Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca₁₈Zn₂(HPO₄)₂(PO₄)₁₂) synthesized via phase transformation process under hydrothermal conditions Agne Kizalaite¹, Vytautas Klimavicius², Justina Versockiene³, Egle Lastauskiene³, Tomas Murauskas¹, Ramunas Skaudzius¹, Taishi Yokoi⁴, Masakazu Kawashita⁴, Tomoyo Goto^{5,6}, Tohru Sekino⁵, Aleksej Zarkov^{1,*}

¹Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania ²Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257, Vilnius, Lithuania ³Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania

⁴Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

⁵SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan

⁶Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan

*Authors to whom correspondence should be addressed.

Aleksej Zarkov: e-mail: <u>aleksej.zarkov@chf.vu.lt</u>

Figure S1. Schematic representation of the synthesis of Zn-WH powders.

Figure S2. XRD patterns of synthesis products obtained at different pH values (t = 3h; T = 200 °C).

Figure S3. XRD patterns of synthesis products after different reaction times (pH = 5.8; T =

200 °C).

Figure S4. FTIR spectrum of as-precipitated powders.

Figure S5. XRD patterns of synthesis products obtained at different reaction temperatures

(pH = 5.8, t = 3 h).

Figure S6. Rietveld refinement of the XRD data obtained for Zn-WH ($T = 200^{\circ}C$; t = 3 h; pH = 5.8) refined in space group R3c. The red circle symbols and the black solid line represent the experimental and calculated intensities, respectively, and the blue line below is the difference between them. The green tick marks indicate the positions of the Bragg peaks.

Figure S7. TG-DTG curves of Zn-WH (pH = 5.8, t = 3 h, T = 200 °C).

Figure S8. XRD patterns of synthesis products obtained with different concentrations of starting

materials (pH = 5.8, t = 3 h, T = 200 °C).

Figure S9. N_2 absorbtion-desorbtion isotherms of Zn-WH powders obtained with different total metal ion

concentrations.

Figure S10. Zinc release in SBF solution.