Electronic Supplementary Information

Electronic Modulation of Cobalt Phosphide by Lanthanum Doping for Efficient Overall Water Splitting in Alkaline Media

Daekyu Kim,^a Yuan Yuan,^a and Lawrence Yoon Suk Lee^{a,b,*}

- ^{*a*} Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
- ^b Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR

* Corresponding Author: lawrence.ys.lee@polyu.edu.hk (L. Y. S. Lee)

Scheme 1. Schematic illustration of the fabrication process of La-CoP on carbon cloth (CC).

Fig. S1. Equivalent circuit used for EIS data analysis.

Fig. S2. (a, b) SEM of ZIF-67 on carbon cloth.

Fig. S3. SEM images of (a) $Co(OH)_2$ and (b) CoP on carbon cloth. (c) TEM and (d) HRTEM images of CoP. (e) The corresponding EDX mapping images of CoP showing Co, P, and O elements.

Fig. S4. (a) XRD patterns and (b) Raman spectra of $Co(OH)_2$ and $La-Co(OH)_2$ on carbon cloth. The right panel in (a) is the enlarged region between 10 and 12°.

Fig. S5. XRD patterns of CoP and La-CoP on carbon cloth. The right panel is the enlarged region between 47 and 49°.

Fig S6. La-doping levels in a series of La-doped CoP.

Fig. S7. XRD patterns of CoP, La-CoP- C_1 , and La-CoP- C_2 on carbon cloth.

Fig. S8. SEM images of (a) La-CoP-C₁ and (b) La-CoP-C₂.

Fig. S9. CV curves of (a, d) CoP and (b, e) La-CoP obtained at various scan rates. C_{dl} measurements of CoP and La-CoP under (c) OER and (f) HER conditions.

Fig. S10. (a, b) SEM images of La-CoP on carbon cloth after OER test.

Fig. S11. (a, b) SEM images of La-CoP on carbon cloth after HER test.

Fig. S12. High-resolution XPS spectra of La-CoP in La 3d region after OER (top) and HER (bottom).

Samples -		Atomic ratio	
	Со	Р	La
СоР	1	1.26	-
La-CoP	1	1.44	0.06
La-CoP-C ₁	1	1.43	0.03
La-CoP-C ₂	1	1.48	0.13

Table S1. ICP-OES analysis results of CoP and La-doped CoP samples.

 Table S2. Summary of loading masses of the as-prepared catalysts on carbon cloth.

Sample	Loading mass (mg cm ⁻²)
CoP	4.21
La-CoP-C ₁	4.48
La-CoP	4.88
La-CoP-C ₂	5.27

Catalyst	Support	Overpotential (mV) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
P@pCoPc-1/Co ₃ O ₄	$\mathrm{C}\mathrm{C}^a$	320	57.4	1
Co-LDH@ZIF-67	CC	187	59	2
Co-P@IC/(Co-Fe)P	CC	174	18	3
Cr-CoP	CP ^b	251	47	4
20% Rh-doped CoFe-ZLDH	NF ^c	245 ^e	42.8	5
CoP-InNC@CNT	CC	270	84	6
Er-doped CoP	CC	256	70	7
Co@N-CS/N-HCP	CC	248	68	8
NDCHN	GCE^d	270	63.9	9
Ni–Co–P HNBs	NF	270	76	10
CoP/NCNHP	GCE	310	70	11
CoPO	GCE	280	59	12
Мо-СоООН	CC	305	56	13
NiCoP@Cu ₃ P	CF	309	42	14
Co/CoP	GCE	340	79.5	15
NiCoP/C	GCE	330	96	16
CoTe ₂ @NCNTFs	NF	330	83	17
Co/β-Mo ₂ C@N-CNTs	GCE	356	67	18
CoV-UAH	NF	250	44	19
P/MoCo ₃ O ₄	CC	265	59.4	20
La-CoP	CC	270	67.4	This work

Table S3. Comparison of OER performances of La-CoP with recently reported electrocatalysts in alkaline solution.

^{*a*} CC: carbon cloth, ^{*b*} CP: carbon paper, ^{*c*} NF: nickel foam, ^{*d*} GCE: glassy carbon electrode, and ^{*e*} Measured at 100 mA cm⁻².

Sample	$R_{s}(\Omega)$	CPE	$R_{ct}(\Omega)$
СоР	4.754	0.0909	12.9
La-CoP-C ₁	3.928	0.0730	8.74
La-CoP	3.253	0.227	3.95
La-CoP-C ₂	3.399	0.144	5.02
RuO ₂	4.097	0.0033	12.8

Table S4. Summary of EIS parameters of the catalysts obtained during the OER process.

Catalyst	Support	Overpotential (mV) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
P@pCoPc-1/Co ₃ O ₄	CC ^a	120	98.4	1
Co-P@IC/(Co-Fe)P	CC	53	88	3
Cr-CoP	CP ^b	67	31	4
20% Rh-doped CoFe-ZLDH	NF ^c	28	42.8	5
CoP-InNC@CNT	CC	159	56	6
Er-doped CoP	CC	66	61	7
Co@N-CS/N-HCP	CC	66	65	8
NDCHN	GP^d	201	133.2	9
Ni–Co–P HNBs	NF	107	46	10
CoP/NCNHP	GCE ^e	115	66	11
CoPO	GCE	158	101	12
Mo-CoP	CC	40	65	13
NiCoP@Cu ₃ P	CF	54	72	14
Co/CoP	GCE	253	73.8	15
CoTe ₂ @NCNTFs	NF	208	58	17
Co/β-Mo ₂ C@N-CNTs	GCE	170	92	18
Cr-doped FeNi-P/NCN	NF	190	68.51	21
CoNiP-0.25	GCE	145.8	52	22
FeCo	GCE	149	77	23
La-CoP	CC	109	64.3	This work

Table S5. Comparison of HER performances of La-CoP with recently reported electrocatalysts in alkaline solution.

^{*a*} CC: carbon cloth, ^{*b*} CP: carbon paper, ^{*c*} NF: nickel foam, ^{*d*} GP: graphite paper, ^{*e*} GCE: glassy carbon electrode.

Sample	$R_{s}(\Omega)$	CPE	$R_{ct}(\Omega)$
СоР	3.96	0.0048	22.3
La-CoP-C ₁	3.231	0.0068	11.8
La-CoP	4.002	0.0079	4.04
La-CoP-C ₂	3.276	0.0089	6.04
Pt/C	3.678	0.0005	2.28

Table S6. Summary of EIS parameters of the catalysts obtained during the HER process.

Catalyst	Support	Overpotential (V)	Ref.
P@pCoPc-1/Co ₃ O ₄	CC ^a	1.672	1
Co-P@IC/(Co-Fe)P	CC	1.46	3
Cr-CoP	CP ^b	1.59	4
20% Rh-doped CoFe-ZLDH	NF ^c	1.46	5
CoP-InNC@CNT	CC	1.58	6
Er-doped CoP	CC	1.58	7
Co@N-CS/N-HCP	CC	1.545	8
NDCHN	GP^d	1.701	9
Ni-Co-P HNBs	NF	1.62	10
CoP/NCNHP	GCE ^e	1.64	11
CoPO	GCE	1.67	12
CoTe ₂ @NCNTFs	NF	1.67	17
Co/β-Mo ₂ C@N-CNTs	GCE	1.64	18
La-CoP	CC	1.068	This work

Table S7. Comparison of cell potentials at 10 mA cm⁻² of La-CoP and recently reported analogous catalysts for overall water splitting catalysis.

^{*a*} CC: carbon cloth, ^{*b*} CP: carbon paper, ^{*c*} NF: nickel foam, ^{*d*} GP: graphite paper, ^{*e*} GCE: glassy carbon electrode. All electrochemical tests were conducted in 1.0 M KOH

References

- 1. Y. Kim, D. Kim, J. Lee, L. Y. S. Lee and D. K. P. Ng, Adv. Funct. Mater., 2021, 31, 2103290.
- Z. Li, X. Zhang, Y. Kang, C. C. Yu, Y. Wen, M. Hu, D. Meng, W. Song and Y. Yang, *Adv. Sci.*, 2021, 8, 2002631.
- Y. Zhu, L. Zhang, X. Zhang, Z. Li, M. Zha, M. Li and G. Hu, *Chemical Engineering Journal*, 2021, 405, 127002.
- W. Li, Y. Jiang, Y. Li, Q. Gao, W. Shen, Y. Jiang, R. He and M. Li, *Chem. Eng. J.*, 2021, 425, 130651.
- K. Zhu, J. Chen, W. Wang, J. Liao, J. Dong, M. O. L. Chee, N. Wang, P. Dong, P. M. Ajayan, S. Gao, J. Shen and M. Ye, *Advanced Functional Materials*, 2020, 30, 2003556.
- L. Chai, Z. Hu, X. Wang, Y. Xu, L. Zhang, T.-T. Li, Y. Hu, J. Qian and S. Huang, *Advanced Science*, 2020, 7, 1903195.
- G. Zhang, B. Wang, J. Bi, D. Fang and S. Yang, *Journal of Materials Chemistry A*, 2019, 7, 5769-5778.
- Z. Chen, Y. Ha, H. Jia, X. Yan, M. Chen, M. Liu and R. Wu, *Adv. Energy Mater.*, 2019, 9, 1803918.
- 9. L. Zhang, J.-S. Hu, X.-H. Huang, J. Song and S.-Y. Lu, Nano Energy, 2018, 48, 489-499.
- 10. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy & Environmental Science*, 2018, **11**, 872-880.
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610-2618.
- 12. G. Anandhababu, Y. Huang, D. D. Babu, M. Wu and Y. Wang, *Adv. Funct. Mater.*, 2018, **28**, 1706120.
- C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook and J. Wang, *Nano Energy*, 2018, 48, 73-80.
- 14. X. Ma, Y. Chang, Z. Zhang and J. Tang, J. Mater. Chem. A, 2018, 6, 2100-2106.
- 15. Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li and J.-S. Chen, *Adv. Energy Mater.*, 2017, 7, 1602355.
- 16. P. He, X.-Y. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.
- 17. X. Wang, X. Huang, W. Gao, Y. Tang, P. Jiang, K. Lan, R. Yang, B. Wang and R. Li, *Journal of Materials Chemistry A*, 2018, **6**, 3684-3691.

- T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao and Z.-Q. Liu, Angewandte Chemie International Edition, 2019, 58, 4923-4928.
- 19. J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo and S. Yang, *Energy Environ. Sci.*, 2018, **11**, 1736-1741.
- 20. R. Li, B. Hu, T. Yu, H. Chen, Y. Wang and S. Song, Adv. Sci., 2020, 7, 1902830.
- 21. Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu and X. Lu, *Adv. Mater.*, 2019, **31**, 1900178.
- 22. Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu, Y. Geng and L. Wang, J. Mater. Chem. A, 2019, 7, 8602-8608.
- 23. Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang and Q. Chen, *ACS Catal.*, 2017, 7, 469-479.