Unravelling Semiconductor Properties of Mixed Stack Donor Acceptor Cocrystals of Pyrene

Derivatives and TCNQ: Effect of Crystal Packing versus Super-exchange Mechanism

Arkalekha Mandal^{a*}

^a School of Chemical Sciences, National Institute of Science Education and Research (NISER),
 HBNI, Bhubaneswar, PO Bhimpur - Padanpur, Via Jatni, District Khurda, Odisha 752050, India
 Corresponding email address: <u>arkalekhamandal@gmail.com</u>

Table of Contents

- 1. Computational methods
- 2. TD-DFT calculation table for cocrystal ${\bf 1}$ and ${\bf 2}$
- 3. Dipole moment in cocrystal 1
- 4. Dipole moment in cocrystal 2
- 5. HOMO and LUMO of donors
- 6. MOs involved in selected electronic transition of cocrystals
- 7. Direct hole transfer integral in cocrystal 1
- 8. Direct electron and hole transfer integral in cocrystal 2
- 9. Four point model of internal reorganization energy
- 10. Energy of neutral and ionic donors

Computational methods

Gaussian 16 program package have been used for calculations. The energies of the HOMO/ LUMO of the donor and acceptor have been calculated at B3LYP/6-31G(d,p) level. Natural bond orbital (NBO) analysis on the mixed $\pi \cdots \pi$ stacked donor acceptor pairs have been performed at M06-2X/6-31G(d,p) level to take account of the considerable dispersion contribution of $\pi \cdots \pi$ stacking interaction. The HOMO/LUMO of the cocrystal were calculated at CAM-B3LYP/6-31G(d,p) level using the crystal coordinates of π -stacked DDA trimer. Similarly, static dipole moment and Mulliken charge analyses of D–A dimers have been performed at CAM-B3LYP/6-31G(d,p) level on the crystal coordinates. Time dependent DFT (TD-DFT) calculations have been performed with the hybrid exchange-correlation CAM-B3LYP functional, which comprises of 19% Hartree–Fock (HF) exchange interaction at the short-range, and 65% HF at the long-range to account for electron-electron repulsion effect in π -stacked molecules. Internal reorganization energy (λ) was calculated at B3LYP/6-31G(d,p) level by summing up the reorganization energies at ground (λ_i) and excited (λ_t) state of cation/anion (Fig. S8). Following parameters were calculated for reorganization energy (λ_{int}).

 $\lambda = \lambda_i + \lambda_f = (E^{**}_{cation/anion} - E_{neutral}) + (E^{*}_{cation/anion} - E_{cation/anion})$; while $\lambda_i = (E^{**}_{cation/anion} - E_{neutral})$, and $\lambda_f = (E^{*}_{cation/anion} - E_{cation/anion})$. The $E_{neutral}$ and $E^{*}_{cation/anion}$ indicate the energies of the optimized geometry of neutral molecule and cation/ anion with optimized neutral molecule coordinates, respectively. Similarly, $E_{cation/anion}$ and $E^{**}_{cation/anion}$ denote the energies of optimized geometry of the cation/ anion and neutral molecule with coordinates of optimized geometry of the neutral state.

Table S1. Calculated wavelength, oscillator strength, transition energy and orbital contributions at CAM-B3LYP/6-31G(d,p) level for selected states in the cocrystal dimer/ tetramer

Cocrystal	Electronic	Calculated	Oscillator	Energy of	Molecular
	Transition	wavelength (nm)	strength	transition (eV)	Orbital contributions
(PPA)2:TCNQ	$S_0 \rightarrow S_2$	401	0.0565	3.092	HOMO-3→LUMO, 21%
					HOMO-2→LUMO, 15%
					HOMO-1→LUMO, 64%
	$S_0 \rightarrow S_3$	363	0.3669	3.413	HOMO-3→LUMO, 29%
					HOMO-2→LUMO, 54%
					HOMO-5→LUMO, 17%
NPPO:TCNQ	$S_0 \rightarrow S_2$	585	0.0117	1.121	HOMO-4→LUMO+1, 11%
					HOMO-3→LUMO+1, 27%
					HOMO→LUMO+1, 62%
	$S_0 \rightarrow S_3$	540	0.0141	2.296	HOMO-4→LUMO+1, 30%
					HOMO-3→LUMO+1, 46%
					HOMO-1→LUMO+1, 14%
					HOMO→LUMO+1, 24%
	Sa Sa	/08	0.0014	2 /01	HOMO-5→LUMO, 31%
	50 , 54	120	0.0017	2.171	HOMO-1→LUMO, 69%

Fig. S1 Static dipole moment in (PPA)₂:TCNQ cocrystal.

Fig. S2a Static dipole moment in pair I (pyrene–TCNQ) in cocrystal NPPO:TCNQ.

Fig. S2b Static dipole moment in pair II (naphthalene–TCNQ) in cocrystal NPPO:TCNQ.

Fig. S3 Static dipole moment in pair II (naphthalene–TCNQ) in cocrystal NPPO:TCNQ.

Fig. S4 Molecular orbitals taking part in selected electronic transitions in (PPA)₂:TCNQ.

Fig. S5 Molecular orbitals taking part in selected electronic transitions in NPPO:TCNQ.

Fig. S6 (a) Direct hole transfer integral in nearest DD pair along mixed π -stack of cocrystal 1 [(PPA)₂:TCNQ]; (b) direct and electron transfer integral in nearest DD pair along mixed π -stack of cocrystal 2 [NPPO:TCNQ]; calculated at CAM-B3LYP/6-31G(d,p).

Fig. S7 Direct hole transfer integral in nearest DD pair of cocrystal **1** [(PPA)₂:TCNQ], calculated at CAM-B3LYP/6-31G(d,p).

Fig. S8 (a) Direct hole transfer integral in nearest DD pair of cocrystal **2** (NPPO:TCNQ); (b) direct and electron transfer integral in nearest AA pair of cocrystal **2**; calculated at CAM-B3LYP/6-31G(d,p).

Fig. S9 Four point model for reorganization energy calculation.

Species	Energy (Hartree)		
Optimized, neutral PPA	-1016.70135532		
Cationic, single point PPA	-1016.44493898		
Optimized, cationic PPA	-1016.44874178		
Neutral, single point PPA	-1016.44493898		
Optimized, neutral NPPO	-1191.47608178		
Cationic, single point NPPO	-1191.22480688		
Optimized, cationic NPPO	-1191.22220549		
Neutral, single point NPPO	-1191.47349118		
Optimized, neutral TCNQ	-678.74325248		
Anionic, single point TCNQ	-678.70360799		
Optimized, Anionic TCNQ	-678.70845690		
Neutral, single point TCNQ	-678.73853315		

Table S2 Energy of neutral and ionic donors and acceptor