Supplementary Materials for

"Significant performance enhancement of Nd-doped Pb(In_{0.5}Nb_{0.5})O₃-PbTiO₃

ferroelectric crystals"

Junjie Xiong^a, Yuequn Wang^c, Xiaoming Yang^a, Wenjie Zhang^{a,b}, Zujian Wang^a,

Rongbing Su^a, Xifa Long^a, Ying Liu*^{ab}, Chao He *^{ab}

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002,

China.

^bGanjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.

^cHangzhou Applied Acoustics Research Institute, Hangzhou, 310012, China

*Corresponding Authors. E-mails: hechao@fjirsm.ac.cn (C. He), liuying@fjirsm.ac.cn

(Y. Liu)

Fig. S1 shows the powder XRD patterns of the PIN-0.33PT and Nd-PIN-0.33PT single crystals, showing perovskite structure. The enlarge of $(200)_c$ diffraction peak exhibit the broaden peaks (the right in Fig. S1), indicating near MPB region.

FIG. S1 The powder XRD patterns of PIN-0.33PT and Nd-PIN-0.33PT single crystals.

FIG. S2 The comparison of *P*-*E* hysteresis loops of $[001]_c$ -oriented PIN-PT and Nd-PIN-0.33PT crystals at room temperature.

Fig. S2 shows the polarization-electric field (*P*-*E*) hysteresis loops of $[001]_{c}$ oriented PIN-PT and Nd-PIN-0.33PT crystals at room temperature. It can be seen that the value of coercive field (*E_c*) of Nd-PIN-0.33PT crystals is the smaller than PIN-PT crystals. In addition, the value of remanent polarization (*P_r*) of Nd-PIN-0.33PT crystals shows high level. The low E_c and high P_r are beneficial to high piezoelectric performance.

FIG. S3 Temperature dependence of $\varepsilon^{T}_{33}/\varepsilon_0$ of unpoled [001]_c-oriented (a) PIN-0.33PT and (b) Nd-PIN-0.33PT crystals.

Fig. S3 shows the temperature dependence of $\varepsilon^{T}_{33}/\varepsilon_0$ of unpoled [001]_c-oriented PIN-0.33PT and Nd-PIN-0.33PT crystals. The temperature of the maximum dielectric permittivity (T_m) shifts to higher temperature with increasing frequency, showing the feature of dielectric relaxor behavior.

FIG. S4 Temperature dependence of E_c and P_r of [001]_c-oriented Nd-PIN-0.33PT crystals.

Fig. S4 shows the temperature dependence of E_c and P_r of $[001]_c$ -oriented Nd-PIN-0.33PT crystals. It can be observed that the values of E_c and P_r decline first with increasing temperature from 30 °C to 105 °C, then increase significantly from 105 °C to 120 °C, finally then decrease with further increasing temperature.

Fig. S5 shows the domain structure of $[001]_c$ -oriented Nd-PIN-0.33PT crystals as a function of temperature. It is interesting to note that there are no obvious changes of domain structure as the temperature increase from 30 °C to 90 °C, while the domains start to change after 120 °C, which corresponds to the depolarization temperature (T_d) for thermal stability of piezoelectric performance.

FIG. S5 The out-of-plane domain images of $[001]_c$ -oriented Nd-PIN-0.33PT crystals as a function of temperature (a) 30 °C, (b) 60 °C, (c) 90 °C, (d) 120 °C, (e) 150 °C, (f) 180 °C.