Supplementary information
 An isotropic three-dimensional organic semiconductor 2-(thiopyran-4-ylidene)-1,3-benzodithiole (TP-BT): asymmetric molecular design to suppress access resistance

Hiroshi Nishimoto, ${ }^{\text {a }}$ Tomofumi Kadoya, ${ }^{\text {b }}$ Rikyu Miyake, ${ }^{\text {c }}$ Takeshi Oda, ${ }^{\text {b }}$ Jun-ichi Nishida, ${ }^{*}$ K Kazuya Kubo, ${ }^{\text {b }}$ Hiroyuki Tajima, ${ }^{\text {b }}$ Takeshi Kawase ${ }^{\text {a }}$ and Jun-ichi Yamada*b
${ }^{a}$ Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
${ }^{b}$ Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.
${ }^{c}$ School of Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
E-mail: tkadoya@konan-u.ac.jp, yamada@sci.u-hyogo.ac.jp, jnishida@eng.u-hyogo.ac.jp

Instrumental procedures

Melting points were measured using a Büchi Melting Point M-565. NMR spectra were recorded on a JEOL JNM-ECZ-600R. The chemical shifts (δ) were referenced to chloroform $\left(\mathrm{CHCl}_{3} ; \delta=7.24\right)$. High-resolution mass spectra were measured using a JMS-T100 GCV.

Synthetic experimental procedures

All reactions were carried out under nitrogen atmosphere. 1,2-Benzenedithiol, 1,1'-thiocarbonyldiimidazole, n-butyllithium/hexane solution (n - $\mathrm{BuLi} /$ hexane), tetrahydro-4H-pyran-4-one, tetrahydro- $4 H$-thiopyran-4one and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were purchased and used without purification. Tetrahydrofuran (THF) was distilled over calcium hydride $\left(\mathrm{CaH}_{2}\right)$ under argon (Ar) atmosphere and further distilled over sodium benzophenone, again under Ar. Xylene and triethyl phosphite $\left(\mathrm{P}(\mathrm{OEt})_{3}\right)$ were distilled over CaH_{2}.

Detailed synthetic procedures

1,3-Benzodithiole-2-thione (1)

1,2-Benzenedithiol ($500 \mathrm{mg}, 3.52 \mathrm{mmol}$) was dissolved in 10 mL of THF. n-BuLi/hexane ($1.59 \mathrm{M}, 5.75$ $\mathrm{mL}, 9.14 \mathrm{mmol}$) was added to the solution at $-76^{\circ} \mathrm{C}$. After the mixture was stirred for 15 min at $-76^{\circ} \mathrm{C}, 1,1^{\prime}-$ thiocarbonyldiimidazole ($815 \mathrm{mg}, 4.57 \mathrm{mmol}$) in THF (20 mL) was added. The mixture was allowed to warm to room temperature and stirred overnight. After cooling in an ice bath, ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ aq. (25 mL) was added. The mixture was filtered with celite and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was washed with brine. After the extracts were dried with anhydrous magnesium sulphate $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent) to afford $1(588 \mathrm{mg}, 3.19 \mathrm{mmol})$ as orange crystals at a 91% yeild.
m. p. $166.7-168.1^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.57(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH)
${ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=212.0,141.0,127.3,121.7$

Diethyl 1,3-benzodithiol-2-yl phosphonate (2)

$\mathbf{1}(369 \mathrm{mg}, 2 \mathrm{mmol})$ was dissolved in 300 mL of xylene. The solution was heated at $90^{\circ} \mathrm{C}$, and 50 mL of $\mathrm{P}(\mathrm{OEt})_{3}$ was added. After the mixture had been stirred at $90^{\circ} \mathrm{C}$ for 1 h , it was refluxed overnight. The reaction mixture was then allowed to cool to $80^{\circ} \mathrm{C}$, and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (with ethyl acetate/hexane (3:1) as the eluent) to afford the crude product. The crude product was washed with hexane to afford 2 as colourless crystals ($230 \mathrm{mg}, 0.79 \mathrm{mmol}$) at a 40% yield.
m. p. $113.6-114.7^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.16(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 4.83\left(\mathrm{~d}, J_{\mathrm{PCH}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}\right), 4.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{POCH}_{2}\right), 1.19\left(\mathrm{t}, J_{\mathrm{HCCH}}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCCH}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=136.7,125.9,122.1,64.3(\mathrm{~d}), 44.2(\mathrm{~d}), 16.3(\mathrm{~d})$

2-(Tetrahydropyran-4-ylidene)-1,3-benzodithiole (3a)

$2(486 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dissolved in 40 mL of THF. $n-\mathrm{BuLi} /$ hexane ($1.59 \mathrm{M}, 1.04 \mathrm{~mL}, 1.65 \mathrm{mmol}$) was added to the solution at $-76^{\circ} \mathrm{C}$. After the mixture had been stirred for 15 min at $-76^{\circ} \mathrm{C}$, tetrahydro- 4 H -pyran-4-one ($0.152 \mathrm{~mL}, 1.65 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature and stirred overnight. After cooling in an ice bath, $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (30 mL) was added. The mixture was extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. After the extracts were dried with anhydrous MgSO_{4}, the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent) to afford 3a as colourless crystals ($342 \mathrm{mg}, 1.45 \mathrm{mmol}$) at a 97% yield.
m. p. $148.0-150.3^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.15(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 3.67\left(\mathrm{t}, J_{\mathrm{HCCH}}=5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\right), 2.68\left(\mathrm{t}, J_{\mathrm{HCCH}}=5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=135.9,125.4,122.5,121.5,120.2,67.4,33.5$
MS (EI): $m / z 236[M]^{+}$
HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OS}_{2}$: $236.0330[\mathrm{M}]^{+}$; found: 236.0335

2-(Tetrahydrothiopyran-4-ylidene)-1,3-benzodithiole (3b)

$2(581 \mathrm{mg}, 2 \mathrm{mmol})$ was dissolved in 40 mL of THF. $n-\mathrm{BuLi} /$ hexane ($1.59 \mathrm{M}, 1.38 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added to the solution at $-76^{\circ} \mathrm{C}$. After the mixture had been stirred for 15 min at $-76^{\circ} \mathrm{C}$, tetrahydro- 4 H -thiopyran-4-one ($256 \mathrm{mg}, 2.2 \mathrm{mmol}$) in THF (15 mL) was added. The mixture was allowed to warm to room temperature and stirred overnight. After cooling in an ice bath, $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (30 mL) was added. The mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. After the extracts were dried with anhydrous MgSO_{4}, the
solvent was removed in vacuo. The residue was purified by silica gel column chromatography (with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent) to afford $\mathbf{3 b}$ as colorless crystals ($494 \mathrm{mg}, 1.96 \mathrm{mmol}$) at a 98% yield.
m. p. $166.7-168.1^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.14(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 2.65\left(\mathrm{t}, J_{\mathrm{HCCH}}=5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~S}\right), 2.51\left(\mathrm{t}, J_{\mathrm{HCCH}}=5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CS}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=135.8,125.4,123.6,122.3,121.5,35.3,29.1$
MS (EI): m/z 252 [M] ${ }^{+}$
HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~S}_{3}: 252.0101$ [M] ${ }^{+}$; found: 252.0101

2-(Pyran-4-ylidene)-1,3-benzodithiole (P-BT)

A solution of DDQ ($284 \mathrm{mg}, 1.25 \mathrm{mmol}$) in xylene (28 mL) was added dropwise for 30 min to a gently refluxing solution of $\mathbf{3 a}(118 \mathrm{mg}, 0.5 \mathrm{mmol})$ in xylene $(40 \mathrm{ml})$ at $130^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min using reflux $\left(150^{\circ} \mathrm{C}\right)$. After the reaction mixture was cooled, the precipitate was filtered, washed with CS_{2} and removed. The solvent of the filtrate was removed in vacuo. The residue was purified by silica gel column chromatography (with CS_{2} as the eluent) to afford P-BT as pale orange crystals ($60 \mathrm{mg}, 0.26 \mathrm{mmol}$) at a 52% yield. The P-BT was purified by recrystallisation from the $\mathrm{CS}_{2} / \mathrm{EtOH}$ solution and vacuum sublimation.
m. p. $164.9^{\circ} \mathrm{C}$ (decomp.)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.16(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.45$ (broad, 2H, CCHO), $5.53\left(\mathrm{~d}, J_{\mathrm{HCCH}}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCO}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=140.8,136.3,125.5,121.6,113.8,108.8,108.1$
MS (EI) $m / z 232[\mathrm{M}]^{+}$
HRMS (EI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OS}_{2}: 232.0017$ [M] ${ }^{+}$; found: 232.0015
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OS}_{2}$: C, 62.04; H, 3.47; S, 27.60. Found: C, 61.82; H, 3.49; S, 27.49.

2-(Thiopyran-4-ylidene)-1,3-benzodithiole (TP-BT)

The TP-BT (151 mg) was obtained ($0.61 \mathrm{mmol}, 61 \%$) as orange crystals by a similar method as for the synthesis of P-BT. It was purified by recrystallisation from the $\mathrm{CS}_{2} / \mathrm{EtOH}$ solution and vacuum sublimation. m. p. $200.7^{\circ} \mathrm{C}$ (decomp.)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.19(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.15\left(\mathrm{~d}, J_{\mathrm{HCCH}}=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCS}\right), 6.02$ (broad, 2H, CCHS)
${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 40^{\circ} \mathrm{C}$): $\delta(\mathrm{ppm})=136.2,125.6,123.8,121.6118 .3,116.9,114.6$
MS (EI): m/z 248 [M] ${ }^{+}$
HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~S}_{3}: 247.9788$ [M] ${ }^{+}$; found: 247.9783
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~S}_{3}$: C, 58.03; H, 3.25; S, 38.72. Found: C, 57.89; H, 3.24; S, 38.72.

Fig. S1 AFM images of P-BT films with different thicknesses on substrates: (a) 140, (b) 290 and (c) 400 nm.

Fig. S2 AFM images of TP-BT films with different thicknesses on substrates: (a) 145, (b) 245, (c) 330 and (d) 370 nm .

Fig. S3 XRD patterns of (a) P-BT and (b) TP-BT for each film thickness and molecular arrangement on substrates of (c) P-BT and (d) TP-BT.

Fig. S4 Film thickness dependence of OTFT mobility.

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$.

Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$.

Fig. $\mathbf{S} 9{ }^{1} \mathrm{H}$ NMR spectrum of P-BT.

Fig. S10 ${ }^{13} \mathrm{C}$ NMR spectrum of P-BT.

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectrum of TP-BT.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR spectrum of TP-BT.

