2.86(4)	166	1+x,y,z
-	N_2 - $H_2C \cdots O_3$	0.86	2.04	2.87(4)	162	1/2-x,1/2+y,1/2-z

	N_2 - H_2D ··· O_2	0.86	2.26	3.06(4)	154	1+x,y,z
	N_3 - H_3C ··· O_1	0.86	2.04	2.89(4)	172	1/2-x,1/2+y,1/2-z
	N_3 - H_3D ··· O_2	0.86	2.14	2.99(4)	169	x, y, z
	$N_1\text{-}H_1A\cdots O_6$	0.86	2.10	2.96(18)	172	1-x,1-y,1-z
	N_1 - H_1B ··· O_3	0.86	2.52	3.03(17)	118	1-x,1-y,2-z
-	N_2 - H_2A ··· O_6	0.86	2.07	2.92(18)	169	2-x,1-y,1-z
	N_2 - H_2B ··· O_1	0.86	2.05	2.87(19)	158	x, y, z
	N_3 - $H_3A \cdots O_5$	0.86	2.07	2.93(18)	176	2-x,1-y,1-z
GBDS	N_3 - H_3B ··· O_4	0.86	2.08	2.93(18)	170	1-x,1-y,1-z
0013-23	$N_4\text{-}H_4A\cdots O_2$	0.86	2.09	2.95(18)	173	1-x,2-y,1-z
	N_4 - H_4B ··· O_4	0.86	2.04	2.90(19)	174	x, y, z
	N_5 - H_5A ··· O_3	0.86	2.16	3.05(19)	177	2-x,2-y,1-z
	$N_5-H_5B\cdots O_1$	0.86	2.08	2.92(18)	165	1-x,2-y,1-z
	N_6 - $H_6A \cdots O_2$	0.86	2.05	2.90(17)	167	2-x,2-y,1-z
	N_6 - H_6B ··· O_5	0.86	2.13	2.97(19)	163	x, y, z
	$N_1\text{-}H_1A\cdots O_7$	0.86	2.14	2.87(18)	143	x, y, z
	N_1 - H_1B ··· O_2	0.86	1.99	2.85(17)	172	x, y, z
	$N_2\text{-}H_2A\cdots O_1$	0.86	2.02	2.87(17)	174	x,y,1+z
	N_2 - H_2B ··· O_3	0.86	2.06	2.92(16)	177	x, y, z
	N_3 - $H_3A \cdots O_2$	0.86	2.07	2.92(17)	171	x,y,1+z
	N_3 - H_3B ··· O_7	0.86	2.19	2.92(19)	144	x, y, z
GBPS⊃6	$N_4\text{-}H_4A\cdots O_6$	0.86	1.98	2.84(17)	176	x, y, z
	N_4 - H_4B ··· O_1	0.86	2.04	2.89(16)	169	x,1+y,1+z
	N_5 - H_5A ··· O_3	0.86	2.21	2.94(16)	142	x,1+y,1+z
	N_5 - H_5B ··· O_6	0.86	2.29	2.89(16)	127	x,y,1+z
	N_6 - $H_6A \cdots O_5$	0.86	1.99	2.83(15)	165	x, y, z
	N_6 - H_6B ··· O_4	0.86	2.02	2.87(15)	171	x,y,1+z
	O_7 - $H_7 \cdots O_4$	0.82	1.99	2.76(16)	154	x, y, z
	N_1 - $H_1A \cdots O_6$	0.86	2.40	3.13(4)	143	-1/2+x,-1/2+y,-1/2+z
	$N_1\text{-}H_1A\cdots O_5$	0.86	2.36	3.06(4)	138	x,-3/2-y,-1/2+z
	N_1 - $H_1B \cdots O_5$	0.86	2.13	2.97(4)	165	1/2+x,-1/2+y,-1/2+z
	$N_2 \text{-} H_2 A \cdots O_1 W$	0.86	2.04	2.83(4)	152	x, y, z
	N_2 - H_2B ··· O_4	0.86	2.06	2.89(4)	162	1/2+x,-1/2+y,-1/2+z
	N_3 - H_3A ··· O_6	0.86	2.13	2.93(4)	155	-1/2+x,-1/2+y,-1/2+z
	$N_3\text{-}H_3B\cdots O_1W$	0.86	2.21	2.95(4)	144	x, y, z
GBPS⊃7	$N_4 \text{-} H_4 A \cdots O_2 W$	0.86	2.28	3.01(5)	143	x, y, z
	N_4 - H_4B ··· O_2	0.86	2.07	2.89(5)	159	1/2+x,-1/2+y,1/2+z
	N_5 - $H_5A \cdots O_1$	0.86	2.17	3.01(5)	167	-1/2+x,-1/2+y,1/2+z
	N_5 - H_5B ··· O_2	0.86	2.50	3.23(5)	140	1/2+x,-1/2+y,1/2+z
	N_5 - H_5B ··· O_1	0.86	2.31	3.02(4)	140	x,-3/2-y,1/2+z
	$N_6\text{-}H_6A\cdots O_2W$	0.86	2.02	2.82(5)	154	x, y, z
	N_6 - H_6B ··· O_3	0.86	2.03	2.87(4)	166	-1/2+x,-1/2+y,1/2+z
	$O_1W\text{-}H_1WA\cdots N_2$	0.85	2.13	2.83(4)	138	

	$O_1W-H_1WA \cdots N_3$	0.85	2.31	2.95(4)	133	x, y, z
	$O_1W-H_1WB \cdots O_2$	0.85	1.97	2.76(4)	155	x, y, z
	$O_2W-H_2WA \cdots O_3$	0.79	2.02	2.80(4)	166	x,-1/2-y,1/2+z
	$O_2W-H_2WB \cdots O_6$	0.74	2.08	2.79(4)	161	x, y, z
	C_2 - $H_2 \cdots O_5$	0.95	2.46	3.41(4)	174	1/2+x,-1-y,z
	N_1 - $H_1C \cdots O_3$	0.86	2.14	2.99(4)	171	x,-1+y,z
	$N_1\text{-}H_1D\cdots O_4$	0.86	2.08	2.93(4)	169	3/2-x,1-y,-1/2+z
	N_2 - H_2A ··· O_4	0.86	2.10	2.94(3)	166	2-x,-1/2+y,3/2-z
GBPS⊃8	N_2 - H_2B ··· O_6	0.86	2.03	2.89(4)	172	3/2-x,1-y,-1/2+z
	N_3 - H_3C ··· O_5	0.86	2.03	2.89(3)	176	2-x,-1/2+y,3/2-z
	N_3 - H_3D ··· O_1	0.86	2.15	2.96(4)	157	x,-1+y,z
	$N_4\text{-}H_4A\cdots O_1$	0.86	2.15	2.99(4)	164	x, y, z
	N_4 - H_4B ··· O_2	0.86	2.07	2.93(3)	178	1/2+x,3/2-y,1-z
-	N_5 - H_5A ··· O_5	0.86	2.11	2.92(4)	158	3/2-x,1-y,-1/2+z
	N_5 - H_5B ··· O_2	0.86	2.12	2.96(4)	163	x, y, z
	N_6 - H_6C ··· O_6	0.86	2.15	2.94(4)	152	3/2-x,1-y,-1/2+z
	$\overline{N_6}-H_6D\cdots O_3$	0.86	2.10	2.94(3)	165	1/2+x,3/2-y,1-z
	$C_3-H_3\cdots O_2B$	0.93	2.38	3.26(5)	159	2-x,1/2+y,3/2-z

4. Guest volume calculations

The volume of guests were performed at 6-311++G(d, p) level using the Gaussian 09 program.¹ The length and width of the guests and host are measured by diamond.

Cartesian coordinates (Å) for the optimized geometries of ${\bf 1}$

С	-1.90210000	-0.35830000	0.00080000
С	-0.55340000	-0.28440000	0.00050000
С	0.16800000	0.85310000	0.00040000
С	-0.53460000	1.99740000	0.00060000
С	-1.87350000	1.96310000	0.00080000
С	-2.57490000	0.81610000	0.00100000
0	-3.93080000	0.91440000	0.00100000
0	-2.42680000	-1.63310000	0.00080000
С	1.51610000	0.78950000	0.00020000
С	2.38690000	1.81360000	0.00000000
С	3.88400000	1.63310000	-0.00030000
С	-3.80940000	-1.88380000	0.00040000
Н	-0.01790000	-1.25160000	0.00040000
Н	-0.05550000	2.98840000	0.00050000
Н	-2.42480000	2.92000000	0.00080000
Н	-4.32560000	0.03370000	-0.00140000
Н	1.98390000	-0.21140000	0.00010000

Н	2.05360000	2.86310000	0.00010000
Н	4.19160000	0.56380000	-0.00030000
Н	4.32530000	2.11310000	-0.90340000
Н	4.32560000	2.11310000	0.90270000
Н	-3.94970000	-2.98840000	0.00070000
Н	-4.27510000	-1.48980000	0.93100000
Н	-4.27430000	-1.49060000	-0.93100000

Cartesian coordinates (Å) for the optimized geometries of $\mathbf{2}$

С	-2.02270000	-0.53480000	-1.11620000
С	-1.48970000	-1.66540000	-0.21880000
С	0.04430000	-1.73710000	-0.27130000
С	0.67220000	-0.39270000	0.13330000
С	0.14330000	0.72740000	-0.76550000
С	-1.38230000	0.80610000	-0.71750000
0	0.67970000	1.96130000	-0.34860000
С	-3.55630000	-0.45460000	-1.04940000
С	2.19110000	-0.44140000	0.15790000
С	2.87700000	-0.08560000	1.25700000
С	2.91780000	-0.88000000	-1.09180000
Н	-1.73460000	-0.76050000	-2.17410000
Н	-1.81820000	-1.49380000	0.83330000
Н	-1.92160000	-2.64260000	-0.54150000
Н	0.40810000	-2.54580000	0.40660000
Н	0.34880000	-2.00830000	-1.30920000
Н	0.31490000	-0.17080000	1.17000000
Н	0.46920000	0.57390000	-1.81950000
Н	-1.70960000	1.08070000	0.31290000
Н	-1.73640000	1.61410000	-1.40080000
Н	0.43320000	2.64260000	-0.97820000
Н	-4.02330000	-1.41570000	-1.36430000
Н	-3.90390000	-0.22970000	-0.01570000
Н	-3.94680000	0.34340000	-1.72140000
Н	3.97640000	-0.11070000	1.28230000
Н	2.36860000	0.24680000	2.17410000
Н	2.68430000	-1.94060000	-1.33280000
Н	2.63570000	-0.24550000	-1.96050000
Н	4.02330000	-0.81030000	-0.98570000

Cartesian coordinates (Å) for the optimized geometries of $\mathbf{3}$

С	-0.20600000	1.34810000	-0.46270000
С	-0.15460000	0.02870000	-0.15540000
С	1.03850000	-0.48450000	0.21010000

С	2.17090000	0.23660000	0.26580000
С	2.10620000	1.53270000	-0.07070000
С	0.93170000	2.06700000	-0.42800000
С	3.47820000	-0.40570000	0.67390000
С	4.01900000	-1.22580000	-0.46880000
С	4.16780000	-2.55730000	-0.42790000
0	-1.31500000	-0.70660000	-0.22380000
С	-1.31560000	-2.04940000	0.19870000
0	-1.36800000	1.97630000	-0.83800000
С	-2.46180000	1.76810000	-0.04860000
С	-3.67430000	1.42120000	-0.89140000
0	-2.46210000	1.86690000	1.15900000
Н	1.13030000	-1.54890000	0.47570000
Н	3.01140000	2.16130000	-0.05420000
Н	0.89850000	3.13660000	-0.69780000
Н	4.23800000	0.35940000	0.95480000
Н	3.31640000	-1.03100000	1.58180000
Н	4.29370000	-0.68280000	-1.38960000
Н	4.56210000	-3.11120000	-1.29390000
Н	3.89920000	-3.13660000	0.46800000
Н	-2.35510000	-2.43440000	0.09740000
Н	-0.65640000	-2.66230000	-0.45550000
Н	-1.02320000	-2.11750000	1.27020000
Н	-3.49090000	0.50020000	-1.48950000
Н	-4.56210000	1.23870000	-0.24490000
Н	-3.91530000	2.26100000	-1.58180000

Cartesian coordinates (Å) for the optimized geometries of ${\bf 4}$

С	0.92610000	-0.01030000	-0.00030000
С	0.23420000	1.14540000	-0.00040000
С	-1.10730000	1.16090000	-0.00060000
С	-1.84710000	0.03640000	-0.00070000
С	-1.14800000	-1.11520000	-0.00050000
С	0.19530000	-1.14050000	-0.00040000
С	2.27500000	0.02840000	-0.00010000
С	3.12790000	-1.01050000	0.00000000
С	4.62790000	-0.85550000	0.00020000
0	-3.21740000	0.14220000	-0.00090000
С	-3.98790000	-1.03730000	-0.00030000
Н	0.75500000	2.11900000	-0.00030000
Н	-1.62680000	2.13500000	-0.00070000
Н	-1.66640000	-2.08750000	-0.00060000
Н	0.66870000	-2.13500000	-0.00020000
Н	2.75880000	1.02180000	-0.00010000

Н	2.77650000	-2.05410000	0.00000000
Н	4.95370000	0.20840000	0.00020000
Н	5.06100000	-1.34290000	0.90340000
Н	5.06120000	-1.34290000	-0.90280000
Н	-5.06120000	-0.74230000	-0.00030000
Н	-3.79080000	-1.62890000	-0.92200000
Н	-3.79060000	-1.62810000	0.92200000

Cartesian coordinates (Å) for the optimized geometries of ${\bf 5}$

С	1.91980000	0.02630000	-0.00030000
С	1.20360000	1.16400000	-0.00040000
С	-0.13760000	1.12160000	-0.00070000
С	-0.83110000	-0.03330000	-0.00090000
С	-0.09290000	-1.16140000	-0.00070000
С	1.25010000	-1.13950000	-0.00040000
С	3.27990000	0.06470000	-0.00010000
0	4.01550000	-0.89790000	0.00010000
0	-2.20460000	0.02180000	-0.00110000
С	-2.93230000	-1.18450000	-0.00030000
Н	1.69510000	2.15200000	-0.00030000
Н	-0.69660000	2.07360000	-0.00070000
Н	-0.57510000	-2.15200000	-0.00080000
Н	1.78150000	-2.10630000	-0.00030000
Н	3.72690000	1.08730000	0.00010000
Н	-4.01550000	-0.92810000	-0.00030000
Н	-2.71410000	-1.76870000	-0.92200000
Н	-2.71390000	-1.76760000	0.92200000

Cartesian coordinates (Å) for the optimized geometries of ${\bf 6}$

С	-1.05790000	-1.86570000	0.00040000
С	0.27970000	-1.79050000	0.00060000
С	0.90070000	-0.59990000	0.00500000
С	0.09350000	0.47470000	0.00920000
С	-1.25670000	0.43320000	0.00960000
С	-1.86220000	-0.78280000	0.00410000
0	-3.23290000	-0.88490000	0.00450000
С	2.24940000	-0.55670000	0.00520000
С	3.04010000	0.53040000	0.00950000
С	4.54650000	0.46310000	0.00960000
0	-1.87820000	1.66600000	0.01370000
С	-3.27870000	1.79610000	0.00170000
С	-3.84940000	-2.15140000	0.00730000
Н	-1.47670000	-2.88450000	-0.00330000

Н	0.85440000	-2.73340000	-0.00280000
Н	0.53320000	1.48510000	0.01280000
Н	2.79140000	-1.51950000	0.00150000
Н	2.62920000	1.55200000	0.01330000
Н	4.93380000	-0.58000000	0.00760000
Н	4.95080000	0.97670000	-0.89240000
Н	4.95040000	0.97310000	0.91380000
Н	-3.51290000	2.88450000	0.00120000
Н	-3.70420000	1.36550000	-0.93120000
Н	-3.72020000	1.36360000	0.92620000
Н	-4.95080000	-1.98970000	0.01040000
Н	-3.58880000	-2.71340000	-0.91710000
Н	-3.58330000	-2.71180000	0.93120000

Cartesian coordinates (Å) for the optimized geometries of 7

С	-1.01780000	1.05360000	0.00020000
С	-1.04110000	-0.29120000	0.00020000
С	0.12920000	-0.96450000	0.00030000
С	1.30900000	-0.30900000	0.00030000
С	1.29570000	1.03660000	0.00030000
С	0.14400000	1.72020000	0.00030000
С	-2.37690000	-1.00640000	0.00010000
С	2.66430000	-0.98710000	0.00030000
Ν	0.08960000	-2.23310000	0.00030000
Н	-1.95820000	1.62900000	0.00010000
Н	2.24680000	1.59530000	0.00030000
Н	0.15220000	2.82310000	0.00030000
Н	-3.24230000	-0.30690000	0.00020000
Н	-2.48070000	-1.64390000	-0.90730000
Н	-2.48080000	-1.64420000	0.90730000
Н	2.64160000	-2.09590000	0.00070000
Н	3.24200000	-0.68150000	-0.90200000
Н	3.24230000	-0.68110000	0.90240000
Н	0.95390000	-2.82310000	0.00030000
Н	-0.82460000	-2.74570000	0.00020000

Cartesian coordinates (Å) for the optimized geometries of ${\bf 8}$

С	-0.85260000	-0.62000000	-0.57720000
С	0.57590000	-0.65240000	-0.01490000
С	1.33250000	0.65930000	-0.31140000
С	0.50620000	1.84410000	0.23480000
С	-0.90550000	1.89290000	-0.36330000
С	-1.66160000	0.58660000	-0.07280000

С	1.75390000	0.80980000	-1.79900000
0	0.49350000	-0.86800000	1.36670000
С	2.38890000	2.18070000	-2.10590000
С	2.75160000	-0.28250000	-2.23660000
С	1.42110000	-1.56400000	2.08790000
С	2.57980000	-2.17390000	1.31470000
0	1.32870000	-1.70140000	3.29030000
С	-3.06560000	0.61190000	-0.69820000
Н	-0.82020000	-0.59820000	-1.69100000
Н	-1.38340000	-1.56350000	-0.30430000
Н	1.06800000	-1.52720000	-0.48870000
Н	2.28950000	0.65380000	0.26860000
Н	1.02840000	2.81400000	0.07730000
Н	0.41440000	1.75820000	1.34380000
Н	-0.84640000	2.06300000	-1.46280000
Н	-1.46590000	2.75670000	0.06740000
Н	-1.78320000	0.49100000	1.03570000
Н	0.85080000	0.71760000	-2.45010000
Н	2.77660000	2.22650000	-3.14890000
Н	1.65590000	3.01360000	-2.02550000
Н	3.24140000	2.39080000	-1.42090000
Н	3.08010000	-0.13330000	-3.29030000
Н	2.31530000	-1.30400000	-2.20200000
Н	3.66350000	-0.27380000	-1.59770000
Н	2.23430000	-3.01360000	0.67090000
Н	3.13310000	-1.42110000	0.71310000
Н	3.32290000	-2.60770000	2.02180000
Н	-3.66350000	1.46770000	-0.30960000
Н	-3.01240000	0.70950000	-1.80620000
Н	-3.62640000	-0.32190000	-0.46500000

References:

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O["]. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, USA, 2009.