Electronic Supplementary Information (ESI)

Tunable hybrid perovskites with Narrow bandgap and Multistage phase

transition properties: 2,2-difluoroethylamine Antimony Hexabromide

Ning Song, Shaopeng Chen, Xiaowei Fan*, Yuhui Tan*, Yunzhi Tang*, Lijuan Wang, Juan Liao,

Zhen Sun

*Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

Fig. S1. The coordination environment of 1 at (a) T_{tr} -3 and (b) T_{tr} -4

Fig. S2. Packing diagram of 1 along the a-axis for (a) T_{tr} -1 and (b) T_{tr} -4.

Fig. S3. hydrogen bond diagram of 1 along the a-axis for T_{tr} -1.

Powder X-ray diffraction (PXRD) and Infrared absorption (IR) spectroscopy

X-ray powder diffraction testing was performed on 1 to further verify the structural accuracy. By comparing the results of the X-ray powder diffraction test with the PXRD analysis results of the single-crystal structure simulation (Fig. S4a), the data of 1 can be well fitted, which confirms that the experimentally obtained 1 is pure phase. As shown in figure S4b, 3500-3400cm⁻¹ is the characteristic peak of N-H. 3300-2800 cm⁻¹ is the characteristic peak of C-H stretching vibration. The characteristic peak in the range of 1465-1340 cm⁻¹ is caused by the bending vibration of C-H, and 1400-730 cm⁻¹ is the stretching peak of C-F.

Fig. S4. (a) A comparison via measured PXRD (powder x-ray diffraction) and simulated XRD pattern from the "cif" file at room temperature; (b) The IR spectra of 1 at room temperature.

Fig. S5. The distance between N atom and Br atom (a) at $T_{tr\mathchar`-2}$ (b) at $T_{tr\mathchar`-3}$

Number	T _{tr} -1	T _{tr} -2	T _{tr} -3	T _{tr} -4
Empirical formula	$C_6H_{18}Br_6F_6N_3Sb$	$C_6H_{18}Br_6F_6N_3Sb$	$C_6H_{18}Br_6F_6N_3Sb$	$C_6H_{14}Br_6F_7N_3Sb$
Formula weight	847.44	847.44	847.44	862.41
Temperature (K)	133	232.97	273	292.99
Crystal system	monoclinic	monoclinic	orthorhombic	orthorhombic
Space group	$P2_{1}/c$	$P2_{1}/c$	Pnnm	Pnnm
<i>a</i> (Å)	8.0145(3)	8.0374(9)	12.3891(5)	12.3766(5)
<i>b</i> (Å)	12.1192(4)	12.3053(11)	21.5246(9)	21.5176(8)
<i>c</i> (Å)	21.2967(7)	21.3990(15)	8.0726(3)	8.0757(3)
$V(Å^3)$	2067.64(12)	2116.4(3)	2152.72(15)	2150.68(14)
Z	4	4	4	4
Density (g/cm ³)	2.722	2.660	2.615	2.663
$m (\mathrm{mm}^{-1})$	12.975	12.676	12.462	12.483
F (000)	1560.0	1560.0	1560.0	1580.0
Data/restraints/ parameters	3660/54/202	4862/2/202	2808/1/121	2046/2/127
GOF	1.151	1.072	1.046	1.111
$R_{1,} w R_2[I > 2\sigma(I)]$	R ₁ =0.2014,	R ₁ =0.1348,	R ₁ =0.0484,	R ₁ =0.0487,
	wR ₂ =0.5057	wR ₂ =0.3599	wR ₂ =0. 1401	$wR_2 = 0.1486$
$R_{1,} w R_2$ (all data)	R ₁ =0.2043,	R ₁ =0.1652,	R ₁ =0. 0707,	$R_1 = 0.0554,$
	$wR_2 = 0.5062$	$wR_2 = 0.3752$	$wR_2 = 0.1517$	$wR_2 = 0.1529$
$(e Å^{-3})$	11.64/-3.75	3.00/-2.48	1.70/-1.16	1.10/-1.07

Table S1 The crystallographic data of compound 1

	1 0	1	u u -	
D-H···A	D-H	H···A	D····A	∠D-H…A
T _{tr} -1				
N2H2C····Br6	0.88	2.46	3.32(4)	165
N2H2D…Br1	0.89	2.55	3.40(5)	159
N1—H1C····Br2	0.89	2.55	3.38(4)	156
T _{tr} -2				
N2H2C···Br6	0.89	2.68	3.35(3)	133
N2H2D····Br3	0.89	2.64	3.46(3)	151
N2H2E…Br1	0.89	2.86	3.59(3)	140
T _{tr} -3				
N1H1B…Br3	0.89	2.67	3.517(10)	159
N1H1C…Br3	0.89	2.89	3.538(11)	131
12 1				

Table S2 Hydrogen bonds parameters of T_{tr} -2 and T_{tr} -3.

¹2-x, -y, 1-z

Number	T _{tr} -1		T _{tr} -2	
	Br1-Sb1-Br6	175.2(2)	Br2-Sb1-Br6	87.51(10)
	Br1-Sb1-Br5	88.35(18)	Br1-Sb1-Br2	89.20(10)
	Br1-Sb1-Br2	88.48(18)	Br1-Sb1-Br6	177.39(12)
	Br6-Sb1-Br5	93.06(19)	Br1-Sb1-Br4	90.63(11)
	Br6-Sb1-Br2	96.12(19)	Br1-Sb1-Br3	88.72(10)
	Br4-Sb1-Br1	86.20(18)	Br5-Sb1-Br2	88.49(10)
	Br4-Sb1-Br6	89.24(19)	Br5-Sb1-Br6	94.21(11)
Bond angles[°]	Br4-Sb1-Br5	90.54(19)	Br5-Sb1-Br1	90.58(11)
	Br4-Sb1-Br2	174.6(2)	Br5-Sb1-Br4	91.01(12)
	Br4-Sb1-Br3	95.34(19)	Br5-Sb1-Br3	177.67(12)
	Br5-Sb1-Br2	88.61(18)	Br4-Sb1-Br2	179.47(10)
	Br3-Sb1-Br1	88.35(18)	Br4-Sb1-Br6	90.83(11)
	Br3-Sb1-Br6	90.73(18)	Br4-Sb1-Br3	89.79(11)
	Br3-Sb1-Br5	173.1 (2)	Br3-Sb1-Br2	90.71(9)
	Br3-Sb1-Br2	85.20(18)	Br3-Sb1-Br6	90.00(9)
Number	T _{tr} -3		T _{tr} -4	
	Br3-Sb1-Br2	89.73(3)	Br4-Sb1-Br1	89.74(3)
	Br3-Sb1-Br2 ¹	89.73(3)	Br4-Sb1-Br1 ¹	89.74(3)
	Br21-Sb1-Br2	89.70(3)	Br2-Sb1-Br4	88.92(3)
	Br4 ¹ -Sb1-Br3	88.90(3)	Br2 ¹ -Sb1-Br4	88.92(3)
	Br4-Sb1-Br3	88.90(3)	Br2-Sb1-Br2 ¹	94.25(4)
	Br41-Sb1-Br2	88.01(3)	Br21-Sb1-Br1	177.40(3)
	Br4-Sb1-Br2	177.33(3)	Br2-Sb1-Br1	87.95(3)
Bond angles[°]	Br41-Sb1-Br21	177.33(3)	Br2 ¹ -Sb1-Br1 ¹	87.95(3)
	Br4-Sb1-Br2 ¹	88.01(3)	Br2-Sb1-Br1 ¹	177.40(3)
	Br4-Sb1-Br4 ¹	94.26(4)	Br2-Sb1-Br3	90.94(3)
	Br41-Sb1-Br1	90.99(3)	Br21-Sb1-Br3	90.94(3)
	Br4-Sb1-Br1	90.99(3)	Brl ¹ -Sb1-Brl	89.81(4)
	Br1-Sb1-Br3	179.84(4)	Br3-Sb1-Br4	179.80(4)
	Br1-Sb1-Br2 ¹	90.39(3)	Br3-Sb1-Br1	88.92(3)
			Br3-Sb1-Br1 ¹	90.41(3)

Table S3 Bond angles[°] for 1.

Table S4 Bond lengths [A] for 1.					
Number	Т	tr-1	T	tr-2	
	Sb1-Br1	2.778(6)	Sb1-Br2	2.875(3)	
	Sb1-Br6	2.820(6)	Sb1-Br6	2.899(3)	
Bond lengths	Sb1-Br4	2.690(6)	Sb1-Br1	2.718(3)	
[Å]	Sb1-Br5	2.845(6)	Sb1-Br5	2.716(3)	
	Sb1-Br2	2.961(6)	Sb1-Br4	2.738(3)	
	Sb1-Br3	2.750(6)	Sb1-Br3	2.874(3)	
Number	Т	T _{tr} -3		T _{tr} -4	
	Sb1-Br2	2.8826(10)	Sb1-Br4	2.8756(11)	
	Sb1-Br3 ¹	2.8949(8)	Sb1-Br2 ¹	2.7221(9)	
Bond lengths	Sb1-Br3	2.8949(8)	Sb1-Br2	2.7221(9)	
[Å]	Sb1-Br4 ¹	2.7238(8)	Sb1-Br1	2.8876(9)	
	Sb1-Br4	2.7237(8)	Sb1-Br1 ¹	2.8876(9)	
	Sb1-Br5	2.7445(11)	Sb1-Br3	2.7426(13)	

Table S4 Bond lengths [Å] for 1

Entropy change calculated by DSC:

(1) Heating process

$$\Delta S_{1} = R \ln N_{1}$$

$$\Delta S_{1} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.3976 J \cdot g^{-1} \times 847.44 g \cdot mo \, l^{-1}}{155.4 K} = 2.168 J \cdot mo \, l^{-1} \cdot K^{-1}$$

$$N_{I} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{2.168 J \cdot mo \, l^{-1} \cdot K^{-1}}{8.314 J \cdot mo \, l^{-1} \cdot K^{-1}}) = 0.261$$

$$\Delta S_{2} = R \ln N_{2}$$

$$\Delta S_{2} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.7800 J \cdot g^{-1} \times 847.44 g \cdot mo \, l^{-1}}{201.9 K} = 3.274 J \cdot mo \, l^{-1} \cdot K^{-1}$$

$$N_{2} = \exp(\frac{\Delta S_{2}}{R}) = \exp(\frac{3.274 J \cdot mo \, l^{-1} \cdot K^{-1}}{8.314 J \cdot mo \, l^{-1} \cdot K^{-1}}) = 0.394$$

$$\Delta S_{3} = R \ln N_{3}$$

$$\Delta S_{3} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.0099 J \cdot g^{-1} \times 862.41 \ g \cdot mo \ l^{-1}}{251.7 \ K} = 0.0340 \ J \cdot mo \ l^{-1} \cdot K^{-1}$$

$$N_{3} = \exp(\frac{\Delta S_{3}}{R}) = \exp(\frac{0.0340 \ J \cdot mo \ l^{-1} \cdot K^{-1}}{8.314 J \cdot mo \ l^{-1} \cdot K^{-1}}) = 0.0041$$

(2) Cooling process

$$\Delta S_{1} = R \ln N_{1}$$

$$\Delta S_{1} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.3604 J \cdot g^{-1} \times 847.44 g \cdot mo \, l^{-1}}{151.7 K} = 2.013 J \cdot mo \, l^{-1} \cdot K^{-1}$$

$$N_{I} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{2.013 J \cdot mo \, l^{-1} \cdot K^{-1}}{8.314J \cdot mo \, l^{-1} \cdot K^{-1}}) = 0.242$$

$$\Delta S_{2} = R \ln N_{2}$$

$$\Delta S_{2} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.7562 J \cdot g^{-1} \times 847.44 g \cdot mol^{-1}}{199.9 K} = 3.206 J \cdot mol^{-1} \cdot K^{-1}$$

$$N_{2} = \exp(\frac{\Delta S_{2}}{R}) = \exp(\frac{3.206 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}}) = 0.386$$

$$\Delta S_{3} = R \ln N_{3}$$

$$\Delta S_{3} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT \approx \frac{\Delta H}{T_{c}} = \frac{0.0570 J \cdot g^{-1} \times 862.41 g \cdot mo \, l^{-1}}{264.8 K} = 0.186 J \cdot mo \, l^{-1} \cdot K^{-1}$$

$$N_{3} = \exp(\frac{\Delta S_{3}}{R}) = \exp(\frac{0.186 J \cdot mo \, l^{-1} \cdot K^{-1}}{8.314 J \cdot mo \, l^{-1} \cdot K^{-1}}) = 0.0224$$