Facile fabrication of ultrafine CoNi alloy nanoparticles supported on hexagonal N-doped carbon/Al₂O₃ nanosheets for efficient protein adsorption and catalysis

Xiaoying He^a, Suping Han^{b*}, Jing Zheng^a, Jingli Xu^a, Xuebo Yin^a, Min Zhang^{a*}.

- ^{a.} College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China. E-mail: zhangmin@sues.edu.cn
- ^{b.} Department of Pharmacy, Shandong Medical College, No.5460 Erhuannanlu Road, Jinan 250002, China. supinghan@163.com.

Figure S1. SEM and TEM images of Co/Al_2O_3 (A, B).

Figure S2. XRD images of C-CoNi/Al₂O₃ (d) C-Co/Al₂O₃(e).

Table S1. N₂ adsorption-desorption isotherms corresponding pore size distributions of

Samples	BET Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)	Pore Size (nm)
Co/Al ₂ O ₃	8.7	0.0227	10.5
C-Co/Al ₂ O ₃	25.4	0.0298	4.7
C-CoNi/Al ₂ O ₃	33.9	0.0285	3.4

the synthesized C-CoNi/Al₂O₃, C-Co/Al₂O₃, Co/Al₂O₃.

Table S2. The ICP data of C-CoNi/Al₂O₃ with different calcination temperature

before and after catalytic reaction.

Catalysts	Co (µg.mg⁻¹)	Ni (µg.mg⁻¹)
C-CoNi/Al ₂ O ₃	298.29	197.63
C-Co/Al ₂ O ₃	410.86	/
Co/Al ₂ O ₃	266.33	/

Table S3. A full comparison of C-CoNi/Al₂O₃ nanosheets catalysis activity and test condition with other nickel and noble metal catalysts.

Catalyst	Туре	K(×10 ⁻³ s ⁻¹)	κ(g ⁻¹ s ⁻¹)	Reference
C-CoNi/Al ₂ O ₃	nanosheets	3.86	210.58	This work
C-Co/Al ₂ O ₃	nanosheets	2.02	4.92	This work
Co/Al ₂ O ₃	nanosheets	1.21	4.54	This work
Ni/p (AMPS)	Hydrogel	0.9	0.15	1
Ni/MC-550	Nanotube	1.51	338	2
Ni/SiO ₂	Core-shell	2.8	0.94	3
RGO-Ni	Nanosheets	0.25	0.04	4
C-Ni/400	Core-shell	5.9	142	5
Ni/SNTs	Nanotube	9.9	31	6
Ni (modified)	Nanoparticles	2.4	0.80	7

Table S4. Isotherm parameters for the adsorption of BHb protein on the C-

CoNi/Al₂O₃.

T(° ℃)	Langmuir	model		Freundich	model	
	K _d (mg/mL)	Q _m (mg/g)	R ²	K _F (mg/g)	n	R ²
C-CoNi/Al ₂ O ₃	0.10	1164.4	0.9980	585.9	1.72	0.9314
C-Co/Al ₂ O ₃	0.38		0.9997			
Co/Al ₂ O ₃	0.26		0.9984			

Table S5. Properties of different adsorbents for BHb capture

Adsorbent	Capacity (mg g ⁻¹)	Reference
C-CoNi/Al ₂ O ₃	1164.4	This work

Fe ₃ O ₄ @SiO ₂ @IL	2150	8
CNTs/Fe ₃ O ₄ @CuSilicate	302.3	9
Cu-IDA-silica-coated Fe ₃ O ₄	418.6	10
Magnetic HCNTs	2200	11
Ni-MNPs	1054.3	12

Reference

1. Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N., New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. *Applied Catalysis A General* **2010**, *385* (1–2), 201-207.

2. Yang, Y.; Ren, Y.; Sun, C.; Hao, S., Facile route fabrication of nickel based mesoporous carbons with high catalytic performance towards 4-nitrophenol reduction. *Green Chemistry* **2014**, *16* (4), 2273-2280.

3. Jiang, Z.; Xie, J.; Jiang, D.; Jing, J.; Qin, H., Facile route fabrication of nano-Ni core mesoporoussilica shell particles with high catalytic activity towards 4-nitrophenol reduction. *Life Sciences* **2012**, *14* (14), 4601-4611.

4. Ji, Z.; Shen, X.; Zhu, G.; Zhou, H.; Yuan, A., Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. *Journal of Materials Chemistry* **2012**, *22* (8), 3471-3477.

5. Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N. S.; Xu, J., Tailoring the nickel nanoparticles anchored on the surface of Fe3O4@SiO2 spheres for nanocatalysis. *Nanotechnology* **2017**, *28* (34), 345601.

6. Zhang, S.; Gai, S.; He, F.; Ding, S.; Li, L.; Yang, P., In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction. *Nanoscale* **2014**, *6* (19), 11181-8.

7. Jiang, Z.; Xie, J.; Jiang, D.; Wei, X.; Chen, M., Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. *Crystengcomm* **2012**, *15* (3), 560-569.

8. Wei, Y.; Li, Y.; Tian, A.; Fan, Y.; Wang, X., Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity. *Journal of Materials Chemistry B* **2013**, *1* (15), 2066-2071.

9. Zhang, M.; Wang, Y.; Zhang, Y.; Ding, L.; Zheng, J.; Xu, J., Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin. *Applied Surface Science* **2016**, *375*, 154-161.

10. Zhang, M.; Cheng, D.; Prof, X. H.; Chen, L.; Prof, Y. Z., Magnetic Silica-Coated Sub-Microspheres with Immobilized Metal Ions for the Selective Removal of Bovine Hemoglobin from Bovine Blood. *Chemistry – An Asian Journal* **2010**, *5* (6), 1332-1340.

11. Zhang, M.; Wang, B.; Zhang, Y.; Li, W.; Gan, W.; Xu, J., Facile synthesis of magnetic hierarchical copper silicate hollow nanotubes for efficient adsorption and removal of hemoglobin. *Dalton Transactions* **2016**, *45* (3), 922.

12. Wang, Y.; Zhang, M.; Wang, L.; Li, W.; Zheng, J.; Xu, J., Synthesis of hierarchical nickel anchored on Fe₃O₄@SiO₂ and its successful utilization to remove the abundant proteins (BHb) in bovine blood.

New Journal of Chemistry 2015, 39 (6), 4876-4881.