Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

for

"SDPD-SX: combining a single crystal X-ray diffraction setup with advanced powder data structure determination for use in early stage drug discovery"

Kabova et al, 2022

Figures S1-S14: DASH profile fits to observed data

Figures S15-S28: Full data ranges and asymmetric unit overlays

Figures S29-S31: Selected Rietveld refinement information

Notes on some individual structures and DFT-D

Figure S1: Best DASH fit to mefenamic acid data.

Figure S2: Best DASH fit to ibuprofen data.

Figure S3: Best DASH fit to L-Glutamic acid data.

Figure S4: Best DASH fit to sertraline.HCl data.

Figure S5: Best DASH fit to indomethacin data.

Figure S6: Best DASH fit to lansoprazole data.

Figure S7: Best DASH fit to chloramphenicol data.

Figure S8: Best DASH fit to cefadroxil.H₂O data.

Figure S9: Best DASH fit to imatinib data.

Figure S10: Best DASH fit to carvedilol data.

Figure S11: Best DASH fit to furosemide data.

Figure S12: Best DASH fit to ritonavir data.

Figure S13: Best DASH fit to sildenafil citrate. H_2O data.

Figure S14: Best DASH fit to paroxetine.HCl.½H₂O data.

Figure S15: **Top**: Powder diffraction data for mefenamic acid. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S16: **Top**: Powder diffraction data for ibuprofen. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S17: **Top**: Powder diffraction data for L-Glutamic acid. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S18: **Top**: Powder diffraction data for sertraline.HCl. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S19: **Top**: Powder diffraction data for indomethacin. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S20: **Top**: Powder diffraction data for lansoprazole. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S21: **Top**: Powder diffraction data for chloramphenicol. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S22: **Top**: Powder diffraction data for cefadroxil.H₂O. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S23: **Top**: Powder diffraction data for imatinib. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S24: **Top**: Powder diffraction data for carvedilol. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S25: **Top**: Powder diffraction data for furosemide (Z'=2). **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S26: **Top**: Powder diffraction data for ritonavir (form II). **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Figure S27: **Top**: Powder diffraction data for sildenafil citrate.H₂O. **Bottom**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity. Note that no DFT-D optimisation was performed for this structure because the location of the water molecule could not be determined with sufficient accuracy from the diffraction data alone.

Figure S28: **Top**: Powder diffraction data for paroxetine.HCl.½H₂O. **Middle**: Asymmetric unit of DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). **Bottom**: Asymmetric unit of DFT-optimised DASH solution (red) superimposed upon the asymmetric unit of known structure (blue). Hydrogen atoms are hidden for clarity.

Parameter	Capillary data to 45°	SDPD-SX data to 60°	
a / Å	7.9916(2)	7.9887(1)	
b / Å	8.3590(3)	8.3567(2)	
c / Å	25.0981(9)	25.0896(5)	
V / Å ³	1676.60(9)	1674.96(5)	

Comparison of Rigid-body refined structures: 15/15 molecules, RMSD = 0.023 Ang

Figure S29: Key profile refinement information for sertraline hydrochloride

Top: A comparison of refined unit cell parameters obtained by Pawley fitting of the capillary and SDPD-SX data sets.

Middle: A comparison, using the Crystal Packing Similarity functionality of Mercury, of output structures from rigid-body Rietveld refinements against SDPD-SX data and capillary data.

Bottom: Observed (blue) and calculated (red) data for the rigid-body Rietveld refined crystal structure of sertraline hydrochloride against the SDPD-SX data. The fitted background is shown in grey and the difference profile is shown in orange. $R_{wp} = 1.85$

Parameter	Capillary data to 45°	SDPD-SX data to 60°
a / Å	14.4345(4)	14.400(2)
b / Å	11.2039(2)	11.1702(8)
c / Å	11.0501(2)	11.048(1)
V / ų	1787.06(7)	1777.1(3)

Comparison of Rigid-body refined structures: 15/15 molecules, RMSD = 0.043 Ang

Figure S30: Key profile refinement information for cefadroxil monohydrate

Top: A comparison of refined unit cell parameters obtained by Pawley fitting of the capillary and SDPD-SX data sets.

Middle: A comparison, using the Crystal Packing Similarity functionality of Mercury, of output structures from rigid-body Rietveld refinements against SDPD-SX data and capillary data.

Bottom: Observed (blue) and calculated (red) data for the rigid-body Rietveld refined crystal structure of cefadroxil monohydrate against the SDPD-SX data. The fitted background is shown in grey and the difference profile is shown in orange. $R_{wp} = 7.67$

Parameter	Capillary data to 60°	SDPD-SX data to 60°
a / Å	20.4927(3)	20.4886(8)
b / Å	18.6654(3)	18.6576(8)
c / Å	9.9866(2)	9.9828(4)
V / ų	3819.9(1)	3816.1(3)

Comparison of Rigid-body refined structures: 15/15 molecules, RMSD = 0.133 Å

Figure S31: Key profile refinement information for ritonavir

Top: A comparison of refined unit cell parameters obtained by Pawley fitting of the capillary and SDPD-SX data sets.

Middle: A comparison, using the Crystal Packing Similarity functionality of Mercury, of output structures from rigid-body Rietveld refinements against SDPD-SX data and capillary data.

Bottom: Observed (blue) and calculated (red) data for the rigid-body Rietveld refined crystal structure of ritonavir against the SDPD-SX data. The fitted background is shown in grey and the difference profile is shown in orange. $R_{wp} = 1.83$

Notes on some individual structures and DFT-D

Treatment of H atoms

For hydrogen atoms whose positions are not explicitly determined by the geometry of the non-H structures to which they are attached (*e.g.*, the hydrogen of an X-OH group that is free to rotate about the X-O bond) their orientation makes little difference to the fit to the PXRD data but may have a significant impact upon the DFT-D calculation. In the case of cefadroxil (JOSWAP01) several of the H atoms in the published structure are poorly located, and one H atom is missing on the carboxylic acid group; the missing H was added prior to DFT-D.

Furosemide

In the *DASH* answer, the orientation of the SO_2NH_2 group of one of the molecules in the asymmetric unit is out by 120°. This, a consequence of the 'equal scattering' issue, is not surprising and the correct orientation is easily identified from H-bonding considerations prior to DFT-D optimisation.