2D/3D spin crossover porous coordination polymers based on isomeric tetrapyridyl benzene ligands

Wei-Wei Wu, Ze-Yu Ruan, Chen-Guang Shi, Jin-Tao Mai, Wen Cui, Zhao-Ping Ni*, Si-Guo Wu*, Ming-Liang Tong

Temperature	80 K	250 K
Formula	$C_{28}H_{28}B_2FeN_6O_2$	
Formula weight	558.03	
Crystal system	orthorhombic	
Space group	F22	22
<i>a</i> / Å	10.7010(7)	11.012(4)
<i>b</i> / Å	15.5677(9)	15.769(5)
<i>c</i> / Å	18.8482(9)	18.997(6)
lpha / °	90	90
eta / °	90	90
γ / °	90	90
V / Å ³	3139.9(3)	3298.7(19)
Ζ	4	4
$ ho_{calcd.}$ / g/cm ⁻³	1.180	1.124
μ / mm ⁻¹	0.513	0.488
F000	1160.0	1160.0
Reflections collected	10371	10327
Independent reflections	1971 [$R_{\text{int}} = 0.0378, R_{\text{sigma}} = 0.0319$]	2001 [$R_{\text{int}} = 0.0292, R_{\text{sigma}} = 0.0242$]
GOF on F^2	1.080	1.066
$R_1 [I \ge 2\sigma(I)]a$	$R_1 = 0.0469$	$R_1 = 0.0377$
wR_2 (all data)	$wR_2 = 0.1216$	$wR_2 = 0.1061$
Hooft parameter	0.31(3)	0.32(3)
CCDC No.	2144030	2144031
$aR_1 = \sum F_0 $	$- F_{\rm c} / \sum F_{\rm o} , \qquad wR_2 = \sum w$	$w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}.$

Table S1. Crystallographic data and structural refinements for $1.2H_2O$.

Temperature	120 K	298 K
Formula	$C_{39}H_{34}B_2FeN_6S$	
Formula weight	696	5.25
Crystal system	orthorhombic	
Space group	Cm	mm
<i>a</i> / Å	12.0275(9)	12.4250(3)
b / Å	15.8838(11)	16.2282(4)
<i>c</i> / Å	9.5912(6)	9.68021(19)
α / °	90	90
eta / °	90	90
γ / °	90	90
V / Å ³	1832.3(2)	1951.87(7)
Z	2	2
$ ho_{calcd.}$ / g/cm ⁻³	1.262	1.185
μ / mm ⁻¹	4.106	3.855
F000	724.0	724.0
Reflections collected	2274	3716
Independent reflections	1030 [$R_{\rm int} = 0.0289, R_{\rm sigma} =$	1117 [$R_{int} = 0.0211, R_{sigma} =$
independent reflections	0.0321]	0.0162]
GOF on F^2	1.135	1.235
$R_1 [I \ge 2\sigma(I)]^a$	$R_1 = 0.0562$	$R_1 = 0.0580$
wR_2 (all data)	$wR_2 = 0.1653$	$wR_2 = 0.1726$
CCDC No.	2144029	2144032

 Table S1. Crystallographic data and structural refinements for 2·2-NapSMe.

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}}.$

Temperature / K	80 K	250 K
Fe1–N1ª / Å	2.038(4)	2.124(3)
Fe1–N1 / Å	2.038(4)	2.124(3)
Fe1–N2 ^b / Å	2.130(3)	2.233(2)
Fe1–N2ª / Å	2.130(3)	2.233(2)
Fe1–N2 / Å	2.130(3)	2.233(2)
Fe1–N2° / Å	2.130(3)	2.233(2)
$<$ Fe $-$ N $>_{av}$ /Å ^d	2.099	2.197
N1–C1 / Å	1.153(6)	1.132(5)
C1–B1 / Å	1.564(8)	1.599(13)

Table S3 Selected bond lengthes of $1 \cdot 2H_2O$.

^a-X,1-Y,+Z ; ^b+X,1-Y,-Z ; ^c-X,+Y,-Z ; ^daverage Fe–N bond length; ^fOctahedral distortion parameters.

Table S4Selected bond angles of $1.2H_2O$.

Temperature / K	80 K	250 K
∠N1ª–Fe1–N1 / °	180	180.0
$\angle N1^{a}$ –Fe1–N2 ^b / °	93.16(12)	93.48(9)
∠N1ª–Fe1–N2ª / °	93.16(12)	93.48(9)
∠N1–Fe1–N2 ^a /°	86.84(12)	86.52(9)
$\angle N1^{a}$ –Fe1–N2 ^c / °	86.84(12)	86.52(9)
$\angle N1$ –Fe1–N2 ^b / °	86.84(12)	86.52(9)
∠N1–Fe1–N2 / °	93.16(12)	93.48(9)
$\angle N1$ –Fe1–N2° / °	93.16(12)	93.48(9)
∠N1ª–Fe1–N2 / °	86.84(12)	86.52(9)
∠N2 ^c –Fe1–N2 ^a / °	89.33(14)	88.46(12)
$\angle N2^{a}$ –Fe1–N2 / °	91.02(14)	91.96(12)
∠N2°-Fe1-N2 / °	173.7(2)	173.04(17)
$\angle N2^{b}$ –Fe1–N2 / °	89.33(14)	88.46(12)
$\angle N2^{c}$ -Fe1-N2 ^b / °	91.02(14)	91.96(12)
$\angle N2^{b}$ –Fe1–N ^a / °	173.7(2)	173.04(17)
∠C1–N1–Fe1 / °	180.0	180.0
∠C6–N2–Fe1 / °	121.6(3)	122.4(2)
∠N2–C6–C5 / °	122.2(4)	123.4(3)
∠C4–C3–C2 / °	117.2(4)	117.1(2)
∠C4–C3–C7 / °	122.7(4)	122.7(3)
∠N2–C2–C3 / °	124.4(3)	124.5(2)
∠C7 ^d -C7-C8 / °	119.3(2)	119.37(16)
∠C8–C7–C3 / °	118.2(3)	118.2(2)
$\sum Fe^{e} / \circ$	28.66	34.84

a-X, 1-Y, +Z ; b+X,1-Y,-Z ; c-X,+Y,-Z ; d1/2-X,+Y,1/2-Z; eOctahedral distortion parameters.

Temperature / K	120 K	298 K
Fe1–N2 ^a / Å	2.002(3)	2.197(3)
Fe1–N2 / Å	2.002(3)	2.197(3)
Fe1–N2 ^b / Å	2.002(3)	2.197(3)
Fe1–N2 [°] / Å	2.002(3)	2.197(3)
Fe1–N1 ^a / Å	1.946(4)	2.141(5)
Fe1–N1 / Å	1.946(4)	2.141(5)
$<$ Fe $-$ N $>_{av}$ /Å ^f	1.983	<mark>2.178</mark>
N2–C6 / Å	1.380(5)	1.394(5)
N2–C2 / Å	1.326(5)	1.292(5)
N1–C1 / Å	1.134(8)	<mark>1.131(9)</mark>
C8–C7 / Å	1.398(4)	1.389(4)
$C8-C7^d$ / Å	1.398(4)	1.389(4)
C4–C7 / Å	1.480(5)	1.485(4)
C4–C5 / Å	1.439(5)	1.429(5)
C4–C3 / Å	1.358(5)	<mark>1.346(6)</mark>
C7–C7 ^e / Å	1.409(6)	1.409(6)
C1–B1 / Å	1.616(13)	1.658(18)
C6–C5 / Å	1.382(7)	1.383(7)
C3–C2 / Å	1.378(7)	1.380(7)

 Table S5 Selected bond lengthes of 2·2-NapSMe.

^a2-X,1-Y,2-Z; ^b2-X,1-Y,+Z; ^c+X,+Y,2-Z; ^d1-X,1-Y,+Z; ^e+X,+Y,1-Z; ^faverage Fe–N bond length.

Temperature / K	120 K	298 K
$\angle N2^{a}$ –Fe1–N2 ^b / °	91.03(16)	<u>91.34(15)</u>
∠N2°-Fe1-N2 / °	91.03(16)	<mark>91.34(15)</mark>
$\angle N2^{a}$ –Fe1–N2 / °	180	180.0
$\angle N2^{b}$ –Fe1–N2 ^c / °	180	180.0
$\angle N2^{a}$ -Fe1-N2 ^c / °	88.97(16)	88.66(15)
$\angle N2^{b}$ –Fe1–N2 / °	88.97(16)	88.66(15)
$\angle N1^{a}$ –Fe1–N2 ^a / °	90.000(1)	90.000(1)
∠N1–Fe1–N2°/°	90	90.0
$\angle N1$ –Fe1–N2 ^b / °	90.000(1)	90.000(1)
$\angle N1^{a}$ –Fe1–N2 / °	90	90.0
$\angle N1$ –Fe1–N2 / °	90.000(1)	90.000(1)
$\angle N1^{a}$ –Fe1–N2 ^c / °	90.000(1)	90.000(1)
$\angle N1^{a}$ –Fe1–N2 ^b / °	90	90.0
∠N1–Fe1–N2 ^a / °	90	90.0
∠N1–Fe1–N1ª / °	180	180.0
∠C6–N2–Fe1 / °	118.0(2)	117.0(2)
∠C2–N2–Fe1 / °	125.5(3)	127.0(3)
∠C2–N2–C6 / °	116.4(4)	116.0(4)
∠C1–N1–Fe1 / °	180.0	180.0
∠C7–C8–C7 ^d / °	124.0(4)	123.4(4)
∠C3–C4–C7 / °	126.2(3)	125.7(3)
∠C8–C7–C4 / °	117.0(3)	<mark>117.3(3)</mark>
∠N1–C1–B1 / °	180.0	180.0
∠C5–C6–N2 / °	122.5(4)	121.9 <mark>(4)</mark>
∠C6–C5–C4 / °	119.0(4)	119.0(4)
∠C4–C3–C2 / °	120.7(4)	120.6(4)
∠N2–C2–C3 / °	124.3(4)	125.2(4)
ΣFe ^f /°	4.12	<mark>5.36</mark>

Table S6 Selected bond angles of 2.2-NapSMe.

^a2-X,1-Y,2-Z; ^b2-X,1-Y,+Z ; ^c+X,+Y,2-Z ; ^d1-X,1-Y,+Z ; ^e+X,+Y,1-Z; ^fOctahedral distortion parameters.

Figure S1. The experimental and simulated powder X-ray diffraction (PXRD) patterns for $1 \cdot 2H_2O$ (a); the experimental and simulated powder PXRD patterns for $2 \cdot 2 - NapSMe$ (b).

Figure S2. The experimental powder X-ray diffraction (PXRD) patterns for a) 1 and $1.2H_2O$; b) 2 and $2.H_2O.3DMF$.

Figure S3. Thermogravimetric analysis (TGA) curve of 1·2H₂O at a heating rate of 10 K min⁻¹.

Figure S4. Thermogravimetric analysis (TGA) curve of $2 \cdot H_2 O \cdot 3DMF$ at a heating rate of 10 K min⁻¹.

Figure S5. Thermogravimetric analysis (TGA) curve of **2·2-NapSMe** at a heating rate of 10 K min⁻¹.

Figure S6. The infrared (IR) spectrum of $1 \cdot 2H_2O$.

Figure S7. The infrared (IR) spectrum of 2·2-NapSMe (up) and 2·H₂O·3DMF (down).

Figure S8. The 3D framework of 1, color code: Fe^{II}, orange; NCBH₃⁻, golden; 3-tpb, blue.

Figure S9. The 3D framework of $1 \cdot 2H_2O$ with the cavities.

Comment [□□□]: 删掉了水的氢原子

Figure S10. Packing view of $1.2H_2O$ along the *a*, *b*, *c* axis. Color code: Fe^{II}, orange; 3-tpb, blue; NCBH₃⁻, golden; O, red. Partial hydrogen atoms are omitted for clarity.

Figure S11.The 3D framework of 1 with symmetry elements (2-fold axis, green line).

Figure S12. The 2_1 helical chains viewed from the *b*-axis of **1**.

Figure S13. Packing view of **2** along the *a*, *b*, *c* axis. Color code: Fe^{II}, orange; 4-tpb, green; NCBH₃⁻, golden. Hydrogen atoms and guests are omitted for clarity.

Comment [□□□]: 删除了含硫客体的 那个

Figure S14.The 3D framework of **2** with the square lattice net topology. Color code: Fe^{II}, orange; 4-tpb, green (left); different colors represent different layers (right).

Figure S15. Structural representation of **1**·2**H**₂**O**, Color code: Fe^{II}, orange; NCBH₃⁻, golden; O, red; 3-tpb, blue.

Figure S16. The temperature-dependent magnetic susceptibility data of $2 \cdot 2$ -NapSMe Inset: the expanded view of thermal hysteresis loop and the corresponding 1st derivative curves.

Figure S17. Differential scanning calorimetry (DSC) curves with a sweep rate of 10 K min⁻¹ for **2·2-NapSMe**.

Figure S18. The temperature-dependent magnetic susceptibility data of $1 \cdot 2H_2O$ with a sweep rate of 2 K min⁻¹.

Figure S19. The temperature-dependent magnetic susceptibility data of $2 \cdot H_2O \cdot 3DMF$ with a sweep rate of 2 K min⁻¹.

Figure S20. Structural analyses for a) $1 \cdot 2H_2O$ (250 K) and b) $2 \cdot 2$ -NapSMe (298 K). Colour code: Fe^{II}, magenta; B, golden; N, blue; C, grey. The hydrogen atoms and disordered moieties in 4-tpb are omitted for clarity. The green/tawny planes are designated by pyridyl moiety and coordinated atoms of N2 and N1.