Electronic Supporting Information

Construction of two novel non-penetrating Co-MOFs derived from designed 2,4,6-tri(2,4-dicarboxyphenyl) pyridine: synthesis, structure and gas adsorption properties

Tao Ding,*a Zi-Yu Li,a Dan Gao,a Li-Na Zheng, Lan-Ting Shi,a Xue-Song Gong, and

Zi-Wei Gao*b

^aSchool of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China. ^bKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R China

Co-MOF 1			
Co(1)-O(5)#1	2.020(4)	Co(1)-O(1)	1.970(5)
Co(1)-O(5)#2	2.020(4)	Co(2)-O(8)#3	1.935(4)
Co(1)-O(7)#3	2.068(5)	Co(2)-O(8)#4	1.935(4)
Co(1)-O(7)#4	2.068(5)	Co(2)-O(2)	1.923(5)
O(5)#1-Co(1)-O(5)#2	89.8(3)	O(1)-Co(1)-O(7)#4	103.3(2)
O(7)#4-Co(1)-O(7)#3	91.2(4)	O(8)#3-Co(2)-O(8)#4	114.8(3)
O(1)-Co(1)-O(5)#2	95.12(18)	O(2)-Co(2)-O(8)#4	114.74(17)
O(1)-Co(1)-O(5)#1	95.12(18)	O(2)-Co(2)-O(8)#3	114.74(17)
O(1)-Co(1)-O(7)#3	103.3(2)		
Symmetry code: #1 -x	x+1,-y+1,-z+2; #2 y,x,-z+2	2; #3 -x+y+1/3,-x+2/3,z-1/3	; #4 x+1/3,x-y+2/3,z-1/3;
#5 -y+2/3,x-y+1/3,z+1/	3; #6 -y+1,-x+1,z for Co-	MOF 1.	
Co-MOF 2			
Co(1)-O(3)	2.093(3)	Co(2)-O(15)	2.083(3)
Co(1)-O(4)	2.084(3)	Co(3)-O(2)	2.136(3)
Co(1)-O(5)	2.096(3)	Co(3)-O(2)#1	2.136(3)
Co(1)-O(6)#1	2.145(3)	Co(3)-O(3)	2.057(2)
Co(1)-O(10)#2	2.087(3)	Co(3)-O(3)#1	2.057(2)

Table S1. Selected Bond Length (Å) and Angles (°) for Co-MOF 1-2

Co(1)-O(16)	2.111(3)	Co(3)-O(17)	2.136(3)
Co(2)-O(1)	2.060(3)	Co(3)-O(17)#1	2.136(3)
Co(2)-O(3)	2.080(3)	Co(4)-O(4)	1.976(3)
Co(2)-O(4)	2.138(3)	Co(4)-O(9)#2	1.993(3)
Co(2)-O(7)#1	2.114(3)	Co(4)-O(11)#3	1.977(3)
Co(2)-O(14)	2.115(3)	Co(4)-O(13)#4	2.019(3)
O(3)-Co(1)-O(5)	96.22(10)	O(14)-Co(2)-O(4)	176.15(12)
O(3)-Co(1)-O(6)#1	87.11(11)	O(15)-Co(2)-O(4)	96.95(12)
O(3)-Co(1)-O(16)	87.99(11)	O(15)-Co(2)-O(7)#1	88.36(13)
O(4)-Co(1)-O(3)	87.25(10)	O(15)-Co(2)-O(14)	86.72(13)
O(4)-Co(1)-O(5)	89.92(11)	O(2)-Co(3)-O(2)#1	180.00(7)
O(4)-Co(1)-O(6)#1	85.15(12)	O(2)-Co(3)-O(17)	89.72(11)
O(4)-Co(1)-O(10)#2	97.13(11)	O(2)-Co(3)-O(17)#1	90.28(11)
O(4)-Co(1)-O(16)	173.75(12)	O(2)#1-Co(3)-O(17)	90.28(11)
O(5)-Co(1)-O(6)#1	173.93(13)	O(2)#1-Co(3)-O(17)#1	89.72(11)
O(5)-Co(1)-O(16)	94.62(13)	O(3)-Co(3)-O(2)	95.68(10)
O(10)#2-Co(1)-O(3)	175.46(11)	O(3)#1-Co(3)-O(2)	84.32(10)
O(10)#2-Co(1)-O(5)	85.01(11)	O(3)#1-Co(3)-O(2)#1	95.68(10)
O(10)#2-Co(1)-O(6)#1	92.06(12)	O(3)-Co(3)-O(2)#1	84.32(10)
O(10)#2-Co(1)-O(16)	87.56(12)	O(3)-Co(3)-O(3)#1	180
O(16)-Co(1)-O(6)#1	90.56(14)	O(3)-Co(3)-O(17)	93.88(10)
O(1)-Co(2)-O(3)	93.63(11)	O(3)#1-Co(3)-O(17)	86.12(10)
O(1)-Co(2)-O(4)	86.97(12)	O(3)#1-Co(3)-O(17)#1	93.88(10)
O(1)-Co(2)-O(7)#1	173.54(12)	O(3)-Co(3)-O(17)#1	86.12(10)
O(1)-Co(2)-O(14)	94.34(14)	O(17)-Co(3)-O(17)#1	180.00(15)
O(1)-Co(2)-O(15)	88.10(13)	O(4)-Co(4)-O(9)#2	111.22(11)
O(3)-Co(2)-O(4)	86.19(10)	O(4)-Co(4)-O(11)#3	109.52(14)
O(3)-Co(2)-O(7)#1	90.19(11)	O(4)-Co(4)-O(13)#4	128.22(13)
O(3)-Co(2)-O(14)	90.11(11)	O(9)#2-Co(4)-O(13)#4	100.01(12)
O(3)-Co(2)-O(15)	176.50(13)	O(11)#3-Co(4)-O(9)#2	93.71(13)
O(7)#1-Co(2)-O(4)	88.10(11)	O(11)#3-Co(4)- O(13)#4	108.43(14)
O(7)#1-Co(2)-O(14)	90.86(13)	、 /	

v+3/2 7-1/2· #5	-x+1/2,y-1/2,-z+1	$\frac{1}{2} \cdot \#6 + \frac{1}{2} - x$	x+3/2 $z+1/2$ for ($\sim MOF 2$
$y + J/2, Z = 1/2, \pi J$	-A + 1/2, y-1/2,-Z + 1	$\pi 2, \pi 0 \mathbf{A} \cdot 1/2, \mathbf{\bar{y}}$	y · J/2,2 · 1/2 101 V	20 -10101 \mathbf{Z} .

Table S2. A comparison of various MOF materials used for selective adsorption for
C_2H_2 and CO_2 over CH_4 .

MOF materials	IAST calculated selectivity		Ref.
	C_2H_2/CH_4	CO ₂ /CH ₄	
$[(CH_3)_2NH_2][Zn_{1.5}(\mu_3-O)_{0.5}(F-tzba)_{1.25}(bpy)_{0.25}(\mu_2-$	14.4	4.2	22a

F) _{0.5}]·2DMF·2H ₂ O			
{[(Me ₂ NH ₂) _{0.5}][Cu _{0.75} (L) _{0.5} (DMA) _{0.375}]·H ₂ O} _n		8.3	22d
${[Cu_4(L)_2(H_2O)_4]\cdot 4DMF\cdot 8H_2O}_n$		3.2	22d
${[Cu_4(L)_2(ATZ)_2(H_2O)] \cdot 5DMF \cdot 5H_2O}_n$		7.2	22d
ZJNU-26	19	4.3	23a
Sc-ABTC	14.7		23b
${[Co_6(\mu_3-OH)_4(Ina)_8](H_2O)_{10}(DMA)_2}_n$	9.6		22c
ZJU-19	42.2	6.4	23c
MOF-505	~8.9		23d
ZJNU-15	37.7	5.0	23e
ZJNU-119	62.9	28.6	22b
NOTT-108	~6.3		23d
HNUST-2	~4.3		23d
Co-MOF 1	25.43	11.33	This work
Co-MOF 2	32.71	11.42	This work

Table S3. Results of the ICP analyses obtained for MOF materials of Co-MOF 1-2.

	Total sample quality(mg)	The expected amount of Li ⁺ ion (ppm)	The expected amount of Zn ²⁺ ion (ppm)	The ratio of Li ⁺ :Zn ²⁺ in sample	The expected ratio in cation exchange with Li ⁺
Co-MOF 1	6.10	0.397	4.50	1:11.34	1:8.48
Co-MOF 2	6.38	0.37	11.6	1:31.35	1 : 29.71

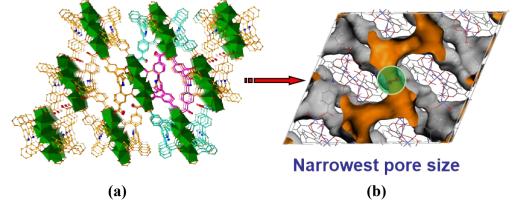
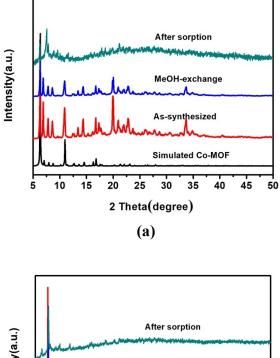



Figure S1. (a) The linkage of the $Co_7(COO)_{12}$ cluster with eight adjacent cores; (b) A

channel diagram distorted in the b-direction of Co-MOF 2.

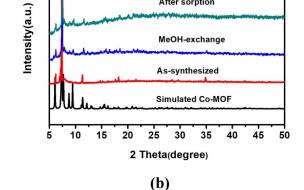
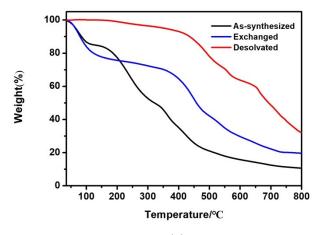
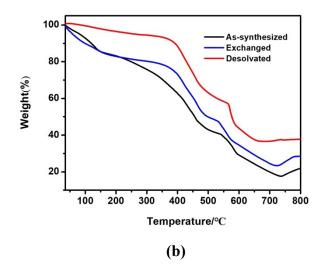




Figure S2. (a) and (b) correspond to the PXRD patterns for Co-MOF 1 and Co-MOF2: simulated, as-synthesized, exchanged and activated samples.

Figure S3. (a) and (b) correspond to the TGA for Co-MOF **1** and Co-MOF **2**: assynthesized, exchanged and desolvated samples.

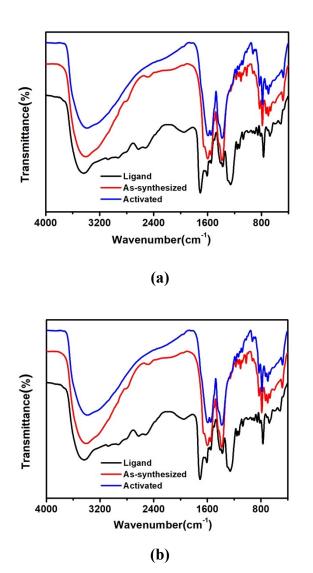
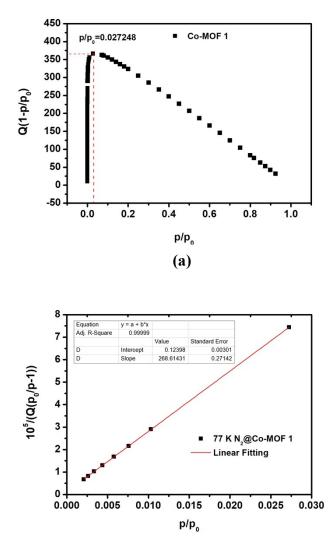
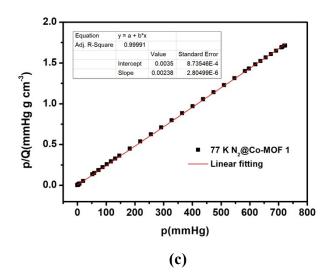


Figure S4. (a) and (b) correspond to the Infrared Spectra of H₆tdp ligand, as-

IAST adsorption selectivity calculation


The experimental isotherm data for pure C₂H₂, CO₂, C₂H₄, and CH₄ (measured at 298 K) were fitted using a Langmuir-Freundlich (L-F) model.

$$q = \frac{a * b * p^c}{1 + b * p^c}$$


Where q and p are adsorbed amounts and pressures of component *i*, respectively. The adsorption selectivities for binary mixtures of C_2H_2/CH_4 , C_2H_4/CH_4 , CO_2/CH_4 at 273 and 298 K, defined by

$$S_{ads} = (q_1 / q_2) / (p_1 / p_2)$$

Where *qi* is the amount of *i* adsorbed and *pi* is the partial pressure of *i* in the mixture.

(b)

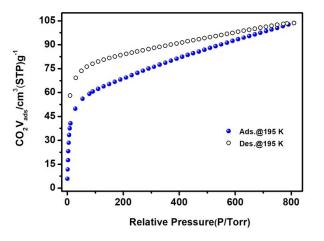
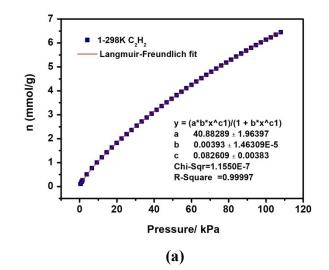
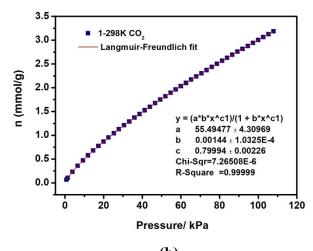
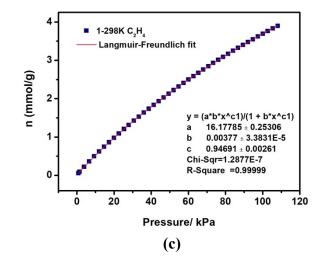
$$\begin{split} S_{BET} &= 1/(0.124 \times 10^{-6} + 268.61) \times 10^{5} / 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} \\ = 1620.64 \ m^{2} \\ g^{-1} \end{split}$$

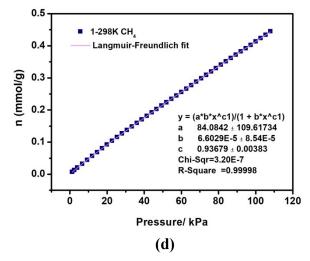
 $S_{Langmuir} = (1/0.00238)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1829.08 \text{ m}^2 \text{ g}^{-1}$

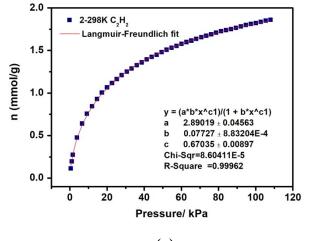
BET constant C=1+268.61/0.124×10⁵×10⁻⁶=217.62

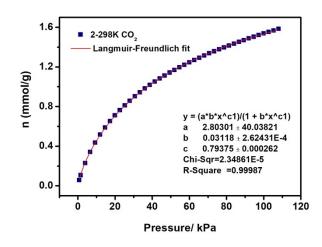
 $(P/P_0)_{nm} = \frac{1}{\sqrt{C}+1} = 0.063484$

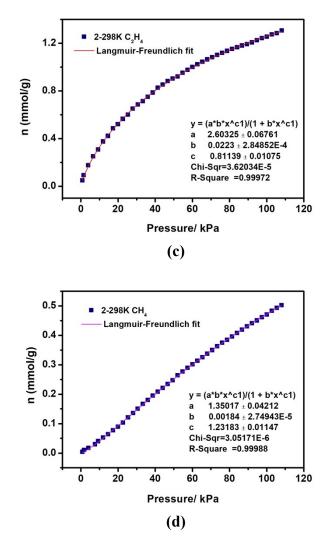
Figure S5. (a) The consistency plot, (b) BET surface area plot, and (c) Langmuir surface area plot for Co-MOF 1.


Figure S6. CO₂ adsorption and desorption isotherm curves of Co-MOF 2 at 195 K.






Figure S7. (a), (b), (c) and (d) correspond to the C₂H₂, CO₂, C₂H₄, CH₄ adsorption isotherms of Co-MOF **1** at 298 K with fitting by L-F model.

(a)

(b)

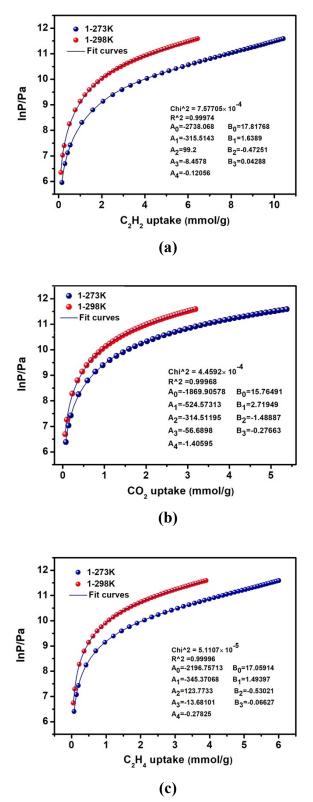
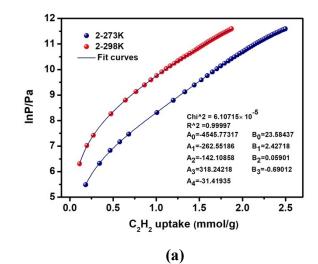
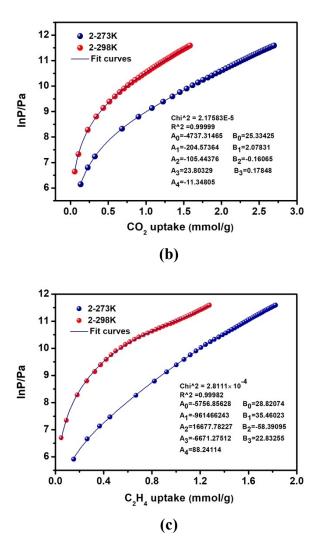


Figure S8. (a), (b), (c) and (d) correspond to the C₂H₂, CO₂, C₂H₄, CH₄ isotherms of Co-MOF **2** at 298 K with fitting by L-F model.


Calculation of sorption heat for C₂H₂ and CO₂ uptakes using Virial II model


The above equation was applied to fit the C_2H_2 , C_2H_4 and CO_2 adsorption isotherm data for desolvated Co-MOF **1** and Co-MOF **2** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i}Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

Figure S9. (a), (b) and (c) correspond to the Virial analysis of the C₂H₂, CO₂, C₂H₄ adsorption data at 298 K and 273 K for Co-MOF **1**.

Figure S10. (a), (b) and (c) correspond to the Virial analysis of the C₂H₂, CO₂, C₂H₄ adsorption data at 298 K and 273 K for Co-MOF **2**.