Supporting Information

Tetranitro- and Tetraamino- dibenzo[18]crown-6-ether Derivatives: Complexes for Alkali Metal Ions, Redox Potentials, Crystal Structures, Molecular Sorption, and Proton Conducting Behaviours

Yuta Shimizu,^a Takashi Takeda,^{a, b}* Norihisa Hoshino,^{a, b} and Tomoyuki Akutagawa ^{a, b}*

^a Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan and ^b Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Phone: +81-22-217-5653

Fax: +81-22-217-5655

E-mail <u>akutagawa@tohoku.ac.jp</u>

Contents

- 1. Experimental section
- 2. CV charts of 1 (FiguresS1 and S2).
- 3. UV-vis spectra of 1 and 2 in DMSO (Figures S3 and S4).
- 4. Time-dependent UV-vis spectra of 2 in DMSO (Figure S5).
- 5. HOMO levels for the protonation of OPD and 2 (Figure S6).
- 6. TG and PXRD of thermally annealed 1 (Figure S7).
- 7. Unit cell of [Na(1)I]•2CH₃CN (Figure S8).
- 8. One-dimensional array of [K(1)I]•3CH₃CN (Figure S9).
- 9. Crystal structure of [Rb(1)I]•CH₃CN (Figure S10).
- 10. One-dimensional coordination array of [Cs(1)I] (Figure S11).
- 11. TG charts of **2**, [Na(**2**)(H₂SO₄)₃]•nH₂O, and [K(**2**)(H₂SO₄)₃]•nH₂O (Figure S12).
- 12. HSO_4^- arrangements in $[Na(2)(H_2SO_4)_3] \cdot nH_2O$ (Figure S13).
- 13. *T* and *f*-dependent dielectric responses and proton-conducting behavior of $[(Na^+)_{0.25}(H_3O^+)_{0.5}(H_22^{2+})(HSO_4^-)_{2.75}(H_2SO_4)_{0.25}] \cdot 6H_2O$ (Figure S14).
- 14. *T* and *f*-dependent dielectric responses and proton-conducting behavior of dehydrated $[(Na^+)_{0.25}(H_3O^+)_{0.5}(H_22^{2+}) \cdot (HSO_4^-)_{2.75}(H_2SO_4)_{0.25}]$ (Figure S15).
- T- and f-dependent dielectric responses and proton-conducting behavior of [K⁺(H₂2²⁺)(HSO₄⁻)₃]•4H₂O (Figure S16).
- 16. *T* and *f*-dependent dielectric responses and proton-conducting behavior of dehydrated $[K^+(H_22^{2+})(HSO_4^-)_3]$ (Figure S17).

Experimental section

Physical measurements.

UV-vis-NIR and IR spectra were recorded using PerkinElmer Lambda 750 and Thermo Fisher Scientific Nicolet 6700 FT-IR spectrophotometers, respectively. Thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) analysis were conducted using a Rigaku Thermo plus TG8120 thermal analysis station and a Mettler DSC1-T with an Al₂O₃ reference and a heating and cooling rate of 5 K min⁻¹ under a nitrogen atmosphere. The *T*-dependent dielectric constants were measured using the two-probe AC impedance method from 100 Hz to 1 MHz (Hewlett-Packard, HP4194A) and the temperature controller of a Linkam LTS-E350 system. The electrical contacts were prepared using gold paste (Tokuriki 8560) to attach 25-µm ϕ gold wires to the 3-mm ϕ compressed pellet, as well as 10-µm ϕ gold wires to each single crystal.

Preparation.

Crown ethers **1** and **2** were prepared using the methods stated in the literature.⁵⁹ Yellow-colored single-crystals of $1 \cdot 2CH_3CN$ were obtained via the slow evaporation of the crystallization solvent of CH₃CN; this was obtained using **1** (9.80 mg, 18.1 µmol) and Lil (3.65 mg, 27.3 µmol) in boiling CH₃CN (3 mL). White-needle single-crystals of **2** · 0.33H₂O were obtained by the recrystallization of **2** from boiling CH₃OH in the presence of hydrated hydrazine.

Orange-colored block-shaped single-crystals of $[Na(1)I] \cdot 3CH_3CN$ were obtained via the slow evaporation of CH₃CN (10 mL) dissolved in **1** (23.5 mg, 43.4 µmol) and NaI (20.7 mg, 138 µmol). Yellow-colored block-shaped single-crystals of $[K(1)I] \cdot 4CH_3CN$ were obtained via the slow evaporation of the crystallized CH₃CN (10 mL) dissolved in **1** (20.6 mg, 38.1 µmol) and KI (20.2 mg, 122 µmol). Yellow-colored block-shaped single-crystals of $[Rb(1)I] \cdot 3CH_3CN$ were obtained via the slow evaporation of block-shaped block-shaped single-crystals of $[Rb(1)I] \cdot 3CH_3CN$ were obtained via the slow evaporation of boiling CH₃CN (10 mL) dissolved in **1** (20.3 mg, 37.6 µmol) and RbI (29.2 mg, 138 µmol). Yellow-colored block-shaped single-crystals of $(Cs^+\bullet 1)\bullet I^-$ were prepared via slow evaporation of boiling CH₃CN (10 mL) dissolved in **1** (20.2 mg, 37.4 µmol) and CSI (20.6 mg, 79.4 µmol).

S3

Red needle-shaped single-crystals of $[Na(2)(H_2SO_4)_3] \cdot nH_2O$ were prepared by mixing 2 (20.5 mg, 48.8 µmol) and NaI (24.4 mg, 163 µmol) in dilute H₂SO₄ (1.64 M, 6 mL); the solution was subjected to two-phase diffusion at 281 K using CH₃OH. Red needle-shaped single-crystals of $[K(2)(H_2SO_4)_3] \cdot nH_2O$ were obtained by mixing 2 (69.9 mg, 166 µmol) and KI (75.1 mg, 452 µmol) in a dilute H₂SO₄ solution (1.64 mol/L, 20 mL), which was placed in the two-phase diffusion crystallization environment of CH₃OH at 281 K. Elemental analysis: Calc. for C₂₀H₄₃N₄Na_{0.25}O_{22.5}S₃ {[(Na⁺)_{0.25}(2)(H₂SO₄)₃] · 4.5H₂O}: C, 29.97; H, 5.41; N, 6.99. Found: C, 29.88; H, 5.42; N, 6.85. Calc. for C₂₀H₄₈KN₄O₂₅S₃ {[(K⁺)_{0.25}(2)(H₂SO₄)₃] · 7H₂O}: C, 27.30; H, 5.50; N, 6.37. Found: C, 27.54; H, 5.37; N, 6.38.

Structural determination of crystals.

Single crystals were obtained using a slow-cooling method. Crystallographic data were collected using a Rigaku RAPID-II diffractometer equipped with a rotating anode fitted with multilayer confocal optics and Cu K α (λ = 1.54187 Å) radiation from a graphite monochromator at T = 100 K. Structural refinements were performed using the full-matrix least-squares method on F^2 . Calculations were performed using Crystal Structure software packages. All parameters (except for those of the hydrogen atoms), were refined using anisotropic temperature factors. Table 1 summarizes the crystal data and parameters.

Theoretical calculations.

Density functional theory (DFT) calculations of **1**, **2**, $H_2 2^{2+}$, and the related molecules were performed using the Gaussian 16 program package. The optimized molecular structures were obtained via DFT calculations based on the B3LYP/6-31G (d, p) basis set.

Crystal	1 ·2CH₃CN	[Na(1)I]·3CH ₃ CN	[K(1)I]·4CH ₃ CN	[Rb(1)I]·3CH ₃ CN	
Formula	$C_{22}H_{23}N_5O_{14}$	$C_{26}H_{31}N_7O_{14}Nal$	$C_{26}H_{31}N_7O_{14}KI$	$C_{26}H_{29}RbIN_7O_{14}$	
Formula weight	581.45	815.46	870.61	875.93	
Space group	Pnma (#62)	<i>Pbca</i> (#61)	<i>Pca</i> 2 ₁ (#29)	<i>P</i> -1 (#2)	
<i>a,</i> Å	7.5672(3)	17.6971(3)	18.5633(3)	10.6237(3)	
<i>b,</i> Å	22.2189(8)	18.6927(3)	9.31515(17)	11.2609(4)	
<i>c,</i> Å	15.2555(6)	20.9582(4)	21.2695(4)	15.1068(5)	
lpha, deg	-	_	-	88.389(6)	
eta, deg	-	_	-	82.391(6)	
γ, deg	_	_	_	74.364(5)	
<i>V,</i> Å ³	2564.97(18)	6933.1(2)	3677.91(12)	1725.01(11)	
Ζ	4	8	4	2	
D _{calc} , g⋅cm ⁻³	1.511	1.562	1.572	1.686	
<i>μ</i> , cm ⁻¹	11.131	80.387	85.157	96.568	
Reflections	26379	73769	39737	18919	
measured					
Independent	2407	6336	6663	6167	
reflections					
Reflections used	2407	6336	6663	6167	
R _{int}	0.0726	0.1081	0.0503	0.0961	
R_1^{a}	0.0620	0.0638	0.0506	0.0572	
R _{all}	0.0926	0.0844	0.0642	0.0707	
<i>R</i> _w (F ₂) ^{<i>a</i>}	0.2290	0.1443	0.1469 0.0961		
GOF	0.837	1.039	1.095	1.073	
CCDC	2168847	2168842	2168840	2168843	

 Table S1. Crystal data, data collection, and reduction parameters of 1 and 2.

Crystal	[Cs(1)I]	2 .0.33H₂O	[Na(2)(H ₂ SO ₄) ₃]·	[K(2)(H ₂ SO ₄) ₃]·
			6H ₂ O	4(H ₂ O)
Chemical	$C_{20}H_{20}CsIN_4O_{14}$	$C_{20}H_{28}N_4O_{6.33}$	$C_{40}H_{80}N_8Na$	$C_{20}H_{21}KN_4$
formula			O _{42.5} S ₆	O ₂₂ S ₃
Formula weight	800.21	425.74	1568.45	796.68
Space group	P21/n (#14)	P21 (#4)	Pca21 (#29)	Pna21 (#33)
<i>a,</i> Å	9.15319(17)	16.8353(4)	34.7439(9)	11.1964(2)
<i>b,</i> Å	17.8073(3)	8.4802(2)	8.1437(2)	16.8470(4)
<i>c,</i> Å	16.9471(3)	23.1290(6)	23.0281(6)	19.1707(4)
lpha, deg	_	-	_	_
eta, deg	105.200(7)	110.799(8)	-	-
γ, deg	_	-	_	-
<i>V</i> , Å ³	2665.63(13)	3086.9(2)	6515.6(3)	3616.10(13)
Ζ	4	6	4	4
D _{calc} , g⋅cm ⁻³	1.994	1.374	1.599	1.463
μ , cm ⁻¹	206.212	8.636	30.052	36.931
Reflections	28791	34844	71878	40108
measured				
Independent	4823	9990	11887	6508
reflections				
Reflections used	4823	9990	11887	6508
R _{int}	0.1501	0.0338	0.0774	0.0354
R ₁ ^a	0.0554	0.0709	0.1115	0.0819
R _{all}	0.0683	0.0980	0.1533 0.0957	
<i>R</i> _w (F ₂) ^{<i>a</i>}	0.1174	0.2302	0.3417 0.2570	
GOF	1.066	1.060	1.175	1.047
CCDC	216884	2168845	2168846 2168844	

 ${}^{a}R = \Sigma \mid \mid F_{o} \mid - \mid F_{c} \mid \mid / \Sigma \mid F_{o} \mid \text{ and } R_{w} = (\Sigma \omega (\mid F_{o} \mid - \mid F_{c} \mid)^{2} / \Sigma \omega F_{o}^{2})^{1/2}.$

Figure S1. CV charts of **1** under the existence of 10 molar Li⁺, Na⁺, and K⁺ in DMSO (WE: GC, CE: Pt, Supporting electrolyte: TBABF₄ (0.1 M), Sweep speed: 0.1 V sec⁻¹).

Table S2. Redox potentials of **1** under the existence of 10 molar Li^+ , Na^+ , and K^+ in DMSO (WE: GC, CE: Pt, Supporting electrolyte: TBABF₄ (0.1 M), Sweep speed: 0.1 V sec⁻¹).

	E^{ox} [V]	$E^{\rm red}$ [V]	$E_{1/2}$ [V]	$\Delta E [mV]$
Non	-0.721	-0.839	-0.780	-
Li^+	-0.738	-0.844	-0.791	-11.0
Na^+	-0.731	-0.841	-0.786	-6.0
\mathbf{K}^+	-0.734	-0.827	-0.781	-0.5

Figure S2. CV charts of **1** and *o*-DNB in DMSO (WE: GC, CE: Pt, Supporting electrolyte: TBABF₄ (0.1 M), Sweep speed: 0.1 V sec^{-1}).

Figure S3. UV-vis spectra of **1** and **2** in DMSO by the additions of 10 molar Li⁺, Na⁺, and K⁺. The baselines were shifted to clarify the spectra.

Figure S4. UV-vis spectra of 1, 2, and OPD in DMSO.

Figure S5. Time-dependent UV-vis spectra of 2 in DMSO.

Figure S6. Theoretical calculations of HOMO levels for the protonation of OPD \rightarrow HOPD⁺ \rightarrow H2OPD²⁺ and $2 \rightarrow$ H2⁺ \rightarrow H₂2²⁺.

Figure S7. Thermally annealed powder sample of **1**. a) TG chart and b) XRD pattern of annealed powder and simulated pattern of single-crystal X-ray analysis at 100 K.

M1~O	M1~O1	M1~O2	M1~O3	M1~O4	M1~O5	M1~O6
Na~O	Na1~O1	Na1~O2	Na1~O3	Na1~O4	Na1~O5	Na1~O6
	2.737(4)	2.726(4)	2.738(4)	2.694(4)	2.597(4)	2.654(4)
K~O	K1~O1	K1~O2	K1~O3	K1~O4	K1~O5	K1~O6
	2.802(4)	2.751(4)	2.844(4)	2.786(5)	2.812(4)	2.865(4)
Rb~O	Rb1~O1	Rb1~O2	Rb1~O3	Rb1~O4	Rb1~O5	Rb1~O6
	3.075(3)	2.898(3)	2.955(3)	3.101(3)	3.039(4)	3.048(3)
Cs~O	Cs1~O1	Cs1~O2	Cs1~O3	Cs1~O4	Cs1~O5	Cs1~O6
	3.255(4)	3.260(5)	3.167(5)	3.301(5)	3.222(6)	3.208(5)

Table S3. $M^+ \sim O$ distances of M(1) structures in [M(1)I] \cdot nCH₃CN salts. .

Figure S8. Unit cell of (Na⁺•1)•2(CH₃CN) viewed along the *b*-axis.

Figure S9. One-dimensional array of $(K^+ \cdot 1) \cdot 3(CH_3CN)$ along the *c*-axis.

Figure S10. Crystal structure of (Rb⁺•1)•(CH₃CN). a) Coordination dimer and the unit cell of (Rb⁺•1)•(CH₃CN) viewed along the *a*-axis.

Figure S11. One-dimensional coordination array of (Cs⁺•1) along the *a*-axis.

Figure S12. TG charts of 2, $(Na^+ \cdot 2) \cdot (HSO_4^-)_3 \cdot n(H_2O)$, and $(K^+ \cdot 2) \cdot (HSO_4^-)_3 \cdot n(H_2O)$.

Figure S13. HSO_4^- arrangements in $(Na^+ \cdot 2) \cdot (HSO_4^-)_3 \cdot n(H_2O)$.

Figure S14. *T*- and *f*-dependent dielectric responses and proton-conducting behavior of $(Na^+)_{0.25}(H_3O^+)_{0.5}(H_22^{2+}) \cdot (HSO_4^-)_{2.75}(H_2SO_4)_{0.25} \cdot 6(H_2O)$. a) The ε_1 responses of the hydrated crystals. b) Arrhenius plots of *T*- and *f*-dependent ε_2 responses.

Figure S15. *T*- and *f*-dependent dielectric responses and proton-conducting behavior of dehydrated $(Na^+)_{0.25}(H_3O^+)_{0.5}(H_22^{2+}) \cdot (HSO_4^-)_{2.75}(H_2SO_4)_{0.25}$. The ε_1 responses of the dehydrated crystals. b) Cole – Cole plot at 340 K.

Figure S16. *T*- and *f*-dependent dielectric responses and proton-conducting behavior of $(K^{+} \cdot H_2 2^{2+}) \cdot (HSO_4^{-})_3 \cdot 4(H_2O)$. a) The ε_1 responses of the hydrated crystals. b) Arrhenius plots of *T*- and *f*-dependent ε_2 responses.

Figure S17. *T*- and *f*-dependent dielectric responses and proton-conducting behavior of dehydrated ($K^+ \cdot H_2 2^{2+}$) $\cdot (HSO_4^-)_3 \cdot 4(H_2O)$. a) The ε_1 responses of the dehydrated crystals. b) Cole – Cole plot at 340 K. c) Arrhenius plots of *T*- and *f*-dependent ε_2 responses.