Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Effect of Chelator Content on Na₃V₂(PO₄)₂F₃ Structural and

Electrochemical Performance by Sol-gel Preparation

Yuanyuan Qin^{1, #}, Long Li^{1, #}, *, Hongyang Zhao¹, Mingyue Wang¹, Xinyang Li¹, Jing Zhao¹, Hu Wu¹, Shujiang Ding^{1, *}

¹School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China

*Corresponding author: llixjtu@mail.xjtu.edu.cn (Long Li), dingsj@xjtu.edu.cn (Shujiang Ding)

Supplementary Figure 1.

Figure S1 Color changes of the as-prepared gel precursors.

Supplementary Figure 2.

Figure S2 XRD patterns (a)-(e) of NVPF samples obtained at 600, 650 and 700 °C with various critic acid content.

Supplementary Figure 3.

Figure S3 SEM images (a)-(e) of NVPF samples obtained at 650 °C.

The NVPF was prepared by a general sol-gel method at 650 °C in Ar atmosphere. Figure S2 show SEM images of the obtained NVPF samples, confirming the NVPF particles is composed by the primary nanograins and shows a gradual gelation trend with the increasing critic acid content.

Supplementary Figure 4.

Figure S4 The TEM-EDS (Na, P and O) analysis of NVPF-0.67-650.

Supplementary Figure 5.

Figure S5 The first 5 charge and discharge curves of NVPF-0.67-650 at 0.2 C-rate.

Supplementary Figure 6.

Figure S6 SEM images of the various as-prepared NVPF-n (n=0.5, 0.67, 1, 1.5 and 2) electrodes (a-e) after 500 cycles at 5 C-rate.

