Supporting Information

Shuiting Luo^{*a*}, Mingyue Lv^{*a*}, Ye Tian^{*bc*}, Lin Jiang^{*a*}, Keying Shi^{**a*}, and Li Li^{**ab*}

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education.

School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080,

P. R. China.

^b College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, P. R. China

^c Department of Mechanical Engineering, The University of Hong Kong, Pokfulam,

Hong Kong Special Administrative Region

*Corresponding author

Tel.: +86 451 86604920; +86 451 86609141

Email: lili1993036@hlju.edu.cn, shikeying2008@163.com

Table of contents

S-1 Cover page.

S-2 Table of contents.

S-3 **Table S1** Current performance of typical gas sensors based on bimetallic and trimetallic composites in literature reports.

S-4 Fig. S1 The diagram of the gas delivery system for the gas sensing process.

S-5 Fig. S2 The Tyndall effect of the CCM-2 colloidal solution.

S-6 Fig. S3 AFM images and height profiles of CCM-1 (a, b) and CCM-3 (c, d)

S-7 Fig. S4 O 1s high-resolution XPS survey spectra of (a) CCM-1 and (b) CCM-3, respectively.

S-8 Table. S2 O 1s peak position and peak area ratio (%) of the four samples

S-9 Fig. S5 XRD patterns of the CCM-2 with and without CTAB.

S-10 Fig. S6 SEM images of the CCM-2 (a) with and (b) without CTAB.

S-11 Fig. S7 The dynamical response/recovery transient curves of (a) CCM-1 sensor

to 100-0.3 ppm NO_2 and (b) CCM-3 sensor to 100-0.05 ppm NO_2 .

S-12 Fig. S8 (a) Response time and (b) recovery time of the CCM-1, CCM-2 and CCM-3 sensor, respectively

S-13 Fig. S9 The stability of the CCM-2 sensor to 100 ppm NO₂ for 60 days at RT.

S-14 **Table. S3** The response, response time and recovery time of the three samples to different NO_2 concentrations at room temperature (RH: 26%).

S-15 References

Samples	Application	Operation temperature Response/concentration		References	
NiAl-LDHs	O ₃ gas sensor	RT	1.84/700 ppb	[1]	
Zn ₂ Al-LDHs	Ethanol gas sensor	240 °C	12.5/100 ppm	[2]	
NiCo-LDHs	NO _x gas sensor	RT	70%/97 ppm	[3]	
Pt/ZnAl-LDHs	CH ₄ gas sensor	450 °C	5/500 ppm	[4]	
HPTS/NiFe-LDHs	CO ₂ gas sensor	RT	/	[5]	
Mg-Al-LDHs	NO _x gas sensor	RT	76%/100 ppm	[6]	
PANI/ZnTi-LDHs	NH ₃ gas sensor	RT	20/50 ppm	[7]	
CoAl-LDHs	NO _x gas sensor	RT	17.09/100 ppm	[8]	
	Ethanol gas sensor	RT	8.24/1000ppm	[9]	
NI-Cr-AI-LDHS	Acetone gas sensor		11.31/1000 ppm		
Ni-Fe-Al-LDHs	NO _x gas sensor	RT	82%/100 ppm	[10]	
	Ethanol gas sensor	200 °C	2.48/4.3 ppm		
PS@Co-LDHs	Dimethyl sulfide gas		3/125ppm	[11]	
Co-LDHs	sensor NO ₂ gas sensor	RT	23.7/100 ppm	This work	

 Table. S1 Current performance of typical gas sensors based on bimetallic and

 trimetallic composites in literature reports.

First, the interdigitated gold electrode sensor is mounted in the test chamber, when the valves 3, 4, 5 remain open and the test chamber is flushed with air for at least 3 minutes to remove distractors from the test chamber and the homemade glove box. Then, valve 5 is closed, valve 1 is opened to inject steam into the test chamber and observe the tank hygrometer until the test chamber and glove box reach the target humidity, and then close valves 1, 3 and 4. Finally, open the valve 2 and inject a certain volume of NO₂ gas to record the resistance change. When the resistance is balanced, valves 5 and 4 are opened successively, and the vacuum pump is used to clean the chamber to restore the sensor resistance to its original state. The above is a full response recovery cycle. The first three phases were repeated, the NO₂ gas concentration was controlled with a micro-syringe, the NO₂ was injected into the test chamber to complete a second response recovery cycle, and then measure the recording resistance changes and so on.

Fig. S2 The Tyndall effect of the CCM-2 colloidal solution.

Fig. S3 AFM images and height profiles of CCM-1 (a, b) and CCM-3 (c, d)

Fig. S4 O 1s high-resolution XPS survey spectra of (a) CCM-1 and (b) CCM-3,

respectively.

Sample	CCM-1	CCM-2	CCM-3	CCM-2+NO ₂
Peak	O _a , O _b ,			
	Oc	O _c	Oc	O _c
Peak	530.9, 531.9,	531.1, 532.2,	531.1, 531.9,	531.4, 532.1,
(eV)	533.1	533.5	533.2	533.2
Peak area ratio (%)	43.90, 35.78,	41.73, 32.96,	42.72, 35.36,	32.00, 23.78,
	20.32	25.31	21.92	44.22

Table. S2 O 1s peak position and peak area ratio (%) of the four samples

*Oa: lattice oxygen; Ob: oxygen deficiency/vacancies structure; Oc: chemisorbed oxygen.

Fig. S5 XRD patterns of the CCM-2 with and without CTAB.

Fig. S6 SEM images of CCM-2 (a) with and (b) without CTAB.

Fig. S7 The dynamical response/recovery transient curves of (a) CCM-1 sensor to 100-0.3 ppm NO₂ and (b) CCM-3 sensor to 100-0.05 ppm NO₂.

Fig. S8 (a) Response time and (b) recovery time of the CCM-1, CCM-2 and CCM-3 sensor, respectively.

Fig. S9 The stability of the CCM-2 sensor to 100 ppm NO₂ for 60 days at RT.

Sample	CCM-1			CCM-2		CCM-3			
NO ₂ (ppm)	R	T _s	T _r	R	T _s	T _r	R	Ts	T _r
100	15.39	2.53	55.87	23.70	1.63	43.93	16.81	5.14	78.21
50	10.91	3.26	64.53	14.19	1.63	33.13	11.17	4.78	69.32
30	7.84	3.26	61.59	10.90	1.81	49.06	7.83	4.59	68.56
10	3.20	5.26	81.12	6.49	2.09	38.54	4.36	7.97	61.42
5	1.92	9.95	45.68	3.27	2.68	30.87	2.56	10.05	55.29
3	1.41	11.53	35.36	2.30	2.97	37.12	1.71	11.57	60.98
1	1.12	10.67	35.29	1.64	3.13	35.21	1.34	12.29	39.86
0.5	1.09	13.75	35.15	1.41	6.24	27.33	1.26	12.31	41.72
0.3	1.05	13.97	26.67	1.33	8.98	23.83	1.21	14.02	27.37
0.1				1.23	9.76	16.92	1.18	14.96	20.23
0.05				1.19	10.27	16.09	1.08	15.21	20.08

Table. S3 The response, response time and recovery time of the three samples to different NO_2 concentrations at room temperature (RH: 26%)

*R: Response Ts: Response time Tr: Recovery time

References

- 1 G. Kang, Z. Zhu, B.-H. Tang, C.-H. Wu and R.-J. Wu, *Sensors and Actuators B: Chemical*, 2017, **241**, 1203-1209.
- M. Y. Guan, D. M. Xu, Y. F. Song and Y. Guo, Sensors and Actuators B: Chemical, 2013, 188, 1148-1154.
- 3 Y. Ge, K. Kan, Y. Yang, L. Zhou, L. Jing, P. Shen, L. Li and K. Shi, Journal of Materials Chemistry A, 2014, 2, 4961–4969.
- 4 S. Morandi, F. Prinetto, M. D. Martino, G. Ghiotti, O. Lorret, D. Tichit, C. Malagu, B. Vendemiati and M. C. Carotta, *Sens. Actuators, B*, 2006, **118**, 215-220.
- 5 H. Li, X. Su, C. Bai, Y. Xu, Z. Pei and S. Sun, Sens. Actuators, B, 2016, 225, 109-114.
- 6 H. Sun, Z. Chu, D. Hong, G. Zhang, Y. Xie, L. Li and K. Shi, *Journal of Alloys and Compounds*, 2016, **658**, 561-568.
- 7 Q. Y, W. L and W. X, Organic Electronics, 2019, 66, 102-9.
- 8 D. Wang, Z. Liu, Y. Hong, C. Lin, Q. Pan, L. Li and K. Shi, *RSC Advances*, 2020, 10, 34466-34473.
- 9 S. O. Gheibi, A. Fallah Shojaei, A. Khorshidi and S. M. Hosseini-Golgoo, *Applied Physics A*, 2021, **127**, 614
- 10 D. Hong, J. Zhang, A. U. Rehman, L. Gong, J. Zhou, K. Kan, L. Li and K. Shi, RSC Advances, 2016, 6, 103192-103198.
- 11 Y. Li, F. Zhou, L. Gao and G. Duan, *Sensors and Actuators B: Chemical*, 2018, 261, 553-565.